
Introduction to

SYSTEMS ENGINEERING
in the 21st Century

SYSTEMS ENGINEERING SERIES
Cuadernos de Isdefe

1

Introduction to Systems Engineering
in the 21st Century
Volume 1

Systems Engineering SeriesSystems Engineering Series
Cuadernos de IsdefeCuadernos de Isdefe

AUTHORS

Dr. Alejandro Salado / Adolfo Sánchez Domínguez / Dr. Dinesh Verma

Thomas Allen McDermott / Víctor Ramos del Pozo

Dr. Ronald Giachetti / Juan Carlos Larios Monje

David Long / Belinda Misiego Tejada / Dr. Kaitlin Henderson

Christopher Delp / L. Miguel Aparicio Ortega / Dr. Joe Gregory

Dr. Kaitlynn Castelle / Miguel Ángel Coll Matamalas

Original Title: Introduction to Systems Engineering in the 21st Century

© Isdefe

C/ Beatriz de Bobadilla, 3 -28040 Madrid

www.isdefe.es

First printing: June 2024

ISBN: 978-84-695-7816-2

No comercial

Legal deposit: M-14809-2024

Publisher: Ingeniería de Sistemas para la Defensa de España SA SME MP

Coordinator: Juan Manuel García Montaño

Technical coordinator: Dr. Alejandro Salado

Editor: Dr. Alejandro Salado

Editing and style review team: Juan Manuel García Montaño, Mª del Rocío Manjón Pérez

Book design and layout: Iliana Aguilar Jiménez

Video recording and production: Favorit Comunicación

Printing by Byprint Madrid

Printed in Spain - Impreso en España

The opinions contained in this book are the sole responsibility of the undersigned authors. They are not intended to reflect the
opinions or point of view of Isdefe as a company.
The editing team has made every effort to obtain the appropriate permissions for all material reproduced in this book. If there is
an omission, we ask that you send us a written request to correct the error.

All rights reserved. Reproduction in whole or in part without the permission of the publisher is prohibited ©.

“[A system is] any portion of the material universe which we choose to separate in
thought from the rest of the universe, for the purpose of considering and discussing

the various changes which may occur within it under various conditions.”

J.W. Gibbs

Around 30 years ago, Ingeniería de Sistemas para la
Defensa de España S.A. S.M.E. M.P. (Isdefe) published
the systems engineering “blue books.” The “blue books”
were a series of sixteen monographs that captured the
state of the art in systems engineering at the time, in a
practical and concise manner. The series was a special
feat because of two main reasons. First, it conformed
the first systems engineering publications that had been
ever written in Spanish; and was certainly the largest one
in scope, still to this day. Second, and most importantly,
it formally brought systems engineering to Spain at a
time when, let’s be honest, just a few individuals were
even aware of what systems engineering was.

The “blue books” covered a wide range of systems
engineering topics, arguably the whole body of
knowledge at the time: from General Systems Theory to Systems Analysis. The series
was edited by an editorial board (drafting committee) composed by generals from the
Spanish Armed Forces, government officials from Spain, and Isdefe employees, and
was written by several national and international experts in the different topics that it
covered, including authors such as the late Ben Blanchard, Donald R. Drew, and Jezdimir
Knezevic, among others. While the “blue books” were really an impressive and unique
source of knowledge, just a few people had access to them. The monographs served
as the basis for Isdefe to introduce their employees, clients, and partners to systems
engineering, and have remained so. (I am very lucky to treasure one copy of the entire
collection in my office despite having never been an Isdefe employee!).PR

OL
OG

UE

But time has passed and, while one could argue that it has only been
a bit short of 30 years since then, the systems engineering landscape
has significantly changed, both in the size of its body of knowledge
and in its widespread and external awareness. Some examples, non-
exhaustive, follow:

	• The number of active members of the International Council on
Systems Engineering (INCOSE) (founded in 1990 and becoming
international in 1995) has grown exponentially since the 2000’s.
A similar trend exists for the number of new members that join
INCOSE.

	• A plethora of new methods that span the whole system life cycle
has emerged. Systems engineering is not anymore just a process
or a guide for good engineering, but systems engineers can resort
to methods that are dedicated to its activities, such as capturing
requirements, architecting systems, and so forth.

	• Today, we have technology that is dedicated to supporting the
systems engineer; we no longer must remain cornered to paper,
word processors, and spreadsheets.

	• There are more and more educational opportunities for systems
engineers. We no longer have to limit our learning to on-the-job
training, but many universities offer graduate programs, several
offer PhD programs, and some undergraduate programs. INCOSE
has established a formal certification program, and the number of
consulting companies offering training and systems engineering
publications (papers, books, reports, etc.) keep growing every year.

	• People start to spell systems engineering for real. In Spain for
example, systems engineering has been traditionally associated
with Information Technology (IT). This is still the case for the most
part, but since 2014 there is an INCOSE chapter in Spain (Asociación
Española de Ingeniería de Sistemas, AEIS), a podcast, and a few
events that get organized every year. In just the last 10 years, the
amount of Spanish you hear at a systems engineering conference
has dramatically increased. And it feels good!

In this new context, Isdefe is emerging again as a national leader
in the field and is set to revise and/or complement the “blue books”
with a contemporary look at systems engineering. The purpose of
this monograph is to present a snapshot of the state of the practice
of systems engineering, including topics that are nascent to practice.
The monograph is targeted to practitioners in the Spanish government
and industry (while hopefully reaching a wider, international audience),
who are engaged in the development of engineered systems, both as
customers and suppliers, in the defense, security, space, energy, and
transport sectors.

The monograph has been developed as an edited collection of chapters
to be read as a monolithic piece, with each chapter being written by
one or two international experts in the field in tandem with an Isdefe
employee. Each chapter can be thought of as an introduction to a topic
that could become a full monograph in the future to tackle in detail the
specific topics of the chapter. Our intention with this monograph is that
after reading a chapter, the reader gains a solid awareness of the state of
the practice and is left willing to learn more about that topic to implement
it in their organization.

It has been our intention to write the monograph with an outreach style
yet aiming at being technically concise and sound. We have tried to limit
content that describes visions for the future of systems engineering,
opinions about the state of affairs in systems engineering, or ‘sales’
pitches that are shallow and unsupported by practice or research.
Our goal has been to keep the content as factual as possible, without
overstating existing capabilities yet without ignoring modern advances.
It is important to recognize however that, given the fluid state of the field
right now, different organizations will be at completely different points of
maturity with regards to the material presented in the monograph; I dare
to state that some may not even be mature on the practices described in
the old “blue books” yet. Such organizations should not take the content
in this monograph as a utopia, but rather as evidence that there is a path
for them to develop and mature their systems engineering capabilities.

The monograph contains six chapters:

Chapter 1 presents the current context in which systems engineering is
applied in Europe, as well as some of the competencies of the systems
engineer of the 21st century. Main topics include the transition from
vertical integration to specialization, the complexity of contractual
structures, the alignment of objectives across the supply chain,
international teams, dual roles of customer/contractor, and market and
political constraints.

Chapter 2 presents three aspects of modern and future systems that
may jeopardize traditional systems engineering practices: highly cyber
physical systems, distributed governance (systems of systems), and
learning-based systems and human-machine teaming. Emphasis is
given to current practices with doubtful effectiveness for such kinds of
systems and the chapter presents current trends on how to address
these unique aspects of these new systems.

Chapter 3 presents the need to evolve and adapt systems engineering
development models to the current context of engineering projects.
The chapter separates the discussion between traditional, dominantly
plan-driven approaches to systems development such as the Waterfall
and Vee models, and agile development approaches that emphasize
responsiveness. Most projects would benefit from both kinds of models,
and the authors discuss hybrid approaches and how to tailor the
development models to the context of particular projects.

Chapter 4 moves the discussion from systems and processes to
technology for the systems engineer. This chapter formally introduces
MBSE, and it covers aspects such as the effects of formalizing systems
engineering, the divergence and convergence of semantics, and
authoring, conducting reviews, and configuration control in model-
based environments.

Chapter 5 presents the novel capabilities enabled by digital models
and high computational power of current workstations to support
system development and integration. Topics include automated
generation and evaluation of architectures, set-based design, and
intelligent management of the supply chain and integration process.
among others.

Finally, Chapter 6 addresses the same aspects as Chapter 5 but applied
to deployment, operations and sustainment, and retirement. Topics
include the use of digital twins to perform predictive maintenance,
Virtual Reality environments to train users, and the use of Artificial
Intelligence to define operational strategies, among others.

Personally, it has been an honor to edit this first monograph for Isdefe’s
new series, and to work with such a talented pool of authors. I feel
fortunate that they all agreed to embark on this adventure with us. I am
very grateful to Isdefe and their project management team for trusting
and engaging me in this initiative, as well as for having always showed
continued support.

On behalf of the authors, the project management team, and Isdefe, I
hope that you find the reading educative, enjoyable, and useful.

Dr. Alejandro Salado
The University of Arizona

TA
BL

E
OF

 C
ON

TE
NT

S

INTRODUCTION TO SYSTEMS ENGINEERING IN THE 21ST CENTURY

PROLOGUE

1.	 SYSTEMS ENGINEERING IN THE 21ST CENTURY

1.1.	 A traditional perspective to systems engineering
1.2.	 The current European context for systems engineering
1.3.	 Systems engineering of the present-future
1.4.	 Conclusions

2.	 NEW KINDS OF SYSTEMS

2.1.	 Introduction
2.2.	 Evaluation of the effectiveness of traditional SE practices applied to these new kinds of systems
2.3.	 Trends to evolve systems engineering to effectively engineer those types of systems
2.4.	 Conclusions

3.	 EVOLUTION OF SYSTEMS ENGINEERING DEVELOPMENT AND EXECUTION MODELS

3.1.	 Introduction
3.2.	 Plan-driven development models
3.3.	 Evolutionary or agile development models
3.4.	 Comparison between plan-driven versus agile development
3.5.	 Tailoring development models
3.6.	 Merging development and operations with DevOps
3.7.	 Conclusions

4.	 MODEL-BASED SYSTEMS ENGINEERING

4.1.	 Introduction
4.2.	 Necessary (and ideal) elements of MBSE
4.3.	 Models are more than just drawings
4.4.	 MBSE is not a silver bullet; good systems engineering is a pre-requisite for good MBSE
4.5.	 Novel capabilities enabled by MBSE
4.6.	 Adopting MBSE
4.7.	 Conclusions

5.	 DIGITAL TRANSFORMATION IN SYSTEM DEVELOPMENT

5.1.	 Introduction
5.2.	 Enablers of digital transformation
5.3.	 Model-based lifecycle management and qualification
5.4.	 Beyond traceability and lifecycle management
5.5.	 Conclusions

6.	 DIGITAL TRANSFORMATION IN SYSTEM DEPLOYMENT, OPERATION, SUSTAINMENT, AND RETIREMENT

6.1.	 Introduction
6.2.	 Application of digital twin, virtual environments, and digital thread technologies in later system life cycle phases
6.3.	 Considerations for pursuing digital transformation across the life cycle
6.4.	 Conclusions

EPILOGUE

7

15

16
18
24
29

35

36
37
44
51

57

58
60
62
66
68
70
71

77

78
79
83
85
85
89
92

97

98
99

101
104
109

115

116
117
122
125

131

“This is where most of us are today: trained in some other field and picked up
systems engineering as best we could, engineers with on the job training in SE.”

A.W. Wymore

CH
AP

TE
R

1
Systems Engineering

in the 21st Century

Dr. Alejandro Salado, The University of Arizona (alejandrosalado@arizona.edu)
Adolfo Sánchez Domínguez, Isdefe (asdominguez@isdefe.es)

Dr. Dinesh Verma, Stevens Institute of Technology (dverma@stevens.edu)

Abstract

This chapter presents the current context in which systems engineering is applied in Europe, as well as
the ideal competencies of the systems engineer of the 21st century. Main topics include the transition
from vertical integration to specialization, the complexity of contractual structures, the alignment of
objectives across the supply chain, international teams, dual roles of customer/contractor, and market
and political constraints.

Keywords

Keywords: systems engineering history, systems engineering evolution, skills and competencies.

16

1. A TRADITIONAL PERSPECTIVE TO
SYSTEMS ENGINEERING
Traditionally, systems engineering has been conceived as the
glue that connects disciplines in an engineering endeavor on
the one hand, and the user or customer on the other. The
systems engineer acts as a sort of technical coordinator, who
makes sure that the decisions made by traditional engineers
(e.g., electrical engineering, mechanical engineering, etc.)
are well balanced and aligned towards a common goal,
which is defined at the system level. A common analogy
has been that of an orchestra director, who makes sure the
harmonies, timings, and volumes played by each instrument
are adequately aggregated to deliver a (hopefully) beautiful
piece of music [1]. Without such a direction, the orchestra
would likely yield a cacophony instead. The need to balance
the desires of engineering disciplines has been captured by
several people using cartoons such as the one in Figure 1,
which caricaturizes the design of a smartphone as desired
by different engineering disciplines and the resulting product
once those have been balanced with the customer in mind.

While technical coordination and integration arguably remains
the most common representation of systems engineering,
such a view is incomplete though. Lifecycle is the other pillar
under which the traditional systems engineering perspective
is built. The systems engineer also oversees the evolution of
the system throughout its lifecycle (that is, from conception
to retirement), and in fact foresees those considerations to
inform early decisions; the systems engineer thinks about
the end before the beginning. If technical coordination or
integration is important to balance the desires of engineering
disciplines, being intentional about lifecycle considerations is
important to promote consistency between the actual need
to be satisfied and the final product that is released into
operations. This paradigm has also been often represented
by cartoons, such as the one in Figure 2, since at least the
60’s.

Figure 1. Balancing engineering silos [2] Figure 2. Integration of lifecycle considerations [2]

17

Several tenets are central to this perspective, which include
among others big picture thinking (sometimes equated with
a systems mindset), foresight, and communication and
influence [3]. Big picture thinking is the ability to identify
connections (or relationships) between parts and understand
how those relationships yield emergent behaviors at a
higher level (usually called the system level). Following
the paradigm of the technical coordinator, the big picture
thinking is exhibited when an engineer understands, for
example, that the power consumption of a given part is not
critical in isolation, but that it has effects on the sizing of the
power supply, which may affect the required capability of the
thermal control system, which may in turn affect the design of
the housing structure, which may affect the electromagnetic
performance of the system, etc. This applies as well to the
paradigm of the lifecycle considerations, where big picture
thinking is exhibited when an engineer understands, for
example, that a given architecture may achieve an excellent
performance but at the unbearable cost of a very intricate
integration process or impossible future maintenance.

Probably unsurprisingly, technical coordination in the context
of integrating lifecycle considerations is done with the purpose
of promoting success in the development of the system. That
is, one wants to avoid the unpleasant surprise that the system
they developed is infeasible to deploy and operate or even
unfit for purpose; this is regardless of whether this is the result
of technical inconsistencies or unbearable operations. The
ability to foresee and anticipate issues and problems during
system development becomes therefore instrumental for
a systems engineer. Because of the strong influence that
early decisions can have in the success of the development
effort (both in terms of development efficiency and solution
effectiveness) [4], foresight and anticipation enable steering
the development work early on in a way to avoid or easily
mitigate the consequences of obstacles that could emerge
during the system’s lifecycle.

The ability to communicate and influence others is essential
for anyone aiming to coordinate the work of other engineers,
as well as for anyone working across lifecycle boundaries.
For example, a systems engineer may have to convince an
antenna engineer that their awesome antenna is unnecessary,
and a worse-performing antenna is not only acceptable but
what they actually need to yield a feasible solution at the
system level. Similarly, a systems engineer may have to
convince a thermal engineer that their thermal model does
not need so much accuracy, and that just a coarse estimate is
sufficient for a particular project. Coordination does not only
occur between engineering disciplines though. A systems
engineer may have to explain to a project manager why

certain modifications are critical (and do so without resorting
to technical jargon!), as well as translate some project
management concerns to their engineering team (and do so
without appearing to be a manager just cutting down their
budget!).

Until very recently and probably in most organizations still
today, these skills have predominantly been developed
through experience [3] and have heavily relied upon
talent [5]. Informally described as scar tissue, the systems
engineer possesses a knowledge base acquired through
suffering and learning from multiple mistakes and problems
in several projects. Every unknown unknown that a systems
engineer encounters during his/her career (that is, events
that they are unaware of and still materialize), even before
they became a systems engineer, is converted into a known
unknown that is added to his/her personal set of heuristics
or principles (that is, the engineer knows now that the event
could occur), acquiring the ability to foresee and act on
them before they occur again. Essentially, you’ve been there,
you’ve seen it, you’ve lived through it. In addition, a natural
byproduct of accumulating such experience is the building
up of respect and/or reputation among peers [6]. Generally,
these significantly improve one’s position when it comes
to exerting influence and persuading others [7], and are
often associated with career promotions, which afford more
opportunities to engage in diverse forms of communication.
Furthermore, those individuals with curiosity to stretch
beyond one’s domain of expertise, can develop their breadth
of knowledge as they exchange insights with others in multi-
or interdisciplinary teams [8].

Therefore, systems engineering has been traditionally
conceived as a step for some senior engineers in their career
progression: those that were very good in their respective
domains, developed a solid breadth of knowledge across
the domains that build up the system of interest, and were
able to communicate across silos (including to management,
customers, and other individuals engaged in various areas
of system development across the lifecycle) would become
the systems engineer for a specific project [3]. Systems
engineering would not be something you learnt in college,
but rather something you would become and grow into.

Given the lack of scientific foundations for the discipline [9],
processes became early on an effective vehicle to harmonize
systems engineering work [10]. These became so prevalent
in systems engineering practice that many started to refer
to systems engineering as the systems engineering process,
rather than considering it a discipline. Actually, this view is still
prevalent in several spheres. (One just needs to search for

18

the term on the internet, and they will find such treatment by
corporations, federal agencies, and universities as of the time
of writing this chapter!) Such a process is generally described
(simplistically) as a top-down sequence of activities that
transform and decompose needs and requirements into a set
of components that are later integrated to form a system. This
view reinforces the idea of systems engineering as a step in
an engineer’s career progression, since one only needs to
learn and apply a process to an engineering effort.

Given the proliferation of different processes to support a
systems engineering effort, such as the Spiral development
or more recently Agile methodologies, there has been
a trend in the systems engineering community to not
consider systems engineering a process itself, but rather a
methodological approach: the systems approach. In fact,
this is the purview of the International Council on Systems
Engineering (INCOSE), which defines systems engineering
as “a transdisciplinary and integrative approach to enable
the successful realization, use, and retirement of engineered
systems, using systems principles and concepts, and
scientific, technological, and management methods” [11].
While the approach paradigm certainly encompasses a
broader understanding than what the process paradigm did,
there is still an underlying implication of systems engineering
not being a discipline itself, but something that can be learnt
transversally to one’s career.

This conception of systems engineering has remained
virtually unchanged since the days of the Apollo program.
In fact, the Apollo program has remained the main paradigm
for the education of engineers for the most part. No doubt,
Apollo is probably one of the most, if not the most inspiring
and bold engineering endeavors humankind has witnessed.
(We certainly believe so.) One may therefore argue that, if
such is the case, why not use Apollo as the epitome of how
engineers are to be educated, trained, and developed? The
answer to that question may be in the fact that it is also fair
to acknowledge that the context in which the Apollo program
happened may not be representative of the contexts that
most engineers face today.

2. THE CURRENT EUROPEAN CONTEXT
FOR SYSTEMS ENGINEERING

2.1. Organizational, political, and industrial
complexity

As stated, the Apollo program was an outstanding
engineering undertaking. But it also benefited from certain
contextual features that we do not see often if ever in today’s
engineering programs. Leaving aside the fact that the Apollo
program was a race in the middle of a war (even it was the
Cold War), let us look at how NASA’s funding at the time
compared with today’s funding situation (ref. Figure 3).

The are three features to observe. First, one can easily see
the peak of funding that NASA received during the Apollo
days, which is around double of what NASA received after
landing on the Moon. Second, one should note that NASA’s
budget during the Apollo program was mainly consumed by
the Apollo program, while today’s budget is spread through
many ongoing and future NASA projects. This allocation of
resources further amplifies the funding difference between
the Apollo program and other NASA programs today (at
least as consumed per year). The third aspect, which is
probably the most important one with respect to context for
engineering practice, was told to the first author of the chapter
by a colleague, who supervised a PhD student researching
government funding allocation during the Apollo program.
Every budget request that NASA solicited to government
was approved. That means that, while the funding in today’s
projects reflects NASA budget (what they have available to
spend), the histogram for the Apollo years show what NASA
needed to complete the project. Effectively, engineers during
the Apollo program did not have cost constraints.

But financial resources are not the only contextual difference
between then and now. Organizations adopt one of two
primary paradigms to tackle the development of complex
systems: vertical integration or horizontal integration. In
vertical integration, a single organization owns all stages of
the system development process, encompassing conception,
engineering, manufacturing, and production. Conversely,
organizations adopting horizontal integration rely on different
external organizations, which specialize on different aspects
of the engineering endeavor, allowing them to leverage their
expertise and knowledge. For example, while a vertically
integrated organization would design and manufacture
every component needed for their system, a horizontally
integrated organization would purchase a given component

19

(e.g., a battery) to another company that specializes in such
kind of technology (e.g., a company that only designs and
builds batteries). While vertical integration offers greater
control over system development, horizontal integration
promises higher efficiency due to the allocation of different
tasks to expert companies in those tasks. It should be noted
though that vertical and horizontal integration should not be
understood as binary, but rather a tendency towards more
vertical integration or more horizonal integration.

Vertical integration was common in the early days of systems
engineering, probably because existing companies would
simply grow their existing product portfolio towards products
of higher complexity and scale. However, horizontal integration
was later favored in the hopes of higher financial efficiency
and lower risk promised by specialization and became
the norm for large scale engineering endeavors. In fact,
horizontal organization is still the most prevalent approach
today, particularly in Europe. However, organizations have
started to accept that specialization in these areas (i.e.,
large scale systems such as those in the defense and space
sectors) has not lived up to its promise, at least in the way in
which it has been implemented.

Horizontal integration introduced the need for contractual
structures to govern the relationships between the different
organizations engaged in the development of a system (here,
the roles of prime contractor, subcontractor, etc. emerge).
The burden imposed by contractual constraints often leads
to significant costs that, in many cases, have jeopardized any
possible gains obtained through specialization1. Furthermore,

1. While contracts existed before, the fact that budgets were virtually unlimited made
contracting just a vehicle to communicate work, not a source of risks affecting the
development effort.

this was an aspect that, while taken into account from
a philosophical or conceptual perspective in systems
engineering, was not embedded within systems engineering
practice in a way that could be operationalized to effectively
navigate and/or blend contractual and engineering aspects
of an engineering project.

In Europe, this situation is exacerbated by the geopolitical
constraints emerging from the need for various countries to
not only work together, but to compete and capture European
funding. It is not uncommon in European projects that the
funding that an organization may receive to pursue an
engineering endeavor is proportional and/or bounded by the
financial contribution that the country made to the project
through the European financial and political channels. This
may result from a country’s goal to manage a project, to
keep control or leadership of a technology, or to develop
new capabilities or technologies unavailable to the country
at that time, among others. To compete in this context, many
multinational companies replicate capabilities in different
countries instead of fully implementing specialization,
leading to internal competition that confounds with political
constraints and competition with other external organizations.

Today, certain organizations are attempting to transition
back to vertical integration, in the hopes to integrate their
engineering teams more easily towards a common goal.
SpaceX has shown with its rockets a notable example of how
vertical integration in the 21st century has contributed (albeit
not the only contributing factor!) to significantly lower the cost
of a large-scale system with respect to horizontal integration.

Figure 3. NASA funding over time

20

The geopolitical constraints remain though in the European
context. While in the USA the political and cultural union
with a centralized government facilitates the execution of
large-scale engineering programs with a high technological
content, in the European context, the fragmentation into
multiple states with diverse political and economic interests
makes it difficult to tackle large engineering programs that,
due to their size or complexity, would be impossible to
undertake alone. Supranational organizations (such as the
European Space Agency) or international programs (such as
Eurofighter, A400-M, or the more recent FCAS (Future Combat
Air System)) try to mitigate the effects of this fragmentation by
securing stable and prolonged funding commitments from
member countries. (The boxed text presents some historical
notes and examples of supranational organizations in Europe
engaged in the development of large-scale engineered
systems.) However, these supranational organizations do
not resolve the problems inherent to particular interests
of each member country when it comes to the distribution
of workloads, the assumption of responsibilities, and the
protection of their national industries and security interests.

A clear example of these difficulties is evident in the
establishment of the FCAS program, which involves Germany,
France, and Spain as the main contributing members. This
program faced several challenges. One such challenge was
the prioritization of the interests of certain national industries
over the needs of the end users. For instance, France, led by
Dassault, opposed Airbus serving as the national coordinator
for the other two member countries. Additionally, Germany
expressed doubts about the project’s viability, while Spain
preferred Indra over the more international Airbus as its
national coordinator. These issues resulted in multiple delays
and disagreements among the member countries and their
industry partners. Clearly, the fragmented execution of this
kind of engineering endeavors incurs enormous transaction
costs related to negotiation and decision making among
its members. Some of the consequences are the need to
offer returns to each of the partners, the different weight of
each of them within the programs, the location of production
in plants that are sometimes suboptimal, or the need to
transport parts between them when all the assembly could
be done in a single location. In the end, all this contributes to
higher prices for the end customer, excessive development
times and, in most cases, delays [12].

Some examples of supranational organizations engaged
in the development of large-scale engineering systems in
Europe.

In Europe, the treaty establishing the European Economic
Community (Rome, 1957) and even the 1997 Treaty of
Amsterdam excluded the arms and defense sector from
the Community sphere, making it difficult for governments
to collaborate and to adopt a common development
framework such as might exist in the United States. One
of the initial endeavors to foster European cooperation
in defense affairs emerged with the establishment of the
Independent European Programme Group (IEPG) in 1976.
This initiative was conceived as a technical association
in alignment with the principles of the Atlantic Alliance,
emphasizing the preservation of each member country’s
national responsibilities. The resolutions produced by the
IEPG, though lacking binding authority, primarily served
as a mechanism for exchanging information regarding
national armament and equipment procurement procedures.
Furthermore, they facilitated the investigation and evaluation
of potential frameworks for overseeing joint projects.

In 1992, the IEPG became the Western European Armaments
Group (WEAG) and was integrated into the Western European
Union (WEU) as the body responsible for armaments
cooperation. Despite continuing the procedures and relations
of the IEPG, it established a series of new objectives such
as the search for competition between the different national
markets, the reinforcement of the technological base, and
cooperation in defense R&D. In 1996, the Western European
Armaments Organization (WEAO) was established; a new
WEU subsidiary body essentially dedicated to managing
research and technology activities.

Given the limited impact of these initiatives, a group of
countries began to make progress in this field through
different agreements until 1996, when the Organization
for Joint Armament Cooperation (OCCAR) was formed,
the main organization in the field of industrial cooperation
in armaments and the embryo of the European Defence
Agency (EDA). OCCAR’s Program portfolio currently includes
17 important armament programs with a total operational
budget in 2023 of about 6 Billion €: A400M, BOXER, COBRA,
ESSOR, FREMM, FSAF-PAAMS, LSS, LWT, MALE RPAS,
MAST-F, MMCM, MUSIS, NVC, PPA, REACT, TIGER, and
U212 NFS. The governance of OCCAR and the management
of the OCCAR programs follow the OCCAR rules.

Meanwhile, in Spain, ISDEFE (Ingeniería de Sistemas para
la Defensa de España), a state-owned company, was
established in 1985. It was created to serve as a resource
for providing technical support in complex projects, with a
particular focus on the defense, aeronautics, and information
and communications technology sectors. Additionally,

21

ISDEFE was tasked with offering technical assistance to
the Ministry of Defense in systems engineering efforts,
particularly related to the Modernization Programs of
the Armed Forces. Since its inception, ISDEFE has been
actively implementing Systems Engineering methodologies
in the development processes of various systems, including
command and control systems, air traffic control, platform
reengineering, logistics chain optimization, intelligence and
electronic warfare systems, and surveillance and border
control systems. Notably, ISDEFE has played a crucial role
in numerous military programs, such as the F-110 frigates,
the VCR 8x8 wheeled armored vehicle, the A400M military
transport aircraft, the Tigre helicopter, the S-80 submarine,
and many others.

In 2004, the European Defense Agency (EDA) was founded
to help its twenty-seven member states (all EU countries) to
develop their military resources by pooling national interests
and catalyzing the operational, technological, and industrial
aspects required to implement multinational weapons
systems programs, delegating the actual management of
the programs in their development and production phases
to organizations such as OCCAR.

In the aerospace field, two initiatives set the European
framework for collaboration in systems engineering: the
creation in 1975 of the European Space Agency (ESA)
and the establishment in 2000 of the aerospace company
European Aeronautic Defence and Space (EADS), renamed
in 2014 as Airbus Group.

The creation of the European Space Agency (ESA), like that
of EDA, was preceded by the creation of other bodies such
as the European Space Research Organization (ESRO)
in 1962, the European Shuttle Development Organization
(ELDO), the European Space Research and Technology
Centre (ESTEC), which would be responsible for the
development of satellites and space vehicles, and the
European Space Operations Centre (ESOC), responsible
for the control of satellite operations. In 1973, with the global
agreement of all member countries, three projects were
approved (Spacelab, the Ariane Program, and Marots)
and a fundamental decision was taken: the creation of the
European Space Agency (ESA).

The European Commission has sought to overcome the issues
of fragmentation by establishing the following initiatives:

	• The Directorate-General for Defence Industry and Space
(DEFIS), which directs the European Commission’s
activities in these sectors. In the defense industry field.
DEFIS is responsible for maintaining the competitiveness
and innovation of the European defense industry by
ensuring the evolution of a capable European defense
technological and industrial base. In the space domain,
DG DEFIS is responsible for the implementation of the
EU Space Programme, consisting of the European Earth
Observation Programme (Copernicus), the European
Global Navigation Satellite System (Galileo), and the
European Geostationary Navigation Overlay System
(EGNOS).

	• The European Defence Action Plan (EDAP) of November
2016, which seeks to promote a strong and competitive
European Defense Technological and Industrial Base
(EDTIB) based on the European Defence Fund (EDF),
main EDAP funding framework. This plan is based on four
pillars through which specific actions and programs are
implemented in the fields of research and development,
enabling European defense supply chains and building a
single European defense market.

	• The Permanent Structured Cooperation (PESCO), of
December 2017, which integrates 26 countries and
whose key objectives are the improvement of defense
capabilities, cooperation in military operations, and the
development of joint military capabilities. Its ultimate goal
is to strengthen the Union’s strategic autonomy in defense
matters.

These initiatives add to the ever-increasing set of regulations
imposed by governments and federal agencies that
organizations and engineered systems must comply with.
Public agencies in Europe frequently navigate rigorous
and highly regulated tendering procedures. While these
procedures aim to ensure transparency and equal
opportunities for bidders, they can sometimes become
intricate and time-consuming. This complexity may lead
to delays in the selection and contracting of engineering
organizations. Moreover, the holistic nature of systems
engineering demands bidding for contracts of various types
(e.g., supplies, software licenses, consulting, works, etc.)
involving multiple suppliers and subcontractors, which adds
to the challenge of management and contractual relationships
among stakeholders. Additionally, in the case of extensive
transnational consortia, country-specific regulations for
public procurement, data protection, and intellectual property
must be harmonized.

22

In the context of Spain, for example, Article 99.1 of the
Public Sector Contracts Law stipulates that “the object
of public sector contracts must be determined. The
same may be defined in attention to the specific needs
or functionalities that are intended to be satisfied, without
closing the object of the contract to a single solution.” This
requirement compels organizations to clearly define the
functional needs of contracted systems from the outset,
preventing the project from leveraging the knowledge of
companies during its early phases and, in some cases, the
adoption of innovative development models, processes,
or approaches, like Model-Based Systems Engineering
(MBSE), if these are not mandated by the customer.

Time will tell if these initiatives succeed, but past
experiences do not seem to correlate the addition of more
governing bodies and regulations with success in system
development. Concerns for overreliance on processes have
been claimed as early as in 1969 already during the Apollo
program, “If I plot a graph versus time of what appears to
be a recent rising tide of costs, cost overruns, unsatisfactory
performance and unhappiness among engineers, I have
reason to worry. […] If I plot on the same graph versus time
the rise in talk, directives … I see high correlation between
the two graphs” [10], and were reaffirmed in 2010 by former
NASA Administrator Mike Griffin [5]. In simplistic terms,
each new regulation adds a new constraint that the solution
must satisfy. And we know that each constraint reduces the
solution space, and that a reduction of the solution space
generally reduces the affordability of the developed system
[13].

International collaboration, essential for major European
programs, as described, presents other challenges that
span beyond those formally introduced by geopolitical
constraints. Some examples are listed below:

	• Effective communication between multicultural and
multilingual teams is not straightforward. Communication
problems stem not only from language barriers but also
from cultural nuances in communication styles. For
example, what may be considered direct and clear
communication in one cultural environment, may be
considered disrespectful or confrontational in another.
At the same time, multilingual teams may find it difficult
to convey technical information accurately and in a way
that is understood by all members because of losses of
information in translation, as well as decreased cognitive
performance due to the increase demand in cognitive
load when speaking a second language.

	• Coordination of activities involving personnel working
in different locations and using different tools and
technologies in their local work environment can lead
to delays in exchanging information and coordinating
activities. In addition, there are legal and security
concerns for organizations within large consortia as cross-
border data exchange may be subject to restrictions,
which can add complexity to information exchange and
collaboration efforts.

	• Cultural and work habit differences may need to be
overcome in order to achieve the ultimate goal of a joint
system that meets expectations. The way decisions
are made can vary greatly from one culture to another.
Some cultures may prefer a consensus-based approach,
while others rely on hierarchical decision-making. These
differences can affect the effectiveness of the decision-
making processes in a collaborative project.

These issues should not be interpreted as stating that
international collaboration should not be pursued. Not only is
international collaboration necessary to develop some large-
scale systems, as explained earlier, but it is also preferable in
many situations because of several benefits that it can yield,
such as leveraging expertise and knowledge. For example,
in the case of the Spanish S-80 submarine program, the
Spanish Ministry of Defense contracted with the US Navy and
General Dynamics-Electric Boat, which allow them to rethink
the program and implement better engineering processes
and methodologies, including adopting the NASA Systems
Engineering Handbook. The point made in this section is that
this sets a new context in which systems engineering must
be applied, and for which methods and/or approaches may
need to be evolved.

2.2. Engineering and technological complexity:
New systems, new methods

We have seen in recent years, and continue to see,
the emergence of new kinds of systems that exhibit
fundamental differences with respect to those with which
systems engineering was born. Traditional systems were
characterized by being predominantly hardware-based
(software was an isolated tiny part in those where there was
software at all), monolithic (their capabilities did not depend
on the capabilities of other systems), often developed in a
green field (no dependency on legacy systems), and lacking
agency (high predictability on the command-and-control
behavior of the system). Traditional systems are less and
less common, if they exist at all. For example, when the first

23

airplanes were developed, all supporting systems also had
to be developed to support the airplane (hence their name).
Today, new airplanes are developed within the constraints
of the existing supporting systems; support systems are
no longer in a supporting role but in an enabling one. In
other words, the development of contemporary systems is
significantly constrained by their need to interact with many
systems that are already in place (i.e., legacy systems).

However, the strongest novelties come from the increase in
importance and size of software components in contemporary
systems, the transition into distributed governance structures,
and the emergence of agency.

In the past, software was limited to some very specific
functionalities that were otherwise too difficult to implement
in hardware. Software was conceived as a last resort, not a
preferred go-to solution. Codes could be entirely reviewed
and tested. Today, software drives most of the functionality of
existing systems or, at least, most functionalities depend on
software. One only needs to look at how cars have evolved;
even the handbrake is controlled by software! The increase
in the reliance on software, together with the increase in
its complexity, challenges many of the assumptions under
which systems engineering has been traditionally practiced.
Software can be evolved quickly, it can be deployed
incrementally, it introduces security vulnerabilities of an
unprecedented diversity and potential severity, it is difficult
if not impossible to comprehensively test, and it can be
deployed and upgraded on the fly during operations, among
others.

Traditional systems were monolithic in the sense that they
alone could yield their intended capabilities; assuming
supporting systems were in place. For example, a television
would work fine as long as you could connect it to the
power grid and tune its antenna. Today we are living the
proliferation of systems of systems (SoS): those that are
heavily interconnected with and rely on the capabilities of
other independent systems whose primary goal is not to
serve in a supporting role. In other words, systems that each
have their own purpose are somehow leveraged to yield
unanticipated capabilities. In the example of the television
before, the purpose of the power grid is to provide energy to
household devices and the purpose of the content providers
is to provide content to consumers. Hence, in both cases
the systems’ purposes are to serve the television. However,
a smartphone affords you the capability of personal
navigation by leveraging signals provided by the Global
Positioning System (GPS), even though the GPS’s primary
purpose is to guide missiles, not to help you find your way

somewhere. Recognizing that not every collection of systems
is necessarily a SoS is essential to avoid falling into the trap
of calling and treating everything a SoS, as the term is often
abused and has become a buzzword. Differentiating both is
important because traditional systems engineering practices
are likely ineffective and sometimes even infeasible to tackle
the unique aspects of SoS [14]. In fact, there are even system
attributes or performance metrics, such as availability, that
we do not even know how to compute and/or predict for a
SoS [15]. Certainly, one cannot simply use traditional systems
engineering to engineer and/or integrate a SoS and expect
to be successful. The application of systems engineering
must be adapted (not tailored!) but, in all honesty, the
systems engineering community has only started to grasp
how to do so. As a body of practice, we are confident that
managerial and governance independence of the constituent
systems that form the SoS seem to be the latent factors that
must inform the evolution. As the ISO standard to apply
systems engineering to SoS indicates, approaches based on
command and control assumptions, availability of information
(e.g., to support verification), existence of requirements, or
guaranteed services may be powerless [14]. Some have
even claimed that SoS cannot actually be engineered, but
only integrated [16], which makes processes related to
requirements and architecture inapplicable. Instead, novel
systems engineering methods that are based on persuasion
and influence, use of incentives (e.g., mechanism design),
opportunistic federations, or blended development and
operation are being developed.

If distributed governance and the complexity of an ever-
increasing reliance on software were not enough changes to
the systems we must work with, we have started to witness
the incorporation of agency in cyber-physical systems,
mainly through artificial intelligence. The exhibition of agency
dramatically changes several core assumptions that are
central to systems engineering practice. For example,
whereas traditional systems are considered to exhibit
invariant behavior, in the sense that the behavior is set once
the system is built, intelligent systems are designed to change
their behavior as needed.

This challenges the effectiveness of many traditional systems
engineering practices, which need to be evolved. For
example, and certainly not exhaustively:

	• Since an intelligent system may change its behavior
between the test environment and the operational
environment, tests in test environment may no longer be
good proxies to predict system behavior during operation
[17].

24

	• If an intelligent system is expected to learn from
its experiences, individual systems may exhibit an
uncontrolled variability of its behavior with respect
to its class or family. As a result, product lines may
no longer be able to bound a class of systems [18].

	• Intelligent systems have a stable underlying/
supporting functionality (that is, to optimize a
reward function) and the main driver of system
performance and behavior is the training data.
Functional decomposition is no longer able to
capture how the system works, since it is data that
drives behavior. How does this impact functional-
based analyses such as fault-tree analysis or Failure
Modes and Effects Critical Analysis (FMECA)?

While some of these problems may be relevant for
software-based intelligent systems (such as a function
that predicts your purchasing behavior in an online
store), their solutions may not be directly transferrable
to general systems, because of the highly coupled
effects of the physical world. A new evolution of
systems engineering is therefore necessary.

3. SYSTEMS ENGINEERING OF THE
PRESENT-FUTURE

Traditional systems engineering paradigms and
methods are becoming ineffective to deal with the new
contexts – organizational and technological – in which
engineering endeavors are being undertaken. The
role of a single senior engineer trying to coordinate
technical efforts by managing information in countless
documents, manually controlling configuration items,
relying on free-style sketches to model different
system facets, and gut-feeling most decisions is
slowly fading away. Methods underpinned by science,
formal decision making, formal modeling, digitalization
of engineering artifacts, and a diversity of systems
engineering competencies that can be distributed
within a team are shaping the present and future of
systems engineering.

An overview of some aspects that are relevant to
the contemporary and evolving context of systems
engineering is discussed in the following sections. Note
that these sections are not intended to provide a vision
for the future of systems engineering or a roadmap for
its evolution; some proposals can be found in other
publications (e.g., [19]).

3.1. Emerging theories and foundations

The origins of systems engineering and its development as an
engineering practice in the 1960’s were accompanied by several
efforts to formalize the discipline. Pioneers such as Wymore (e.g.,
[20]), Warfield (e.g., [21]), or Mesarovic (e.g., [22]), among others,
tried to develop mathematical foundations to support systems
engineering practice, which, as stated earlier, was primarily driven
by intuition, talent, and eventually processes. However, it is fair to
state that their work did not succeed in traversing the academic
realm into informing systems engineering practice at the time. For
several years their work did not only remain unused but the very
interest in discovering the foundations of systems engineering
faded away against more applied and readily usable research that
focused on developing methods.

Today, there is a growing recognition, both in academia and
industry, for the need of scientific foundations to inform systems
engineering practice. Science is a core element of engineering.
Absent of scientific principles, we would probably talk of
craftmanship rather than engineering. Certainly, humans built
bridges and manufactured products well before Newton formulated
the first laws of motion. People resorted to their intuition, heuristics,
and experience and were successful with them; here we are today,
writing a book chapter on a computer! But we would not say that
they practiced engineering. Engineering a bridge or a product
is an entirely different feat, since the underlying science enables
us not only to understand how things work, but also to use that
knowledge to better predict the results of our decisions to improve
the effectiveness and efficiency of the products.

By the same token, we should probably be calling systems craft to
what we do today, and not use the term systems engineering yet.
We have not been able to even agree on or find a rigorous definition
for what a system is! [23] Let alone more intricate concepts such
as requirements, needs, specifications, architecture, ilities, etc.
To move our systems engineering practice, which is built upon
experience, gut feeling, good practices, and supposedly good
ideas, into real engineering, where we can undoubtfully assess the
goodness of a systems engineering method and have a common
and consistent set of concepts and associated vocabulary, among
others, we need scientific foundations to build upon.

The U.S. National Science Foundation (NSF) has been supporting
and funding fundamental research in systems engineering for at
least two decades. The Department of Defense (DoD) funded the
Systems Engineering Research Center (SERC) 15 years ago as a
network of collaborating universities with the goal of transforming
systems engineering practice by creating innovative methods,
tools, and processes and bringing academia and practice closer
together. As of the time of writing this chapter, INCOSE has

25

launched its Future of Systems Engineering (FuSE) initiative,
which includes the Foundations of Systems Engineering as
one of its fundamental tracks. While we are far from having
a comprehensive and mature set of scientific principles to
underpin systems engineering, research has already unveiled
several of them, even if most have still not transitioned into
practice.

Today, we know that most of the decision methods and/or
processes that are used in practice are fundamentally flawed
and their recommendations should not be trusted, and why.
We know that risk matrices generally embed wrong orders
of criticality, and why. We know that most categorizations
of requirements lead to poor requirements, and why. We
know that verification agreements between customers and
contractors should be based on programmatic discussions,
not on technical ones, and why. We know that existing MBSE
tools are unable to model requirements and that flagging
models as requirements leads to poor solution spaces, and
why. We know that decisions in engineering should not be
consensual in general, and why. We know that verification
plans should not be baselined and contracted early in the
system development, and why. And, moreover, we also know
how many of those activities should be done, and why. The
list keeps going but we are not trying to be exhaustive, just
indicative.

3.2. Systems engineering beyond technical
coordination

The conceptualization of the systems engineer as a technical
coordinator or technical manager has significantly expanded
in recent years. In addition to these, the systems engineers
of today can take other roles, including but not limited
to requirements engineer, system designer or architect,
system analyst, verification and validation engineer, interface
engineer, operations engineer, and information engineer
(including configuration management and metrics) [24].

Lately, we are even seeing a significant growth of job
demands for system modelers (or unfortunately called MBSE
engineers), engineers that specialize in the application of
MBSE and support traditional systems engineers or systems
engineering teams with modeling needs, from converting
their ideas into formal models to taking care of model
management tasks. In essence, as the field matures, systems
engineers may specialize in the different processes or tasks
that systems engineering encompasses.

To aid the personal development of the systems engineer,
INCOSE has developed a framework that captures the
competencies that a systems engineer can acquire and
should acquire when targeting certain competency level
[25]. The framework categorizes competencies between
core (those that all systems engineers should have, such
as systems thinking or critical thinking), professional
(those that relate to the work of the systems engineer
within an engineering team, such as technical leadership
or negotiation), management (those related to technical
coordination, such as risk management), and technical
(those that relate to systems engineering processes, such
as requirements or architecture). And it divides expertise
between five competency levels, from awareness to expert.
An example is shown in Table 1.

A core benefit of the framework is the recognition that a
systems engineer does not need to impersonate the knows-
it-all role, but that his/her competencies can be developed in
line with the systems engineering role that he/she may take.
This allows teams to move from every engineer executing
systems engineering in their domain (for which strong systems
engineering competency cannot probably be developed) to
assigning high competency roles within the team, sharing
different systems engineering tasks.

Modern systems engineering needs
to address these deficiencies, whilst
recognizing the organizational and
governance complexity inherent
in conception and development of

large-scale systems.

26

Specialization in different systems engineering areas is
meaningful. And, while we are going in a good direction,
there is still work to be done. For example, it is highly unlikely
that someone would assign an electronics engineer the
responsibility to perform the structural analysis of an airplane.
For such a task, you would choose an engineer that had
graduated college with a mechanical engineering degree,
had several years of experience conducting structural
analyses of growing complexity, and had potentially pursued
advanced degrees in structural engineering. However, we
find it absolutely sensible to take that electronics engineer
and assign him/her the task of writing requirements for a
multimillion-dollar system after just offering him/her a 2-day
seminar on requirements engineering. Yet, most of the
research and reports of most frequent causes of project failure
do not list incorrect structural analyses as one of the main
causes; eliciting the right requirements right is recurrently
listed though (e.g., [26, 27]).

To fill this need, academia is stepping up, both through
research (as explained in the previous section) and education.
The first undergraduate program in systems engineering
started in the early 1960’s at the University of Arizona, with a

heavy focus on math, and one of the first master degrees (if
not the first one) in the late 1960’s at Virginia Tech, with a heavy
focus on technical coordination and integration. However,
it was not until the mid-2000’s that the Stevens Institute of
Technology reimagined systems engineering education, with
master degrees that focused on the different specialization
areas and competencies that are required in modern systems
engineering. Such a paradigm has triggered immense growth
of master level offerings in the United States of America.

This has been driven by the demands of industry; it is just
too risky to rely the future of multimillion dollar ventures on
individuals that ignore good systems engineering practices
and methods. Formal systems engineering is also slowly
making its way into Europe, although maybe too slowly.
Systems engineering degrees are rather scattered in
different countries, instead of being regularly offered by
most universities. For example, as of the time of writing this
chapter, only the European University of Madrid offers a
postgraduate program in systems engineering in the country,
and it is not even a masters degree after the last educational
reform. To clarify, it is not the degree that matters, but the
competencies and expertise that formal education can

Awareness
Supervised
practitioner

Practitioner Lead practitioner Expert

Describes
different types of

requirements

Assists with the
elicitation of

requirements from
stakeholders

Elicits and validates
stakeholder

requirements

Defines and
documents
enterprise-

level policies,
procedures,

guidance and
best practice

for requirements
elicitation and
management

processes, including
associated tools

Coaches lead
practitioners in
requirements
elicitation and
management

Explains why there
is a need for good

quality requirements

Describes the
characteristics
of good quality

requirements and
provides examples

Writes good
quality, consistent

requirements

Reviews and judges
the suitability and

completeness of the
requirements set

Advises and
arbitrates on

complex or sensitive
requirements-
related issues

Table 1. Example of competencies for requirements definition at different levels of competency [extracted from [25]]

27

yield. This is something not even discussable for traditional
engineering disciplines, and hopefully a future paradigm for
systems engineering.

The growth and development of formal systems engineering
education at all levels (undergraduate, graduate, and even
recently apprenticeship) is also changing how systems
engineering exists as a career. If traditionally systems
engineering has been a career progression, as described
earlier in the chapter, we start to see systems engineering
as a career choice itself, where one can progress from junior
positions to more senior positions. For example, a junior
systems engineer might be responsible for deriving and
managing uncritical requirements for the system, while the
senior systems engineer can focus his/her attention to just the
subject of critical ones.

The emergence and adoption of MBSE is also contributing
to this paradigm change, as it is becoming increasingly
easier for an organization to recruit MBSE talent directly out
of college than train and change the ways of its more senior
personnel. In fact, some community colleges have started to
offer associate degrees/apprenticeships for system modelers
that would take jobs similar to those that drafters had with
respect to mechanical drawings.

3.3. Novel methods and tools

The advancement of affordable computational power, together
with the formalization of systems engineering (as discussed
in section 3.1), have enabled the development of computer-
based methods and tools to support systems engineering
activities in unprecedented ways. Probably, the most impactful
innovation has been the development of MBSE.

In a nutshell, MBSE promotes the use of formal machine-
readable models to capture systems engineering artifacts that
used to be captured in narrative form or informal models using
general office tools (e.g., word processors, spreadsheets, or
free drawing tools). In principle, there is no limitation on what
systems engineering artifact is captured as a model (e.g.,
requirements, use cases, functional architectures, physical
architectures, or verification plans, among others). But in
addition, MBSE also captures the relationships between those
artifacts (e.g., allocation of requirements to components,
allocation of functions to components, traceability between
requirements and their verification activities, etc.). The
transition into a model-based environment is expected to
provide several benefits, including among others better
communication, improved consistency of information,

reduction of development errors, and improved time and cost
efficiency [28]. While there seems to be informal agreement
within the community of practice about these benefits, it is
important to mention that there is a general of lack evidence
that these benefits can be actually realized [28].

Today, MBSE is experiencing rapid growth in availability and
capabilities of tools, underlying modeling languages, and
industry and government adoption that we could only dream
of 10 years ago. In this sense, the adoption of Computer-
Aided Design (CAD) in mechanical engineering has been
often used as an analogy for how MBSE could transform SE.
Several organizations are pursuing a similar transition path,
opting to acquire software licenses, provide a short training to
their employees on tool usage, and let them run with MBSE.
However, MBSE is not just a technological evolution, as CAD
was [29]. MBSE has implications at the process and methods
levels, in addition to the adoption of dedicated computer tools,
which also need to mature for the technological adoption to be
successful in the long term. In other words, MBSE does not
improve poor systems engineering. For example, in terms of
modeling, users can now choose between SLD (the proprietary
language of Vitech Corporation, Inc.), the Systems Modeling
Language (SysML, managed by the Object Management
Group and for which its v2 is currently being developed),
Capella (an open language developed by Thales), the Object
Process Methodology (a language underpinning an ISO
standard), and the Lifecycle Modeling Language (LML). These
languages or modeling frameworks do not only have different
strengths and weaknesses, but their underlying structure has
significant implications to the practice of systems engineering.
Furthermore, the languages do not offer in most cases a direct
translation to guarantee compatibility between them. Failing to
realize that the three facets need to be considered for adopting
MBSE leads to failure [30, 31].

MBSE adoption has primarily focused on the early development
activities, mainly supporting requirements management,
system architecture, and change propagation assessment,
and is predominantly descriptive. That is, systems engineering
models are used to describe aspects of the system (for example,
how two components interface with each other) rather than to
support quantitative analyses (e.g., evaluating the system level
performance given the performance of its components). There
are certainly exceptions to this, which have proven the feasibility
of using MBSE in later phases of the system development (such
as, for example, to plan test and integration activities [32, 33]),
and the value of extending descriptive models to perform
quantitative analyses [34] or executable simulations [35]. But
these are not widely available or employed yet.

28

Furthermore, MBSE discussions are shifting towards a
more general, digital engineering paradigm. In a digital
engineering environment, all engineering artifacts are
captured in computer models that are semantically
connected with each other. This means, for example, that
the power consumption attribute in an electronics model is
connected with its corresponding power dissipation attribute
in a thermal model and with its corresponding power
consumption attribute in a power budget system model.
This does not imply that all models use the same data and/
or values for each parameter. Rather, digital engineering
enables the formalization of authoritative sources of truth,
which ensure the validity and truthfulness of the data sources.
Digital engineering does not invalidate or substitutes MBSE,
but it is intended to expand its ideas beyond the scope of
systems engineering and throughout the entire lifecycle,
from problem formulation to manufacturing to operational
support.

Differently than with the adoption of MBSE, which has been
facilitated through hybrid top-down and bottom-up efforts
(that is, led in some cases by teams of engineers and in
some cases supported by corporate leadership or customer
mandate) [30], the adoption of digital engineering is being
strongly mandated from leadership. The U.S. Department of
Defense (DoD), for example, has established a dedicated
Digital Engineering strategy [36], which has been rapidly
flown down into its service branches. A similar action has
been taken by the Ministerio de Defensa in Spain [37].
This approach surfaces a conflict between the urgency
with which the customer or organizational leadership
desires to advance their capability and the readiness of the
community of practice to provide effective solutions in terms
of processes and tools. Today, the envisioned capability is
still far away from technological readiness.

Computational power has also enabled the acceleration
of otherwise time-demanding tasks. Traditionally, the
exploration of the solution space during conceptual design
or system architecture efforts has been limited to trading-
off a handful of alternatives in search of the most preferred
solution. However, structured system models can be used
now to increase the size of the solution space that can be
explored, called tradespace, and automatically evaluate
thousands if not millions of solutions at once [38]. Sensibly,
the larger the solution space that is explored, the more likely
it will be to find a better solution. This changes the focus of
conceptual design from refining a reduced set of individual
possible solutions to construct modular structural models
that enable breadth and depth of exploration.

Furthermore, system development has been traditionally
limited to a single solution that is chosen and iteratively
refined until it goes into production and is later deployed.
This means that a system concept or system architecture
is chosen, and then it goes through detailed design,
where iterations may occur, as the solution is refined into a
working one with sufficient maturity to be manufactured and
eventually deployed.

This paradigm has been called point-based design, since
the design is based on choosing a single solution (point) in
the solution space early on. However, computer models can
significantly reduce the effort that it takes to maintain and
refine a solution. The novel paradigm of set-based design
proposes to leverage this advantage to avoid anchoring to
a specific solution early in the system development [39],
when knowledge is limited [4]. In set-based design, a set
of solutions (points) in the solution space are chosen and
refined together. Unattractive solutions are only discarded
from the set once there is sufficient knowledge to do
so with sufficient confidence. This provides flexibility in
the development process without requiring changes to
solutions, as acceptable solutions are retained.

The way in which past experiences and organizational
knowledge may be used in systems engineering is also
dramatically changing thanks to the use of machine-
readable models and computational support. Cognitive
assistants are machines (usually software systems) that aid
humans in cognitive tasks [40]. Amazon’s Alexa or Apple’s
Siri are good examples of cognitive assistants that we have
started to use frequently, and ChatGPT is further amplifying
the capabilities that this kind of systems can provide to
humans. A key aspect is that the engineer can use natural
language to dynamically and iteratively develop systems
engineering artifacts with the support of the assistant.
In systems engineering, for example, we have now the
capability of not only asking a cognitive assistant to develop
conceptual solutions or systems architectures for a given set
of parameters, but also to explore the tradespace in several
directions and explain its choices and recommendations
[41-43].

The evolution of methods and tools has not been limited to
those enabled by advances in computational capabilities
though. We are also witnessing the emergence of new
development processes, models, and paradigms that have
emerged out of necessity to cope with the peculiarities of
the new context and kinds of missions in which and to which
systems engineering is applied now, as discussed in the
previous sections.

29

4. CONCLUSIONS
The systems engineering landscape has changed in
recent years, and seeds have been planted to promote
further changes in the years to come. This chapter has
hinted at what those changes are and why they have been
or are necessary. Resources are not unlimited anymore;
rather, they are generally scarce. Systems engineering
endeavors trespass geopolitical boundaries and must
balance the consequences of industrial consolidations,
rapidly evolving technologies, and the emergence of
agile startups and rapidly changing market needs. The
nature of the systems we must develop and work with
now has also changed. Most developments are no longer
in a green field, and we must often have to reconcile the
constraints of large legacy systems with novel aspects
related to increased cyber nature of systems, distributed
governance, and even intelligence.

The systems engineer must outgrowth themselves
from just being a technical coordinator to a systems
engineering expert. Growing into a systems engineer on
the job is not sufficient to effectively deal with today’s
systems engineering efforts. The systems engineer
must learn novel methods and techniques, many of
which start to be underpinned by research; many good
practices have turned out to be not that good and many
mature processes are no longer relevant. Technology
is taking the center stage of the systems engineering
effort, starting with the provision of digital assets that
can connect across domains and moving into the use
of cognitive assistants to augment the capabilities of the
human engineer. While still nascent, these capabilities
are rapidly evolving.

Systems engineering has arrived in the 21st century,
and it will only keep maturing and evolving. Is your
organization ready to modernize its systems engineering
practices?.

Development processes that are more iterative, less
scaffolded, and more rapid to field systems are becoming
more and more frequent (e.g., agile, DevOps) and integrated
with more traditional ones (e.g., Waterfall, Vee). Considerable
progress has been made to develop the notion of systems
of systems engineering, which has been lately redefined as
mission engineering.

In mission engineering, the
focus is deliberately put on
the planning and integration
of current and future system
capabilities towards fulfilling
current and future operational

needs.

The main distinction here is that those system capabilities
are provided by independently governed and/or managed
systems.

This discussion is not exhaustive. There are other advances
in systems engineering that are probably worth noting,
but these should provide an idea of what the landscape of
the current practice of systems engineering is (even if still
futuristic for some organizations).

30

1.	 Ryschkewitsch, M., D. Shaible, and W.J. Larson, The art and
science of systems engineering. Systems Research Forum,
2009. 03(02): p. 81-100.

2.	 Salado, A., Systems engineering, in The Engineering
Management Handbook, B. Mesmer, et al., Editors. 2023, The
American Society of Engineering Management: Huntsville, AL,
USA. p. 361-370.

3.	 Pyster, A., N. Hutchison, and D. Henry, The Paradoxical Mindset
of Systems Engineers. 2018, Hoboken, NJ, USA: John Wiley and
Son, Inc.

4.	 Blanchard, B.S. and W.J. Fabrycky, Systems engineering and
analysis. Vol. 4. 1990: Prentice Hall New Jersey;.

5.	 Griffin, M.D., How do we fix systems engineering?, in 61st
International Astronautical Congress. 2010: Prague, Czech
Republic.

6.	 Zinko, R., W.A. Gentry, and M.D. Laird, A development of the
dimensions of personal reputation in organizations. International
Journal of Organizational Analysis, 2016. 24(4): p. 634-649.

7.	 Manzoor, E., et al., Influence via Ethos: On the Persuasive Power
of Reputation in Deliberation Online. Management Science. 0(0):
p. null.

8.	 Delicado, B.A., A. Salado, and R. Mompó, Conceptualization
of a T-Shaped engineering competency model in collaborative
organizational settings: Problem and status in the Spanish
aircraft industry. Systems Engineering, 2018. 21(6): p. 534-554.

9.	 Collopy, P.D. Systems engineering theory: What needs to be
done. in Systems Conference (SysCon), 2015 9th Annual IEEE
International. 2015.

10.	 Frosch, R.A., A new look at systems engineering. IEEE Spectrum,
1969: p. 24-28.

11.	 INCOSE, Systems Engineering Handbook. A Guide for System
Life Cycle Processes and Activities. 5th ed. 2023, Hoboken, NJ,
USA: John Wiley and Sons, Inc.

12.	 Villanueva, C.D., El Programa FCAS y la Industria Española de
Defensa: una apuesta equivocada, in Revista Ejércitos. 2022.

13.	 Salado, A. and R. Nilchiani, A Research on Measuring and
Reducing Problem Complexity to Increase System Affordability:
From Theory to Practice. Procedia Computer Science, 2015. 44:
p. 21-30.

14.	 (ISO), I.S.O., Systems and software engineering — Guidelines
for the utilization of ISO/IEC/IEEE 15288 in the context of system
of systems (SoS). 2019.

15.	 Salado, A. Abandonment: A natural consequence of autonomy
and belonging in systems-of-systems. in System of Systems
Engineering Conference (SoSE), 2015 10th. 2015.

REFERENCES

31

16.	 Madni, A.M. and M. Sievers, System of Systems Integration: Key
Considerations and Challenges. Systems Engineering, 2014.
17(3): p. 330-347.17.

17.	 Shadab, N., A.U. Kulkarni, and A. Salado, Shifting Paradigms in
Verification and Validation of AI-Enabled Systems: A Systems-
Theoretic Perspective, in Systems Engineering and Artificial
Intelligence, W.F. Lawless, et al., Editors. 2021, Springer
International Publishing: Cham. p. 363-378.

18.	 Shadab, N., et al. Product Herding for Intelligent Systems. in
Conference on Systems Engineering (CSER). 2023. Hoboken,
NJ, USA.

19.	 INCOSE, Systems Engineering Vision 2035. 2023.

20.	 Wymore, A.W., A mathematical theory of systems engineering:
The elements. 1967, New York: Wiley.

21.	 Warfield, J.N. and J.D. Hill, A unified systems engineering
concept. Vol. Monograph 1. 1972, Columbus: Batelle Memorial
Institute.

22.	 Mesarovic, M.D. General systems theory and its mathematical
foundation. in IEEE Systems Science and Cybernetics
Conference. 1967. Boston, MA.

23.	 Salado, A. and A.U. Kulkarni, An Assessment of the Adequacy
of Common Definitions of the Concept of System. INCOSE
International Symposium, 2021. 31(1): p. 510-521.

24.	 Sheard, S.A., TWELVE SYSTEMS ENGINEERING ROLES.
INCOSE International Symposium, 1996. 6(1): p. 478-485.

25.	 INCOSE, Systems Engineering Competency Framework. 2018.

26.	 GAO, DHS Annual Assessment: Major Acquisition Programs
Are Generally Meeting Goals, but Cybersecurity Policy Needs
Clarification. 2023.

27.	 GAO, Space Acquisitions: DOD Faces Significant Challenges as
it Seeks to Accelerate Space Programs and Address Threats.
2019.

28.	 Henderson, K. and A. Salado, Value and benefits of model-
based systems engineering (MBSE): Evidence from the literature.
Systems Engineering, 2021. 24(1): p. 51-66.

29.	 Henderson, K. and A. Salado, Is CAD A Good Paradigm for
MBSE? INCOSE International Symposium, 2021. 31(1): p. 144-
157.

30.	 Henderson, K., T. McDermott, and A. Salado, MBSE adoption
experiences in organizations: Lessons learned. Systems
Engineering. n/a(n/a).

31.	 Henderson, K. and A. Salado, The Effects of Organizational
Structure on MBSE Adoption in Industry: Insights from
Practitioners. Engineering Management Journal, 2023. In press.

32.	 Salado, A., 5.5.2 Efficient and Effective Systems Integration
and Verification Planning Using a Model-Centric Environment.
INCOSE International Symposium, 2013. 23(1): p. 1159-1173.

33.	 Gregory, J. and A. Salado, Model-Based Verification Strategies
Using SysML and Bayesian Networks, in Conference on Systems
Engineering Research (CSER). 2023: Hoboken, NJ, USA.

34.	 Hecht, M. and J. Chen. Use of SysML for Quantitative System
Reliability and Availability Analysis. in 2022 Annual Reliability and
Maintainability Symposium (RAMS). 2022.

35.	 Karban, R., et al., Creating system engineering products with
executable models in a model-based engineering environment.
SPIE Astronomical Telescopes + Instrumentation. Vol. 9911.
2016: SPIE.

36.	 DOD, Department of Defense Digital Engineering Strategy. 2018,
Office of the Deputy Assistant Secretary of Defense for Systems
Engineering: Washington, DC, USA.

37.	 Defensa, M.d., Plan de Acción del Ministerio de Defensa para la
Transformación Digital. 2020.

38.	 Ross, A.M. and D.E. Hastings, 11.4.3 The Tradespace Exploration
Paradigm. INCOSE International Symposium, 2005. 15(1): p.
1706-1718.

39.	 Shallcross, N., et al., Set-based design: The state-of-practice
and research opportunities. Systems Engineering, 2020. 23(5):
p. 557-578.

40.	 Salado, A. and D. Selva, Asistentes cognitivos en ingeniería, in
UEM STEAM Essentials. 2021.

41.	 Martin, A.V. and D. Selva, Explanation Approaches for the
Daphne Virtual Assistant, in AIAA Scitech 2020 Forum. 2020.

42.	 Martin, A.V. and D. Selva, From Design Assistants to Design
Peers: Turning Daphne into an AI Companion for Mission
Designers, in AIAA Scitech 2019 Forum. 2020.

43.	 Martin, A.V.i. and D. Selva, Daphne: A Virtual Assistant for
Designing Earth Observation Distributed Spacecraft Missions.
IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2020. 13: p. 30-48.

32

BIOGRAPHIES

DR. DINESH VERMA

Dr. Dinesh Verma is the founding

Executive Director of the Systems

Engineering Research Center (SERC),

and a Professor of Systems Engineering

in the School of Systems and Enterprises

(SSE) at Stevens Institute of Technology.

He was the founding Dean of SSE for 10

years from 2007 through 2016. During

his fifteen years at Stevens he has

successfully proposed research and

academic programs exceeding $175m

in value. Verma served as Scientific

Advisor to the Director of the Embedded Systems Institute in Eindhoven,

The Netherlands from 2003 through 2008. Prior to this role, he served as

Technical Director at Lockheed Martin Undersea Systems, in Manassas,

Virginia, in the area of adapted systems and supportability engineering

processes, methods and tools for complex system development.

Before joining Lockheed Martin, Verma worked as a Research Scientist at

Virginia Tech and managed the University’s Systems Engineering Design

Laboratory. While at Virginia Tech and afterwards, Verma continues to

serve numerous companies in a consulting capacity. He served as an

Invited Lecturer from 1995 through 2000 at the University of Exeter, United

Kingdom.

His professional and research activities emphasize systems engineering

and design with a focus on conceptual design evaluation, preliminary

design and system architecture, design decision-making, life cycle

costing, and supportability engineering. In addition to his publications,

Verma has received three patents in the areas of life-cycle costing and

fuzzy logic techniques for evaluating design concepts.

Dr. Verma has authored over 100 technical papers, book reviews,

technical monographs, and co- authored three textbooks. He received the

MS and the PhD in Industrial and Systems Engineering from Virginia Tech,

and was honored with an Honorary Doctorate Degree (Honoris Causa)

in Technology and Design from Linnaeus University (Sweden) in January

2007; and with an Honorary Master of Engineering Degree (Honoris

Causa) from Stevens Institute of Technology in September 2008. He is

a Fellow of the International Council on Systems Engineering (INCOSE).

33

ADOLFO SÁNCHEZ
Adolfo Sánchez holds a

master’s degree in Computer

Science Engineering from the

University of Zaragoza and a

master’s degree in History from

the UNED.

He has participated in the

definition and development of a

modular avionics architectures

evaluator, in the maintenance

of the Eurofighter software,

in quality assurance software

developments made in strategic electronic warfare programs;

in the acquisition, deployment, and implementation of the

CIS Program of the Military Emergency Unit, and currently

works supporting the Subdirectorate General of Digital

Transformation of the Ministry of Defense and as an in-house

trainer of various systems engineering courses in ISDEFE.

DR. ALEJANDRO SALADO
Dr. Alejandro Salado is

an associate professor of

systems engineering with the

Department of Systems and

Industrial Engineering and the

director of systems engineering

programs at the University

of Arizona. In addition, he

provides part-time consulting

in areas related to enterprise

transformation, cultural change

of technical teams, systems

engineering, and engineering

strategy.

Alejandro conducts research in problem formulation, design

of verification and validation strategies, model-based

systems engineering, and engineering education. Before

joining academia, he held positions as systems engineer,

chief architect, and chief systems engineer in manned and

unmanned space systems of up to $1B in development cost.

He has published over 150 technical papers, and his research

has received federal funding from the National Science

Foundation (NSF), the Naval Surface Warfare Command

(NSWC), the Naval Air System Command (NAVAIR), and

the Office of Naval Research (ONR), among others. He

is a recipient of the NSF CAREER Award, the International

Fulbright Science and Technology Award, and several best

paper awards.

Dr. Salado holds a BS/MS in electrical and computer

engineering from the Polytechnic University of Valencia, a MS

in project management and a MS in electronics engineering

from the Polytechnic University of Catalonia, the SpaceTech

MEng in space systems engineering from the Technical

University of Delft, and a PhD in systems engineering from

the Stevens Institute of Technology.

“New Systems mean new problems.”

J. Gall

CH
AP

TE
R

2
New Kinds of Systems

Tom McDermott, Stevens Institute of Technology (tmcdermo@stevens.edu)
Víctor Ramos, Isdefe (vramos@isdefe.es)

Abstract

This chapter presents four aspects of modern and future systems that are shifting traditional systems
engineering practices: adaptability in systems, highly interconnected cyber-physical systems, learning-
based systems with human-machine teaming, and distributed governance in systems of systems.
Emphasis is given to current practices with doubtful effectiveness for such kinds of systems, then the
chapter presents current trends on how to address these unique aspects of these new systems.

Keywords

Cyber-Physical Systems; Artificial Intelligence; Adaptive Systems; Agile Development; Learning Based
Systems; Distributed Governance; Complexity.

36

1. INTRODUCTION

There are several trends that are changing the nature of the
systems we develop and interact with today:

1.	 The pace of technological innovation continues to
increase. With the availability of basic research on
the internet, science and technology have become
more of a commodity and the introduction of technical
innovations into existing missions and platforms drives us
to continuous adaptation and change. Systems are much
less stable than they used to be, and competition favors
those who can adapt the quickest to technology-driven
change, not necessarily those who can invest the most to
bring technologies to the mission.

2.	 The behavior of systems is and will continue to be defined
more by software than hardware. All systems are or will be
largely digital and will be supported by connected digital
infrastructures. Hardware systems remain important
but trend further towards more general purpose, more
affordable and distributed even in critical applications
like defense.

3.	 Data is increasingly collected and available for analysis.
Computer storage and processing power continues to
grow exponentially. Modern systems and future systems
more so, adapt to changing internal and external
conditions, as informed by changing data. The way we
develop systems ought to change to better harvest and
act on this data, and to take advantage of data and models
to improve efficiency in development and management of
programs.

4.	 Everything is becoming interconnected, and complex
global systems of systems abound. Increasingly cyber-
physical systems (CPS) are connected to other systems
to share data and other resources as larger systems of
systems. This opens both new opportunities and new
vulnerabilities in system capabilities. Systems engineering
(SE) rigor is necessary to balance the openness of these
systems with other concerns such as safety, security,
privacy, assurance, and alike.

5.	 Automation and user customization make systems
more efficient, configurable, and adaptive. In particular,
human tasks are much more dependent on teaming
with automated or partially automated systems. This will
continue to advance with artificial intelligence (AI) and
machine learning (ML) to a new class of system known
as a Learning Based Systems (LBS). An LBS is a new
class of computing systems that achieves its function and
performance through ML techniques. In the near future,
human operators and LBS will both interact and adapt to
jointly complete complex missions, a concept known as
Human-Machine Teaming (HMT).

These trends are creating new kinds of systems, which we
have categorized into four evolutionary and interrelated
types:

	• Highly Adaptable Systems: Modern systems make
extensive use of software for their user-valued functionality
as it is easier to change and minimizes production costs.
Systems are becoming more and more tailorable in
function to individual users. As a result, there is a trend
toward systems that are easier to adapt to changing
needs. In addition, highly adaptable development and
support practices have permeated system business
models to emphasize more frequent and consistent
delivery of value in terms of capability introduction and
flexibility. Learning and iteration have become more
valued than up-front requirements understanding and
stability, even in critical systems.

	• Highly interconnected Cyber-Physical Systems:
Modern systems are highly interconnected and fully
dependent on software defined functionality. The Internet
of Things (IoT) as an infrastructure is leading to large
scale CPS systems such as smart cities, interconnected
transportation, ubiquitous sensing, and manufacturing
4.0. Highly interconnected CPSs raise concerns over
safety, security, and trust in domains where these have
not previously been priorities. Large scale interconnected
CPS increase the complexity and effective surface area of
the systems we interact with. Digital twins (digital models
of CPS connected to and operating with physical CPS)
are now a rapidly growing domain of SE.

	• Learning-based systems and human-machine teaming:
Emerging systems will have increasing composition with
LBS, which are systems whose behaviors are learned
instead of programmed. These will be teamed with human
users to augment human intelligence and agency (HMT).
The impact of these systems on human tasking and
situational awareness will also be an emergent property
of future systems. LBS are expanding definitions of
trustworthiness in systems, from primarily dependability
concerns to human concerns such as ethics and fairness.
Uncertainty management as well as test, verification, and
validation of LBS are emerging challenges for SE.

	• Distributed governance in systems of systems: The
performance and capabilities of a system depend on
information and shared functions with external systems
that cannot be fully controlled. This leads to complex
emergent behaviors and different methods of governance.
Systems of systems (SoS) methodologies have been
established to help manage governance, but as with
other historical SE practices these are not keeping up with
the rapid adaptation of SoS and shared governance.

37

The underlying theme across all four kinds of systems is the
rapid growth in system complexity. Figure 1 highlights the
related complexity concerns being driven by these new kinds
of systems [12].

SE has always been viewed as a methodology to help manage
system complexity, but the types of systems and their related
system concerns are shifting, and the established methods
are due to be updated. That is the subject of this chapter.

The next section evaluates the effectiveness of historically
established SE methods in dealing with these new kinds
of systems and SE concerns. Following that, we discuss
some of the trends that are driving changes in the ways we
practice SE as a result of these new kinds of systems. These
discussions are not derived from exhaustive literature review,
but from ongoing research and research roadmapping in the
Systems Engineering Research Center (SERC) at the Stevens
Institute of Technology in Hoboken, New Jersey, USA.

2. EVALUATION OF THE EFFECTIVENESS
OF TRADITIONAL SE PRACTICES APPLIED
TO THESE NEW KINDS OF SYSTEMS

2.1. Highly adaptable systems

Adaptability in systems is defined as the ability of a system to
adapt itself efficiently and quickly to changed circumstances.
An adaptive system is therefore a system that is able to fit its
behavior according to changes in its environment or in parts

of the system itself [28]. The Systems Engineering Body of
Knowledge (SEBOK) further discusses system adaptability
as the system’s ability to satisfy externally driven mission
and requirement changes with or without modification, as
measured by some value indicator such as cost, time, or
resources [29]. This definition implies that context-driven
change is an intentional process. This does not effectively
capture the nature of today’s LBS, which are continuously
updating themselves based on learned behaviors or outputs
that are responsive to changing external context. For this
kind of systems, it is no longer appropriate to segregate a
system from its external context; both must be understood
and modeled.

Highly adaptable systems are software-intensive, highly
connected, and have extensive automation and user
configuration capabilities. At their core are sets of data
that drive the behavior of the system, which is defined by
software logic, algorithms, and control and data management
functions. The underlying mechanism is a connection
between the sets of data in the system and the external
environment that allows the behaviors of the system to rapidly
change in response to external context changes. This can be
an intentional data-driven learning and modification process
responding to changing mission, or can be highly automated
in response to changing external context as with emerging
LBS.

However, SE, strongly influenced by aerospace and defense
needs, has continued to be linked with the physical realization
of large complex systems and other critical capabilities that
are intended to persist for many years. The need for rigorous
definition, analysis, and testing of these critical systems will
always exist, but the lifecycle processes we choose to use

Figure 1. Characteristics of increasing complexity in systems. [12]
Copyright © 2021 by INCOSE

38

should be tailored to the system’s actual use and life. For
example, SE for modern systems tends to be more model-
based, agile, and responsive to user needs, which may be
accomplished with more adaptable and efficient lifecycle
processes by leveraging data and models [16]. Software
systems engineering (SSE), information technology and
enterprise architecture, distributed modeling and simulation,
and automated manufacturing systems must all be leveraged
in a convergent fashion to address lifecycle management of
highly adaptable systems.

Modern SE technical and management processes transform
data into views through models, which support analyses
leading to decisions. This digital process flow supports
“Data Transformed into Models then Analyzed through
Views to make Decisions documented in Digital Artifacts.”
This process flow is not new, but is evolving from a largely
manual, inefficient process flow to a highly automated
process flow driven by rapid, consistent, and value-driven
adaptation cycles. (Software development practices have
evolved to manage this automation.) Figure 2 redraws the
widely depicted “Define -> Realize -> Deploy&Use” stages
of the SE Vee-model lifecycle process in a circular process
to represent it as a:

1)	 set of data at the core, interpreted by model
transformations, leading to design decisions,

2)	 layered across disciplines and engineering tasks to
produce decision artifacts, and

3)	 in continuous iterative processes that could be entered
from any point.

The challenge in highly adaptable systems is maintaining
appropriate SE rigor and associated process definition to
ensure these systems remain scalable, resilient, safe, secure,
and usable by human operators. New SE lifecycle processes
address shared and authoritatively managed sets of digital
data and models associated with the system’s entire lifecycle,
not just a single engineering or program lifecycle [16].

2.2. Highly connected Cyber-Physical Systems
(CPS)

Highly adaptable systems are evolving from software-only
systems to fully connected software/hardware systems known
as CPS. The U.S. National Science Foundation (NSF) defines
CPS as “engineered systems that are built from, and depend
upon, the seamless integration of computational algorithms
and physical components” [19]. A CPS has computers and
networks that control physical processes, often characterized
by feedback loops that affect computations and the physical
outcomes of those computations. Figure 3 provides a general
layered depiction of a CPS framework [11]. As shown in
the figure, the design of CPS must address these control
activities in a device of interest but also the interconnected
human and machine systems that interact with it, which may
occur at long ranges over cyber networks [10].

Furthermore, CPS transform the way in which people interact
with systems [19]. For example, humans can now interact with
engineered systems over cyber networks instead of directly
(such as controlling a thermostat from a mobile phone) or even
across multiple interconnected CPS and large-scale software

Figure 2. Circular Processes with Data at the Core [16] Figure 3. A general framework for CPS [11]. Republished courtesy
of the National Institute of Standards and Technology

39

systems. These interactions are enabled by higher degrees
of automation and autonomy [19], which increase however
the complexity of the system control methods and the speed
of evolution of the system in response to its external domain.

Traditionally, SE has distinguished how a system is constituted
internally (i.e., its structure) from how the system manifests
itself externally (i.e., its behavior) and deduced the function
from the structure. This notion is the foundation underlying
hierarchical construction of systems with defined input and
output interfaces across multiple modular components. It has
resulted in a focus on structural system representations in
SE, supporting physical trades in primarily physical systems.
Highly connected CPS, however, are heterarchical in nature.
They are comprised of numerous, heterogeneous elements
acting both independently and interdependently. Because
of this complexity, traditional structural decomposition and
physics-based models are insufficient. In complex systems,
form (structure) and function (behavior) are intrinsically
linked and not separable. The complexity of the system
control methods (behavioral) and the evolution of the external
domain that interacts with the system (adaptive) cannot be
ignored. These changes are a product of the computer/
network interactions and increased use of digital data in the
control functions, along with the connected nature of the
external environment and users.

As an example, Figure 4 shows a functional and structural
view of the highly cyber-physical systems emerging in
transportation systems today. In practice these systems

are more often built from general purpose programmable
hardware while behaviors are programmed by software.
Their function in the full system may evolve incrementally
over time, as we are seeing in vehicle automation today.
Mechanisms that determine the qualities of these system,
such as safety, adaptability, or resilience, are intentionally
supported in the hardware and software designs but also
realized by investment in both system structure/function
today and architecture evolution over time. This is a concept
known as technical debt, where decisions made in the
current design gradually limit the system’s ability to support
new capabilities in the future. Informing decisions that drive
both the immediate and long-term qualities of the systems
they support are thus critical.

The complexity of these networks of CPS results in emergent
behaviors that cannot be fully modeled and predicted,
or even structurally decomposed in traditional ways. The
technology traditionally employed by the SE is also going
through an evolution towards digital engineering (DE) and
simulation-based design practices. Time invested in up-
front digital simulation of these emergent behaviors is
essential to both short-term and long-term design decisions.
These simulations can also be deployed to monitor the CPS
behaviors after installation to more rapidly and accurately
detect undesired behaviors in use. This is the driver for and
concept behind digital twins, which will be expanded in
Chapter 6. In this paradigm, both the realized system and
the virtual simulated system and interconnected products are
holistically planned and managed with full SE life cycles. As

Figure 4. The automobile as a highly connected CPS [2].
Image from https://telecom.economictimes.indiatimes.com/tele-talk/connected-car-opportunity-propels-multi-billion-dollar-turf-war/2971

40

can be seen, the concerns of a modern systems engineer
expand in this context from just the structure/behavior and
domain-driven non-functional qualities of the system itself, to
also include its interaction in the larger connected context
and environment, and finally to how both the realized system
and its companion virtual twins are managed and evolved
over the full lifecycle. This has become a multi-disciplinary
challenge requiring a shift in SE skillsets to integrate across
the principles, foundations, and characteristics listed in Table
1 in a holistic manner.

The SE concerns of CPS can also be stated in terms of
trustworthiness, related to the ability of the CPS to withstand
instability, unexpected conditions, and gracefully return
to predictable but possibly degraded performance [11].
This is truly a system concern in highly connected CPS.
These characteristics of trustworthiness, which include
dependability, safety, reliability, privacy, security, and
resilience, have for the most part evolved within distinct
disciplinary and education silos. Historically, SE practice has
treated these as disparate sub-disciplines. Large SE and
integration projects often have property-specific leads, who

represent discrete viewpoints within the trade-off process
overseen by the chief systems engineer/integrator. Functional
requirements often have caused engineers and designers to
prioritize each property differently, based on domain-specific
requirements and perspectives (e.g., energy, manufacturing,
transportation, etc.). Achieving a certain level of success in
each property is typically vital to the overall success of the
system. Trends in the engineering of highly connected CPS
suggest that SE disciplines are converging toward increased
interdependency.

This is particularly important for highly connected CPS, in
which systems-based holistic thinking is critical to supporting
trustworthiness objectives and avoid problems arising with
respect to one property, or protections inserted to address
one dimension of concern, do not compromise other primary
system objectives or cause deleterious unintended effects
[17].

Awareness Supervised practitioner Practitioner

Communication and Networking
Basic computing concepts,

including software engineering
Security and privacy

Embedded systems, both
hardware and software

Discrete and continuous mathematics Discrete and continuous mathematics

Real time systems
Physical world computing,

including sensors, actuators,
and real-time control

Interoperability

Physical world computing, safety,
reliability, security, performance,

and risk management

Cross-cutting application of
sensing, actuation, control,

communication, and computing

Reliability and dependability,
Safety, Stability and performance

Human interaction with CPS,
including ease of use

Modeling of heterogeneous and
dynamic systems integrating control,

computing, and communication
Human factors and usability

CPS system development
(emphasizing concepts of resilience

and safety, test and verification)
Power and energy management

Table 1. NAS CPS principles, Characteristics, and Foundations [18]

41

Thus, we have today a multi-disciplinary challenge associating
together foundational disciplines of various schools, such as
engineering, computing, and human interaction. We also
have a multi-disciplinary challenge across traditional SE sub-
disciplines related to (1) dependability in computing systems
(availability, reliability, safety, integrity, and maintainability),
(2) system security engineering (confidentiality, integrity,
and availability), (3) information systems (management,
communications, and privacy), and (4) cybersecurity
(threats and protection). This is also a system governance
challenge, both in the enterprise systems that develop highly
connected CPS, and in the emergent behaviors of the CPS
themselves [17]. There is a need for a more interdisciplinary
approach to system design, founded on rigorous system
functional modeling and simulation, evolutionary design, and
rigorous evaluation. As digital engineering and Model-Based
Systems Engineering (MBSE) become more prevalent,
there is potential to transform traditional system design and
evaluation processes to more holistic and more evidence-
based forms using models (to be further elaborated in
Chapters 4 through 6). Verification and validation of highly
connected CPS through test and evaluation have historically
been the gold standard but is significantly expensive and
fraught with difficulty as systems become more complex,
more expansive, and more inter-dependent on other systems
to realize their intended capabilities. Again, bringing data and
models into this process aims to relieve some of the expense
and make the entire process more flexible and amenable to
changes that can occur across a system’s lifecycle.

2.3. Learning-based systems and human-machine
teaming

Concepts of highly adapted systems, highly interconnected
systems, and resulting distributed governance are placing
SE in the midst of a digital transformation driven by
advanced modeling tools, data integration, and the resulting
digital twins. Data, models, and computing systems are
all converging with machine learning (ML) techniques to
enable a new class of computing system that achieves its
function and performance through the use of ML – known as
a Learning Based System. Applications of LBS are evolving
exponentially into many domains.

LBS are types of AI models that use ML algorithms to make
decisions and solve problems without being explicitly
programmed. ML algorithms independently detect, analyze,
and learn patterns directly from input data and modify their
behavior accordingly to predict new output. LBSs differ from

a longer legacy of rule-based AI systems in their ability to
achieve scale, provide adaptability, and handle complex
tasks. Rule-based systems are a type of AI model that uses a
set of prewritten rules to make decisions and solve problems.
Developers create rules based on human expert knowledge
that enable the system to process input data and produce a
result. Almost all systems of the future, and the tools we use
to design them with, are evolving to include compositions of
rule-based and learning-based components.

The number of systems with some level of learning capacity
is increasing exponentially today. In some applications, these
systems work closely with humans; in others, operations are
largely autonomous. In these systems, distributed teams
of humans work with distributed teams of autonomous
systems, with relationships that can change dynamically.
Likewise, SE is evolving to more of a technological discipline
that uses LBS to define and manage digital data and
descriptive models that link different disciplines together.
The SE digital engineering transformation is being followed
by transformational advances in the discipline of SE using
AI and ML technology for automation of many engineering
tasks, designed to augment human intelligence. At the same
time, the application of AI, ML, and autonomy to many of
today’s complex and critical systems drives the need for new
SE methods, processes, and tools.

A primary goal of SE is to ensure that the behavior and
performance of complex engineered systems meet the
expected outcomes driven by user needs, and that the
configuration of the system is managed across its lifetime.
Advances in AI and ML application means that future system
components may learn and adapt more rapidly, and that
behavior and performance may be non-deterministic with
less predictable but manageable outcomes. This is the
LBS challenge. The inability to explicitly validate system
behaviors or the time it takes to do that will impact trust
in these systems and is driving change in the way the SE
community traditionally addresses system validation [26].
The uncertainty present in multiple AI/ML components that
interact defies traditional decomposition methods used by
the SE community, requiring new synthesis methods. Finally,
as systems develop means for co-learning between human
users and machines, traditional models that separate human
behaviors from the machine will need to be revisited [14].

Thus, the emerging SE challenge is to produce systems
that gain value from their ability to learn, which may be
inherently non-deterministic, but that are also appropriately
robust, predictable, and trustworthy in the type of critical and
complex uses common to the application of SE practices

42

today. This includes both human and machine behaviors in
joint decision environments, highly reliant on good human-
systems design and presentation of decision information. It
also includes the adaptation of test and evaluation processes
to co-learning environments [14].

The future SE challenge involves LBS that actually adapt
and learn dynamically from their environments. These
environments could be real, simulated, or a mix of both
thanks to the generation of synthetic data, which offers new
approaches for system training and development but, on the
other hand, generates the need for synthetic data validation.
In this rapidly emerging future, machine-to-machine and
human-to-machine (and maybe machine-to-human) trust will
be critical. In this future, systems will be expected to learn
to modify or create new behaviors as the context changes
and this may happen fairly rapidly. Methods that revalidate
system performance extremely rapidly or “on the fly” are not
part of the current SE practice set and must be developed
along with these types of learning systems [14].

The future of LBS and SE is difficult to predict at this point. The
SE discipline is entering a period of rapid change where it will
be trying to catch up to the evolving use of ML algorithms
and resulting LBS. The complexity of engineered systems
is rapidly increasing, but the automated tools that systems
engineer’s use are also evolving to manage that complexity –
albeit at a slower pace. The transformation of SE away from
manual paper-based workflows to a fully digital and model-
based set of practices is actually quite urgent.

2.4. Distributed governance in systems of systems

The distinguishing feature of a system of systems (SoS) is
the behaviors of the “whole” come from individual constituent
systems that act independently and autonomously [3].
Furthermore, SoS are generally sociotechnical systems:
technology-driven systems that involve significant human and
social participation, where that participation in turn influences
the architecture and design of the technical system [13].
In other words, the human is a part of the system, not an
external agent.

In order to determine appropriate architecting principles,
SoS engineering (SoSE) literature defines a classification
system for SoS linked to the degree of managerial control in
the SoS. The four SoS classes are Directed, Collaborative,
Virtual, and Acknowledged SoS. The degree of central
control or governance over SoS changes is the primary
distinction of each class [4]. In a directed SoS, the integrated

SoS is created to serve a specific purpose and is governed
centrally. The constituent systems remain independent,
but their normal operations are directed through a central
authority. In a collaborative SoS, the constituent systems
volunteer to collaborate and there is not a central control
agent with authority to direct their operations. However,
there is still a governance function determining an agreed
upon purpose for the SoS. In collaborative SoS standards,
regulations, norms, and circumstances drive the operation of
the constituent systems.

SoS literature additionally distinguishes the collaborative SoS
classifications as virtual and acknowledged. Virtual SoS are
collaborative but develop without a centrally agreed upon
purpose or set of goals. Governance is fully distributed.
Acknowledged SoS have a recognized objective set and a
designated managerial component, have resources allocated
for development, but changes are based on collaboration
objectives. Governance remains distributed but conforms
to centrally determined policies and outcomes. A good
example of a collaborative SoS is automotive traffic on the
interstate highways. Whether or not this highway traffic SoS
is viewed as virtual or acknowledged is linked to stakeholder
perspectives. Drivers would view it as virtual (its goals are
determined by my individual need to get from point a to point
b), while highway transportation officials would view it as
acknowledged (its goals are to safely and efficiently manage
interstate traffic). Today’s and future adaptable and highly
interconnected systems are more collaborative and struggle
with managerial control, and individual perspectives and
behaviors will affect system behaviors in ways that cannot be
easily predicted by traditional SE decomposition.

The Wave model is an established framework for evaluating
and planning evolution in systems of systems (ref. Figure 5).
The model recognizes that evolution is continuously driven

Figure 5. The wave model [7]

External Environment

Initiate
SoS

Conduct
SoS Analysis

Continue
SoS Analysis

Continue
SoS Analysis

Develop
SoS
Arch

Evolve
SoS
Arch

Plan
SoS

Update

Implement
SoS

Update

Evolve
SoS
Arch

Plan
SoS

Update

Implement
SoS

Update

43

by input from the external context, and unlike traditional
SE it views the analysis of system change as an ongoing
process with multiple overlapping increments. In the Wave
model, system evolution is a forward-looking process with
feedback at each iteration, and managerial control strategies
attempt to group multiple constituent changes into SoS level
architectural changes to create efficiency in the test and
validation process [7].

A different perspective is given in the innovation literature,
called “transition management” [21]. Innovation literature
counters the Wave model with a more bottom-up view of system
evolution. Innovation system models recognize innovation as
a complex adaptive process where lower-level innovations
in constituent systems form niches of adoption, which over
time produce broader changes in established SoS regimes,
eventually resulting in transformation of the existing landscape
(or context). Today one can view the public development of
driverless automotive technologies as such an evolution “in-
process.” The primary aspect of this model is that innovation
progresses through social layers and can be modeled as a

multi-scale or multi-layer social phenomenon, as opposed to
the more mechanistic view of the Wave model. Figure 6 shows
this process as reflected in transition management literature.

The competing phenomena in these two views of SoS
evolution are differing models of distributed governance. The
SE perspective in the wave model assumes that SoS change
can be planned and managed over time by some governance
mechanism. The innovation perspective in the technology
transition model notes that change will evolve from bottom-
up technology evolution that cannot be governed but can
be encouraged or guided. In defense systems, distributed
governance of the SoS and constituent systems is a set of
agreement processes between military organizations. In
commercial innovation, distributed governance is determined
by market factors. A SE challenge today in this regard
derives from the commercial marketplace driving technology
innovation and the defense and aerospace industries primarily
driving SE methods and tools in a somewhat insulated form
from that larger marketplace.

Figure 6. A dynamic multilevel SoS perspective on technology transitions [8]

44

This brings the concern of current SE methods being slow
to change and not adapting well to the current dynamics
of distributed governance in more adaptable, highly
interconnected systems. Trying to fully predict emerging
SoS requirements and rigidly plan SoS updates up-front runs
counter to current commercial business markets. Commercial
businesses do aim to centralize governance of SoS value but
recognize actual SoS emergent capabilities require openness
and experimentation ahead of rigid planning.

Technology is also driving the execution of distributed
governance models. Recent technologies such as software
orchestration and blockchain/distributed ledger technology
(DLT) have led to the emergence of “leaderless organizations”
where rules and system goals are distributed via software
automation and people are allowed to self-organize their
tasking. These same technologies will likely help to manage
“authoritative data and models” in future SE, but the
governance of these is an open question at this point. This is
not just a commercial trend; emerging military command and
control concepts envision future military SoS as an internet
of things, ideally moving from rigidly connected platforms
to more flexible distributions of capabilities managed
by distributed control centers in line with the concept of
collaborative combat. The same concepts of highly adaptive
systems, highly interconnected CPS, and LBS/HMT emerge
together to transform military operations. All these trends
point to the need for SE methods and processes that center
on agility and flexibility, along with improved integration of the
business reasons for these traits.

3. TRENDS TO EVOLVE SYSTEMS
ENGINEERING TO EFFECTIVELY ENGINEER
THOSE TYPES OF SYSTEMS

3.1. Digitalization

The core change driving the discipline of SE today is
the transition towards digital engineering, a paradigm
where “shared and authoritatively managed data” can be
transformed through “shared and authoritatively managed
models” and related tools to create Digital Artifacts that can
be used by various decision-makers and others needing
digital access to the design and descriptions of the system
across its lifetime [20]. These artifacts were almost always
paper documents or drawings in the early years. Now they
are generally based on digital technologies, but workflows
still tend to be document driven instead of data driven.

The workflow view in Figure 7 shows conceptually how shared
and authoritatively managed data should be transformed into
digital artifacts in different life cycle stages in any SE process.
Data, federated data models, and distributed data storage
are the foundational infrastructure of modern SE. This is a
distributed federation of data and models, governed across
organizations, with authoritative processes to manage data
and model provenance and configuration.

Figure 7. Data Transformation into the Life Cycle

45

Figure 7 is particularly relevant to SE modernization, as
“Data Management” is not currently defined as a disciplinary
process in SE standards. Data, models, and data storage
systems can each be conceived and treated as a separate
system that must also be developed and deployed in support
of the fielded system. These must be defined and built along
with other system development aspects. These also have
their own lifecycles. New SE lifecycle processes are evolving
to address shared and authoritatively managed sets of digital
data and models associated with the system’s entire lifecycle,
not just individual engineering or program lifecycles. This
mental model has been depicted as a combination of a
conventional Vee model with a mirrored Vee model to create
a design diamond that incorporates digital counterparts
of a product at all stages of its lifecycle (ref. Figure 8) [5].
The virtual system and the physical system are anticipated
to evolve together in the long-term across the full system
lifecycle.

Systems engineers have long used digital data and various
modeling and analysis tools to produce digital artifacts for
decision-making (such as Microsoft PowerPoint slides).

However, the underlying data models have not been
“seamlessly shared” in digital workflows and tools, or likely
not shared at all. Furthermore, authority for that data has often
been held by independent activities generally organized
by discipline. Today, much of the transformation from data
to models to decisions is still a manual interpretation of
disparate data and analyses. This manual interpretation limits
our ability to be iterative and responsive across disciplines
and disciplinary tools. It is inefficient and non-holistic. The
evolution of SE is a fully integrated, iterative workflow where
the system is the focus, not the owner of the data or the
particular element of a design. Today’s primary challenge
in digital engineering is not so much being “model-based,”
it is understanding, creating, and validating the underlying
data model that integrates across requirements, design,
test, disciplines, and disciplinary processes, with it being
shareable and shared. The value of SE in the future can
be realized through a more seamless and efficient transfer
of data and models, starting from underlying performance
drivers through models to decisions and ease of drilling back
down from decisions to data. This is currently not the state of
SE practice, but a target to define capability roadmaps.

Figure 8. The Boeing “Diamond” showing the full lifecycle existence of virtual and physical (adapted from [5])

46

3.2. The digital ecosystem

Collaboration between disciplines and organizations requires
establishing high assurance interfaces between multiple
engineering, development, and management applications in
a digital engineering ecosystem. The future digital ecosystem
for SE is envisioned as a service-oriented architecture
to provide flexibility and adaptability between tool suites
across and between organizations, as shown in Figure 8.
Data exchange between applications may be technically
envisioned as a set of collaborative APIs for data and
information sharing, as well as query and response. Maturing
standards, moving towards open systems, and building up
experience implementing digital SE are necessary to facilitate
the adoption of digital engineering in organizations [16].

3.3. The digital system model

One of the most impactful changes in SE in recent years
has been the maturation and adoption of MBSE, which is
presented with certain level of detail in Chapter 4. MBSE is the

Figure 9. An Operational View of a Digital Ecosystem.
(SE: systems engineering, HW: hardware, SW: software, T&E: test & evaluation, Mfg:
manufacturing, Mgmt: management, Sus: sustainment, PEO: program executives)

formalized application of modeling to support SE activities,
including system requirements, design, analysis, verification,
and validation activities beginning in the conceptual design
phase and continuing throughout development, production,
and later life cycle phases. MBSE has a particular value in the
digital ecosystem as an approach to express and capture the
relationships, interdependencies, and associated processes
connecting systems level models and other disciplinary
models as well as the life cycle process flow. For example,
system models are useful for showing relationships among
requirements, system functions, physical components,
suppliers, acquirers, and users. Being machine-readable,
formal models allow relationships between data elements
to be established and to be processed by software thus
enabling efficiency-improving capabilities.

In MBSE, the system model is used as the central repository
for design decisions that span multiple engineering and
business concerns; design decisions are captured as model
elements in that digital system model [6]. This is the emerging
digital product of the SE function.

47

The practice of SE is still learning the most productive uses of
MBSE. Initially the focus has been on a digital representation
of the system specification, to include concept of operations,
requirements, work breakdown structure, use cases and
functions, and performance analyses. The concept of the
digital system model as the central repository for design
decisions (or at least an index to this) informed by executable
simulations and/or quantitative analyses is the core use of
MBSE in DE, and is still evolving, together with systems
modeling languages and tools.

The use of a digital system model should eventually apply
to all systems in all domains, but the concept is still in its
infancy. Most systems are still developed and deployed
without this formal but holistic set of models and views,
leading to continued late lifecycle failures and rework. As new
kinds of systems become more adaptable, interconnected,
distributed, and learning-based, the importance of the MBSE
activity should gain value. While there is still a way to go in
terms of maturity of capabilities enabled by MBSE, initiating
the transition is already feasible and valuable.

3.4. Data models, ontologies, and semantic web
technology

As the digital basis for SE grows, it is relying more on defined
and structured data (data modeling). SE practices now include
machine usable languages and development of taxonomies,
lexicon, and data ontologies to enable interoperability
for computationally based data synthesis, analysis, and
exploration. Connectivity across the digital system model
starts at the data layer. Development and maintenance of an
enterprise data model and environment has become part of
SE work. The data model defines the specific structure and
relationships of the data elements that inform higher level
system models and analyses. A digital ontology is a reusable
framework that models generalized data – general objects
that have common properties and not specified individual
entities. A data model that rests on top of a digital ontology
supports greater interoperability and reusability of the data.

A recent SERC workshop report on digital ontologies
summarized the need for and value of effective digital
ontology development as one of the means to digital
interoperability [25]. Traditional SE applications mainly rely on
documents to capture and exchange information. Documents
do not promote interoperability, efficiency, and automation,
given their lack of formalism in both syntax and semantics.
Ontology-enabled methods allow us to make inferences on

data and information to determine new facts and discover
previously unseen gaps and relationships. They also make
it possible to uniquely identify data elements so that different
data systems can refer to the same concepts without having
to pass around or duplicate unwieldy data structures. These
ontologies are a pragmatic means to formally describe the
relevant entities and relations of a system, implement those
descriptions and relationships, and be useful for our specific
purposes and objectives. For example, the Common Core
Military Ontologies represent data from different military
branches in a common structure that allows data sharing
and data aggregation in each domain using generic reusable
data representations. The common ontology enables
data interoperability in joint operations. In SE, syntactic
interoperability across formal requirements, design, and
test language is vital, but insufficient. Data interoperability
is necessary to enable the digital infrastructure to exchange
and aggregate requirements, design, and analysis
information. The value of ontologies lies in what they allow us
to communicate, and multi-disciplinary communication is at
the core of SE and DE.

The SE community needs but does not yet have a broad
understanding of the different ontological and related data
modeling methods necessary to ensure data sharing and
interoperability. The SE community is set to expand education
and training to include those foundations of data architecting,
data modeling, and data science specifically relevant for
tomorrow’s systems engineers.

3.5. Agility

Data transformations into and out of the shared and
authoritatively managed federations of data and models
described in the previous section are expected to happen
iteratively and continuously across the entire life of a
system. These data and models might originate in any
phase of a system’s lifecycle and any function associated
with engineering and management. To respond to this
new context, SE practices are becoming more agile and
responsive. Increasing responsiveness does not mean
eliminating critical SE processes, just increasing the number
of iterations and shortening the cycle time between them.
A recent workshop on agile practice in hardware-intensive
systems captured a number of themes that must be better
adopted into SE practice [1].

Commercial industry has adopted agile practices in software,
hardware/software systems, and services to address rapidly
changing threats to and opportunities in their business. A

48

primary goal of agile practices in SE is to shift learning to
as early as possible in the development process, that is,
being intentional in the early design stages of systems to
accommodate innovation in later stages of development.
Agile practices augmented by digital models, prototypes,
and test infrastructures help bring learning forward, reduce
integration risks, and create more flexibility in long-term
design decision points as a result. Choosing the appropriate
systems, subsystems, or elements of the system to
emphasize in this strategy helps anticipate evolution of parts
of the system that have the most potential for change or those
for which innovative change will have the most pronounced
performance gain. Newer areas critical to SE, like software SE,
information technology, enterprise architecture, distributed
modeling & simulation, and automated manufacturing
systems enable this transition.

The underlying premises of agile practices include direct
collaboration between users and developers, encouragement
of simplicity, and creation of continuous flow of value. In large
scale defense systems, for example, the flow from warfighter
need to capability passes through many organizations and

processes before it becomes a program (of any type). This
changes interpretation of needs and requirements, isolates
the real customer from the capability development, and
interrupts the flow of work from need to capability. On the
contrary, commercial industry has pioneered many different
ways to determine customer needs and responses using
analytics embedded in the products themselves, accelerating
customer understanding.

Similarly, agile practices challenge the single batch mindset
and the belief that everything must be understood before
implementation. This implies an enterprise-level shift to
allow more frequent delivery of working systems (or system
elements) through reconciliation of development and delivery
cycles for best effect. Rather than compounding the effect of
slower cycles that drive the pace of system-level delivery, a
refactoring of the contributing streams of work can assure flow
enabled by smaller batches of work. Milestone completion
remains important but must be translated into buying down
risk, not just criteria completion. Integrating both a consistent
work cadence and milestone-driven goals are critical to agile
in hardware-intensive systems. Meaningful movement of

Figure 10. Today’s systems should plan for deploying working software
frequently into all aspects of program planning and development

49

prototypes from virtual environments to physical realizations
to operational use has tangible benefits when the software is
reused from one product to another. Programs should embed
deployable software into simulation and training systems,
allowing all developers and users to experience the operational
use of the product and enabling Live Virtual Constructive (LVC)
environments. Figure 10 depicts this approach.

What remains consistent with current SE practice is thoughtful
decomposition and partitioning. Breaking down complex
systems into smaller, manageable components allows
for faster learning and better understanding of individual
elements. Agile practices take advantage of modularity to
architect systems that can be evolved over time. Control
of interfaces and application program interfaces (APIs) is
fundamental to both defining the work in the system and the
team skills needed to do the work. Modular Open Systems
Approaches (MOSA) precede agile development in both
software and hardware systems. As a note, this partitioning
must consider existing structural system decompositions
as an area for innovation as blindly following traditional
subsystem decompositions can limit agility.

Finally, agile practice in hardware-intensive systems requires
front-end investment in test activities and infrastructure to
buy down end-item risk. For example, SpaceX™ considers
launch failures a data collection investment. Their mindset of
corporate learning from multiple launch failures is a strong
example of the culture and mindset required for innovation
and continuous improvement in agile practice [9]. Investment
in model-based engineering tools, multiple systems-level
prototypes, and hardware-in-the-loop environments is critical
for successful agile implementation in hardware-intensive
systems. This is more difficult in hardware-intensive programs
than software-only programs because the tools are more
diverse and less well-integrated than in today’s software
development environments.

3.6. Modular and Open Systems Approaches
(MOSA)

In highly adaptive and interconnected systems, as mentioned
earlier, one needs intentionality in the early design stages to
accommodate adaptation in later stages of development.
Particularly in large scale critical systems like defense and
aerospace systems, platforms may have lifecycles spanning
decades. Choosing the appropriate systems, subsystems,
or elements of the system to emphasize in this strategy
helps anticipate evolution of parts of the system that have

the most potential for change or those for which innovative
change will have the most pronounced performance gain.
Choosing the related business strategy is equally important
to the success of the system over its life cycle. This is the
driver behind a MOSA – an intentional design approach to
maintain a technical and business basis for future flexibility
and innovation in the system. Decomposition into smaller and
smaller functional capabilities and hardware components
reduces complexity at the component level, as well as the
size of the associated work teams. However, modularity
must be carefully designed and planned as an architectural
strategy in a lifecycle planning activity. The skills to do this
successfully are specialized and in high demand.

Decomposing to smaller modules increases agility but also
increases integration risk. Standardization of interfaces,
and particularly the use of open interfaces, can help reduce
such risk. Open standards were almost always defined by
documents in the past, making interpretation, compliance,
and actual interoperability a challenge. With the introduction
of the Internet Protocol (IP), “plug and play” capabilities
into Microsoft WindowsTM products, and the AndroidTM
operating system, open standards have been more often
implemented as open-source software. The adoption of digital
engineering and a digital system model facilitates formalizing
the interfaces between modules in a digital baseline to
eliminate interpretation and miscommunication [22].

3.7. AI4SE and SE4AI

It is difficult to predict exactly how AI and ML will impact
SE today, but in the near future SE will undergo significant
change in methods, processes, tools, and skills as part
of the AI and ML megatrends. At an early 2019 Future of
Systems Engineering (FuSE) workshop hosted by INCOSE,
the terms AI for SE and SE for AI were first used to describe
this dual transformation [15]. The “AI4SE” and “SE4AI”
labels have quickly become metaphors for an upcoming
rapid evolutionary phase in the SE Community. AI4SE may
be defined as the application of augmented intelligence and
machine learning techniques to support the practice of SE.
Goals in such applications include achieving scale in model
construction, confidence in design space exploration, and
automated validation coverage. SE4AI may be defined as
the application of SE methods to the design and operation
of learning-based systems. Key research application areas
include the development of principles for learning-based
systems design, models of life cycle evolution, and model
curation methods [14]. These are summarized from published
SERC roadmaps on AI and Autonomy drivers for SE [14].

50

SE and software engieneering are fields that have language-
based models that are very amenable to machine automation.
Tools exist today that use large language models to author
software code. AI-based tools that author SE requirements
and descriptive models are beginning to emerge at the time
of this writing. Some of the technologies and use cases to
watch for include automated construction of models from
features in semantic data, used in both creation of new
models and correctness of developed models; automated
search through data and models; automation of evidence-
based models for assuring correctness and completeness of
system requirements and design; automation of certification
and accreditation processes via models and automation of
quality assurance data; and eventually chatbots or cognitive
assistants that automate many mundane data entry,
exploration, engineering calculation tasks, and workflows.

Likewise, the emerging needs levied on SE by LBS will
introduce significant changes in SE methods, processes, and
tools. Most of these are reflected in the other trends in sections
3.1-3.6. Some of the more direct expectations include:

	• Architecting new combinations of live and virtual digital
architectures that dynamically adjust their structure and
functionality.

	• New methodologies to support human and machine
situational awareness of impending risks and behavioral
concerns.

	• Methods, processes, and tools to connect system risk
analysis results with AI software modules related to those
risks.

	• New analytical and evaluation methods that calibrate trust
in LBS, beyond traditional availability and dependability
concerns to concepts of ethics, fairness, etc.

	• New mission level analysis and risk models arising from
human and AI collaboration in shared tasks and functions.

	• Methods for addressing AI-related system test and
evaluation addressing these systems’ ability to adapt and
learn from changing deployment contexts.

	• Computer-based simulation and training supporting
non-static objectives and/or goals (games, course of
action analysis) necessary to provide contextual learning
environments for these systems.

This will also be a transformation of the SE workforce,
with significantly more integration of software and human
behavioral sciences at the forefront. As digital engineering
evolves and traditional engineering models and practices rely
more on the underlying data, many engineering tasks related
to data collection and search, data manipulation, and data
analysis will become automated. Also, the machine learning
of modeled relationships and underlying data will become
more powerful over time. This should be a positive change,
automating many mundane engineering tasks leading to a
greater focus on problem solving and design for the human
engineer. Engineering speed and quality should improve
as more engineering test and validation activities become
automated. The idea of “cognitive assistants” that broadly
support the engineer will evolve but they must evolve in a way
that supports the problem solving and associated learning
processes associated with engineering [14, 23].

51

4. CONCLUSIONS
This chapter presented four new types of systems that collectively are driving significant change in the SE community. These
systems are highly adaptive, are highly connected including CPS and other systems that are the traditional core of SE, are
governed in a highly distributed and flexible manner, and increasingly learn new behaviors and adapt on their own.

Seven trends that will significantly change the SE discipline are discussed, primarily from research and road mapping activities
over the past 5 years in the SERC. These are digitalization, agile processes, the evolving digital SE ecosystem, modularity and
open business models, digital system models, ontologies and semantic technology, and, of course, AI and ML. Many of these
trends are occurring independently of each other, and it is the role of SE to be the integrator of these as well as the systems we
impact. Some of these will be further elaborated in the following chapters.

There are numerous other trends that have not been included in this chapter but may also need to be incorporated into the evolution
of SE practice. These have been chosen because, in our experience, are having the strongest impact in SE transformation at the
time of writing this chapter.

1.	 Acquisition Innovation Research Center (AIRC) (2023). Agile
Development of Hardware-Reliant Systems. Retrieved September 1,
2023 from https://acqirc.org/events/agile-development-of-hardware-
reliant-systems-workshop/.

2.	 Bhatia H (2018). “Connected car opportunity propels multi-billion-
dollar turf war.” Economic Times. Retrieved September 1, 2023 from
https://telecom.economictimes.indiatimes.com/tele-talk/connected-
car-opportunity-propels-multi-billion-dollar-turf-war/2971.

3.	 Boardman J and Sauser B (2006). “System of systems - The meaning
of ‘of,’” In 2006 IEEE/SMC International Conference on System of SE.
IEEE.

4.	 Brose C (2020). The Kill Chain: Defending America in the Future of
High-Tech Warfare. Hachette Books.

5.	 Brunton S et al. (2020). Data-Driven Aerospace Engineering:
Reframing the Industry with Machine Learning. Retrieved September
1, 2023 from https://www.researchgate.net/publication/343877323_
Data-Driven_Aerospace_Engineering_Reframing_the_Industry_
with_Machine_Learning.

6.	 Delligati L (2013). SysML Distilled: A Brief Guide to the Systems
Modeling Language. Addison-Wesley.

7.	 Dahmann J, Rebovich G, Lane J, Lowry R, and Baldwin K (2011),
“An implementers’ view of SE for systems of systems,” 2011 IEEE
International Systems Conference, Montreal, pp. 212-217.

8.	 Geels F (2002). “Technological transitions as evolutionary
reconfiguration processes: A multi-level perspective and a case-
study,” Research Policy, December 2002, 31 (8-9), 1257-1274.

9.	 Gorman S & Eiras A (2023). “SpaceX rocket explosion illustrates
Elon Musk’s ‘successful failure’ formula”. Reuters. Retrieved
September 1, 2023 from https://www.reuters.com/lifestyle/science/
spacex-rocket-explosion-illustrates-elon-musks-successful-failure-
formula-2023-04-20/.

10.	 Griffor E (ed) (2016). Handbook of System Safety and Security: Cyber
Risk and Risk Management, Cyber Security, Adversary Modeling,
Threat Analysis, Business of Safety, Functional Safety, Software
Systems, and Cyber Physical Systems. Syngress.

11.	 Griffor, E, Greer, C, Wollman, D and Burns, M (2017), Framework for
Cyber-Physical Systems: Volume 1, Overview, Special Publication
(NIST SP), National Institute of Standards and Technology,
Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.SP.1500-
201. Retrieved September 1, 2023.

12.	 INCOSE (2023). SE Vision 2035: Engineering Solutions for a Better
World. International Council on SE. Retrieved September 1, 2023 from
https://www.incose.org/about-systems-engineering/se-vision-2035.

13.	 Maier M (1996). “Architecting Principles for Systems of Systems,”
Proc. of the Sixth Annual International Symposium, International
Council on SE, Boston, MA, pp. 567- 574.

REFERENCES

14.	 McDermott, T, Blackburn, M, & Beling, P (2021). Artificial Intelligence
and Future of SE. In: Lawless, W.F., Mittu, R., Sofge, D.A., Shortell, T.,
McDermott, T.A. (eds) SE and Artificial Intelligence. Springer, Cham.
https://doi.org/10.1007/978-3-030-77283-3_3.

15.	 McDermott, T, DeLaurentis, D, Beling, P, Blackburn, M & Bone, M
(2020), AI4SE and SE4AI: A Research Roadmap. INSIGHT, 23: 8-14.
https://doi.org/10.1002/inst.12278.

16.	 McDermott T, Alexander K, & Wallace R (2023). The Supra-System
Model. INSIGHT 26 (2), 15-21.

17.	 McDermott and Horowitz 2017 is “McDermott T, Horowitz B (2017)
Human Capital Development – Resilient Cyber Physical Systems.
Systems Engineering Research Center (SERC) Technical Report
SERC-2017-TR-075, September 29, 2017.

18.	 National Academies of Sciences, Engineering, and Medicine (2016).
A 21st Century Cyber-Physical Systems Education. Washington, DC:
The National Academies Press. doi:10.17226/23686.

19.	 National Science Foundation (NSF) (2016). Cyber Physical Systems
(CPS). Retrieved September 1, 2023 from https://new.nsf.gov/
funding/opportunities/cyber-physical-systems-cps.

20.	 Office of the Deputy Assistant Secretary of Defense for SE (2018).
Department of Defense Digital Engineering Strategy, Washington
DC.

21.	 Rotmans J, Kemp R, & van Asselt M (1999). “More evolution than
revolution: transition management in public policy,” Foresight 3 (1).

22.	 SAE (2023). OnQueTM Digital Standards System. Retrieved
September 1, 2023 from https://www.sae.org/onque-digital-
standards.

23.	 Salado A and Selva D (2021). “Asistentes Cognitivos en Ingeniería,”
UE Essentials, Universidad Europea de Madrid, Madrid, Spain.

24.	 Systems Engineering Research Center (SERC) (2017). Human
Capital Development – Resilient Cyber Physical Systems. Technical
Report SERC-2017-TR-075. Stevens Institute of technology, Hoboken
NJ.

25.	 SERC (2023). Information Models and Ontologies to Enable Digital
Engineering. Retrieved September 1, 2023 from https://sercuarc.
org/event/information-models-and-ontologies-to-enable-digital-
engineering-research-workshop/.

26.	 Shadab N, Kulkarni A, Salado A (2021). “Challenges to the
Verification and Validation of AI-enabled Systems: A Systems-
Theoretic Perspective,” in W.F. Lawless, R. Mitty, D. Sofge, T. Shortell,
T. McDermott (Eds.), Systems Engineering and Artificial Intelligence,
(pp. 363-378), Cham: Springer, 2021.

27.	 von Bertalanffy L. (1969). General Systems Theory. New York:
George Braziller.

28.	 Wikipedia contributors. (2021, September 29). Adaptability. In Wikipedia,
The Free Encyclopedia. Retrieved September 1, 2023, from https://
en.wikipedia.org/w/index.php?title=Adaptability&oldid=1047218141.

29.	 Zhu H and Arnold E, “System Adaptability.” in SEBoK Editorial
Board. 2023. The Guide to the SE Body of Knowledge (SEBoK), v.
2.8, R.J. Cloutier (Editor in Chief). Hoboken, NJ: The Trustees of the
Stevens Institute of Technology. Accessed September 1, 2023. www.
sebokwiki.org. BKCASE is managed and maintained by the Stevens
Institute of Technology SE Research Center, the International Council
on SE, and the Institute of Electrical and Electronics Engineers
Systems Council.

BIOGRAPHIES

55

VÍCTOR RAMOS DEL POZO
Víctor Ramos del Pozo is a

systems engineer at Isdefe,

currently delivering technical

assistance for the Spanish

National Programme Office

for the Next Generation

Weapon System (NGWS)

within a Future Combat Air

System (FCAS), especially

in the fields of the Combat

Cloud, Collaborative Sensors

and Simulation. He previously

delivered technical assistance

for the Spanish National Armaments Directorate in the fields of

defence industrial base analysis, defence acquisition planning

and major defence acquisition programmes management.

Before joining Isdefe, he worked as a systems engineer at

EADS-CASA (current Airbus Defence and Space) for the

Multi-Role Tanker Transport and Future Strategic Tanker

Aircrafts programmes, and at Indra for the Identification

Friend or Foe Department.

He is a member of the International Council on Systems

Engineering (INCOSE) and delivers internal training at

Isdefe in the fields of systems engineering and programme

management.

THOMAS ALLEN MCDERMOTT
Tom McDermott is the

Chief Technology Officer of

the Systems Engineering

Research Center (SERC) and

a faculty member in the School

of Systems and Enterprises

at Stevens Institute of

Technology in Hoboken, NJ.

With the SERC he develops

new research strategies

and is leading research

on digital transformation,

education, security, and

artificial intelligence applications. He previously held roles as

Faculty and Director of Research at Georgia Tech Research

Institute and Director and Integrated Product Team Manager

at Lockheed Martin.

Mr. McDermott teaches system architecture, systems and

critical thinking, and engineering leadership. He provides

executive level consulting as a systems engineering

and organizational strategy expert. He is a fellow of the

International Council on Systems Engineering (INCOSE) and

recently completed 3 years as INCOSE Director of Strategic

Integration.

“We have developments that follow all of the rules, but fail.”

J. Frosch

CH
AP

TE
R

3
Evolution of systems

engineering development
and execution models

Dr. Ronald Giachetti, Naval Postgraduate School (regiache@nps.edu)
Juan Carlos Lario Monje, Isdefe (jclario@isdefe.es)

Abstract

This chapter presents the need to evolve and adapt systems engineering development models to the
current context of engineering projects. The chapter separates the discussion between traditional,
dominantly plan-driven approaches to systems development such as the Waterfall and Vee models, and
discussion of agile development approaches that emphasize responsiveness and are characterized
as highly iterative and incremental. Most projects could benefit from both, and we discuss hybrid
approaches and how to tailor the development models to the context of particular projects. The chapter
discusses other emergent methods including the merging of development with operations through
DevOps.

Keywords

Systems engineering, development models, agile, DevOps, hybrid usage.

58

1. INTRODUCTION

A system development model defines an approach to
develop a system to satisfy some needs expressed by one
or more stakeholders. The development of large scale and
complex systems often entails multiple technologies and
a large number of diverse individuals bringing different
knowledge and skills to the effort. This chapter first describes
the purpose and intent of system development models. The
models are organized into two categories: plan-driven models
and agile models. Plan-driven models assume we sufficiently
understand the needs and solution such that we can plan
the development project in advance and then develop the
system according to the plan. Agile models take the position
that we do not fully understand the needs or solution and
therefore the project execution must be adaptive or flexible,
allowing for changes in the needs and/or the solution. After
introducing multiple representative development models, the
chapter then discusses how to tailor a development model
to a particular project considering all the contextual factors
contributing to a successful outcome.

1.1. System development context

The development of large-scale, complex systems places
multiple demands of organizational nature (i.e., over the
organization that develops the system, also called the
realization system), which a system development model is
intended to address. In this sense, the basic demands a team
developing a new system will have to face are understanding
the stakeholder needs, creating a concept addressing those
needs, designing and integrating the concept with hardware,
software, processes, and people, and then implementing the
designed system so that it can be deployed.

System development is almost always constrained by
schedule and budget, and system development models
must be realizable in these conditions. An organization
engages the work of a large number of people with different
knowledge and skills during the system development, all of
whom must be organized in an effective way to design and
build the system. A development model provides a means to
understand how to organize the work of all these individuals.
Many systems include new or emerging technologies, which
introduce risk into the development. Under these conditions,
a system development model must provide for means to
mature such technologies and to assess the associated risks
to the development organization as well as to the system itself
(e.g., risks that may materialize during system operation).

Many systems, such as those incorporating greater
autonomy or artificial intelligence, face the challenge of
maturing a technology in parallel to system development.
At the same time, safety-critical systems, such as aircraft
or medical devices, must be developed and will operate
in highly regulated environments. These aspects generally
impose severe constraints on the generation of information
and data during system development, which is enabled and/
or facilitated by adopting a suitable development model.

Since software has become an essential component of most
systems, system development must now contend with the
generally high complexity introduced by software, potential
security vulnerabilities previously unaccounted for, and
rapid deployment at almost the click of a button. In the past,
when systems consisted mostly of hardware components,
the system capabilities generally remained unchanged
once the system was deployed. Because software is not
physical (it is a set of instructions that must be installed on
hardware), it enables system owners to continuously update
system capabilities during utilization. Furthermore, software
components have also enabled the implementation of
artificial intelligence, which can create scenarios in which the
algorithms and/or decisions made by the system can change
over time [26]. This creates challenges for system verification
as well as for human trust in the system concerning safety as
well as other issues. Collectively, these characteristics affect
the development process of software-intensive systems and
any software components found in larger systems.

This section has described the context surrounding modern
large-scale and/or complex system development projects.
System development models have evolved to contend with
many of the issues presented above.

1.2. Definition of a system development model

A system development model provides a structured framework
and set of guidelines for organizing the development
activities and coordinating the technical development of a
system. Development models are often governed by a set of
principles and/or best practices. The use of a development
model helps in organizing and managing the associated
efforts, ensuring a certain quality level, reducing risks, and
improving collaboration and communication among team
members and other stakeholders.

Following a defined process is correlated with a higher
likelihood of delivering successful system and capabilities
within the constraints imposed on time, cost, and quality [7].

59

System development models generally divide the process
into phases to describe the progress or evolution of the
system through its life cycle. Milestones are decision gates
marking the completion of a phase, at which time the
development organization decides whether to continue the
system development to the next phase, to wait for a complete
accomplishment of certain identified pending actions, or, as
a worst case, terminate the project. Entry and exit criteria for
each milestone are generally well defined in advance in order
to minimize any undesirable uncertainties. In this sense, the
risk of going ahead is often estimated and weighed before
making the decision.

1.3. System life cycle model

The development of a system must be understood in
the context of the system life cycle. A system life cycle
describes the phases a system goes through from its
initial conceptualization to its retirement or disposal, of
which development is just one portion. Figure 1 shows an
example of how ISO/IEC 15288 defines them. The arrows
indicate the existence of multiple potential paths through the
different phases, which may involve iteration and repetition.
A new, unprecedented system might go through the phases
sequentially from concept to development, to production,
and to utilization and support, before being retired. Instead,

an existing system might be upgraded and cycled back from
utilization to concept again. Some systems may be designed
and deployed incrementally and would transit through
multiple iterations of the phases for different aspects of the
overall system.

It should be noted that systems engineering activities such as
the elicitation of stakeholder needs or system integration are
not exclusively associated with any of the individual phases of
the system lifecycle. Furthermore, some system engineering
activities may be executed iteratively and recursively at
multiple levels of the system hierarchy. Consequently, systems
engineering spans all the phases of a system’s life cycle.

1.4. System development models

As the body of knowledge surrounding process models
evolves, the International Council on Systems Engineering
(INCOSE) has revised their classification of system
development models several times [20]. We describe two
categories as:

1)	 Pre-specified or plan-driven models.

2)	 Evolutionary or agile models.

Figure 1. System life cycle (adopted figure from INCOSE Handbook, 2023)

60

The first category includes traditional models such as the
Waterfall model and the Vee model. The second category
describes an evolution away from strictly plan-driven
models and includes the Spiral model based on iterative
development cycles. The second category has come to be
called agile methods and borrows heavily from the software
engineering community. The categorization is according to
the dominant characteristics of the corresponding models.
Nevertheless, it should be noted that certain overlap
between the categories exist because most models share
characteristics. For instance, many authors present the
Waterfall model as the archetypical plan-driven model
with strictly sequential execution of activities. Yet, the
original article by Royce acknowledged iteration among
the activities. In fact, iteration and recursion are always
inherent to any development process, within and between
its different phases.

2. PLAN-DRIVEN DEVELOPMENT
MODELS
Plan-driven models describe a class of system
development models that prioritize the predictability
available through adhering to a plan laying out a
structured development approach. This section reviews
the archetypical plan-driven development models of the
Waterfall and the Vee models.

2.1. Waterfall model

The Waterfall model is a plan-driven model in which all
engineering activities are defined and planned at the start of
the project. Each activity in the Waterfall model is supposed
to be executed completely before the next activity begins.
Moreover, the output of the preceding activity becomes
input to the next activity. Iteration of activities is not planned
in the Waterfall model but is expected to happen only when
problems are not fixable at one stage and, in such a case, the
project moves just to the previous stage. Figure 2 shows the
obvious sequential structure of the activities in the Waterfall
model.

Although the Waterfall model is often criticized and almost
considered irrelevant in systems engineering circles these
days, the model is still well suited and useful for projects in
which:

	• it is possible to confidently know the requirements at the
beginning,

	• those requirements will be stable and unchanging,

	• there is little technical risk, and/or

	• there are hazardous risks that require careful progression
of activities.

Under these conditions, the Waterfall model’s sequential
and structured approach for system development provides
the benefits of predictability and easier coordination of the
work activities.

Figure 2. Waterfall model

Problem
Analysis

Testing and
Integration

Requirements

Design

Development

Deployment

61

The Waterfall model becomes a challenge to implement and can cause
extensive and expensive rework under scenarios where:

	• the requirements are poorly known,

	• the requirements are likely to evolve or change, and/or

	• it is possible that new requirements emerge during development.

Any issues discovered during later activities such as testing and/or
integration can mean a significant amount of rework, since the team may
need to go all the way back to requirements and redesign the system.
Such rework usually causes significant budget overruns and schedule
slips. Furthermore, the Waterfall model does not explicitly incorporate
stakeholder feedback during the lifecycle, since the activity is timeboxed
within its own stage, which limits its ability to validate concepts before
doing too much work or to adapt to changing needs. Moreover, the
tightness of the development process eliminates any opportunity for
incrementally deploying the system. These aspects make the Waterfall
model unattractive for most engineering projects.

2.2. Vee model

The systems engineering Vee model is a plan-driven model that leverages
the hierarchical nature of most complex systems. Development occurs
in a top-down fashion in which a system is recursively decomposed into
lower-level systems (which may be assigned names as subsystems,
components, etc.). Importantly, the Vee model recognizes uncertainty
and technical maturity are not uniform across all elements of the system,
and hence allows for different system elements to evolve at different
paces. This is actually its key tenet, that while all activities must end in
sequence (as was the case for the Waterfall model), activities may begin
in any order. That is, within the Vee model, the activities might not begin
in the same order for every system element, but their completion does

occur per the constraints of the process such that
integration cannot be completed until all system
elements are manufactured. In fact, the Vee model
emphasizes the validation and verification at each
level and between levels, which can quickly lead
to iteration as the team resolves any issues [32]
to reduce the financial and schedule impacts of
rework. For example, the Vee model encourages
to begin validation in parallel with the elicitation
of stakeholder needs, start verification in parallel
with derivation of requirements, start integration as
soon as system architecture starts, etc.

Figure 3 shows the original, canonical Vee model
[14] of which there are now many variations
(many of them are inconsistent with the concepts
expressed in the original Vee model). The left-hand
side of the Vee depicts the decomposition effort
as stakeholder needs being mapped into system
design concepts and eventually derived into a
system specification. At the bottom of the Vee
model, those system elements are designed and
built, and give way to the right-hand side of the Vee
model, which depicts the synthesis or integration
effort as those elements are integrated up the
system hierarchy with verification and validation
occurring at each step. The symmetry between
the left- and right-hand sides of the Vee model
highlights the interdependencies between each
stage on the left with the corresponding one on
the right. For instance, the concept of operations
on the left side defines measures of effectiveness
and performance that are the basis of the system
validation occurring later in the project.

The Vee model is particularly suited for system
development projects that require a systematic
and structured approach, where:

	• systems in question are large,

	• involve many building components, which
have different levels of maturity and therefore
risks, and

	• have stringent safety and reliability constraints.

The Vee model, or minor variations of it, is probably
the most common mode used in industries such as
aerospace, defense, and automotive.

Figure 3. Vee Model

System
Development

System/Solution
Realization

Upper level
system element

development

Upper level
system element

realization

Lower level
system element

development

Lower level
system element

realization

62

The Vee encounters some of the same shortfalls as
experienced with the Waterfall model. The Vee model
suffers from poor responsiveness to significant changes
in requirements or poor initial assumptions that are not
discovered until later in the process. The result is costly
rework with the concomitant delays in schedule.

3. EVOLUTIONARY OR AGILE
DEVELOPMENT MODELS
Evolutionary or agile models describe a class of
highly iterative and incremental approaches to system
development. Agile models carry out iteration and
incremental development based on short development
cycles called sprints or iterations. Iteration describes the
repetition of the same activities during each sprint such
as analysis, design, test, and build for a small portion of
the system. We see the incremental aspect through the
delivery of value or system capabilities at the end of each
sprint. Agile models emphasize the end of a sprint should
result in a measurable outcome. For software systems,
each sprint usually ends with functional code that can be
delivered to stakeholders. For hardware-intense systems, a
sprint might not result in actual hardware because of the
longer development time required, and instead a sprint
may result in risk reduction, an engineering specification, or
completion of an engineering analysis. This type of model
emphasizes value delivery as an incremental process
whether such delivery is some visible portion of the system
or advancement of the project at the end of each sprint.

Unlike plan-driven models, the agile models do much less
planning and requirements analysis during the beginning
of system development. Agile models are highly adaptive
and flexible approaches because as the project team plans
each new sprint, they will make course corrections based
on what they learned during the previous sprint. Hence,
agile methods are updating their plans on a regular basis
driven by the cadence of the sprints.

The agile models are based on a set of principles informing
a mindset and then implemented by multiple, different
methods. The principles were described in the Agile
Manifesto [2] and are listed in Table 1.

1.	 Early and continuous delivery of value to the
customer

2.	 Acceptance of changing requirements, important for
competitive advantage

3.	 Frequent incremental delivery of value to
stakeholders

4.	 Users and developers working together

5.	 Focus on the people, self-organized teams

6.	 Face-to-face communication is most effective for
teamwork

7.	 Working software is primary measure of progress

8.	 Development speed should be sustainable
indefinitely

9.	 Continuous attention to good design

10.	 Keeping the design as simple as possible and avoid
doing unnecessary work

11.	 Best architectures emerge from self-organized
teams

12.	 Regular meetings for teams to reflect on lessons
learned

A differentiating aspect of the agile models is that they
comingle principles on how to develop a system with
principles on how to organize the development team. This is
a differential aspect with respect to many of the plan-driven
models, which provide little guidance about the project
management considerations of the system development.
The principles dealing with continuous delivery, acceptance
of changing requirements, using working software as the
measure of progress, steady development speed, constant
attention to good design, and simple design are principles
all dealing with system development. Agile models uniformly
prescribe self-organizing, multidisciplinary teams working in
close collaboration with end users (generalizable to general

Table 1. Agile Principles

63

stakeholders) to deliver value incrementally. Furthermore,
they place greater value on face-to-face communication
and regular meetings as a means for better coordination
and faster recognition and adoption of lessons learned,
which are intended to improve the management of
development teams.

Agile methods have been widely adopted and routinely
practiced in software development projects to improve
team collaboration, communication, and flexibility
in responding to changes in customer and/or user
requirements. The application of agile principles
to systems engineering processes, particularly in
the development of complex systems with hardware
components, remains an area of active research and
discussion. Several studies have shown the benefits
of applying agile principles to systems engineering
processes. Dove et al. [11] studied the application of
agile principles in several companies and identified
eight principles for agile systems engineering consistent
with the agile manifesto including attentive situational
awareness, attentive decision making, agile operations
concept, product line architecture, shared knowledge
management, continual integration and test, common
mission teaming, and iterative and incremental
development. The International Council on Systems
Engineering (INCOSE) has a team that has been looking
at how agility can be infused or adopted by systems
engineering organizations [38]. Their work is part of the
Future of Systems Engineering (FUSE) initiative of INCOSE
and emphasizes how development organizations can
become more agile through process and workforce
development. Therefore, while agile models are proven
and the dominant approach in the software, systems
engineering is still examining and trying to understand
how best to adopt agile principles given the constraints
of physicality imposed by hardware.

Next, we present the Spiral model, which was introduced
in the 1980s, as an example of an evolutionary model.
Then, Scrum is presented because it is widely used
in the software industry and the iterative process and
concepts from Scrum are heavily borrowed by other
evolutionary models. Finally, we discuss two system
development models that adopt agile concepts from
Scrum for larger projects including both hardware and
software: the Scaled Agile Framework (SAFe) and the
Disciplined Agile Delivery (DAD).

3.1. Spiral model

The Spiral model was introduced for software development
and emphasizes reducing risk through incremental
commitment from stakeholders throughout system
development [3]. A project following the Spiral model does
iterations to progressively develop the definition of a software
system and eventually deliver it to a customer. The cycles
consist of the four activities (ref. Figure 4):

1)	 determining objectives, alternatives, and constraints,

2)	 evaluating the alternatives, identifying and resolving risks,

3)	 developing and verifying the product, and

4)	 planning the next phase.

Each iteration or spiral results in a prototype or build of the
system, albeit often a partial build. Consequently, the project
develops and deploys the system in increments.

The Spiral model is suitable in system development contexts
characterized by uncertain or evolving requirements
and projects where risks are significant and need to be
continuously assessed and mitigated throughout the project
lifecycle. However, the use of the Spiral model is generally only
possible when the system can be deployed in increments.
Software systems was one of the original domains for which

Figure 4. Spiral Model

64

the Spiral model was intended [4], but it has also been applied to
other domains. For example, the ship design process is usually
shown as a Spiral model because ship design involves multiple
technical specialties with a high degree of interdependence
between them. In the ship design spiral, the designers make
decisions on hull form, hull size, power, hydrostatics, and so on
and must iterate through these decisions on they converge on
an acceptable design [13,15]. The spiral model has also been
applied to the development of the Global Hawk unmanned
aircraft, which was able to deploy capabilities incrementally with
each spiral [17].

3.2. Scrum

Scrum is an agile software development model for managing
self-organized teams in short iterations called sprints delivering
working code at the end of each sprint [34]. The popularity and
success of Scrum for software development has motivated
people to adapt the Scrum development model to systems
involving both hardware and software [e.g., 3, 10]. Figure 5
shows the Scrum process. Teams work from a backlog of work
items that were identified in conjunction with a Product Owner
representing the voice of the customer. The work items are
requirements for features or functions often expressed as user
stories. During the sprint planning session, the team selects
work items to analyze, design, develop, and test in the next
sprint. The sprint is the actual development iteration and is

typically of two weeks duration for software development but
may be longer and even vary for hardware development. The
team will have a regular meeting to discuss progress of the
sprint. A sprint retrospective meeting is held at the end of the
sprint for the team to discuss ways in which they can improve.
Scrum is a learning process and focuses on the people and
interactions between people in developing software.

Scrum works well in dynamic environments where requirements
change (because new and/or changed requirements can be
worked into the backlog and be addressed in future sprints),
as well as with systems that can be built and deployed
incrementally. Adoption of the Scrum development model
requires implementing a corresponding organizational culture,
as with other agile models, because it intertwines development
processes with team management and communication
principles. An organization that does not subscribe to such
working principles as established by the team would likely not
be successful in performing a Scrum process.

Because Scrum was originally applied to small projects, there
were some initial doubts about its suitability to guide large
projects. However, variants such as Large-Scale Scrum (LeSS)
[24] were proposed to address this potential shortcoming.
While Scrum has been adapted and applied for systems
development, it is not widely practiced, and many questions
remain as to its applicability in different system development
contexts.

Figure 5. Scrum Process

65

3.3. Scaled Agile Framework

The Scaled Agile Framework (SAFe) describes a structured
and scalable approach to implementing agile principles and
practices in organizations with multiple teams working on
complex projects [25]. The teams consist of individuals who
have the ability to do the analysis, design, build, and test of
their work. They work on the systems development through
Agile Release Trains (ARTs), which are defined time frames
(typically 8-12 weeks) during which multiple teams synchronize
their work to develop and deliver a capability of value to the
stakeholders. Hence, ART cycles are strictly time-boxed and
their scope is allowed to vary.

The teams plan the development goals of an ART through an
event called Program Increment (PI) Planning. The PI Planning
brings together all teams within an ART to plan and align their
work for the upcoming program increment. During PI Planning,
teams collaborate to define objectives, break down work,
estimate effort, and establish dependencies. SAFe includes a
lot of guidance on management of the development team and
how it should be organized.

SAFe was developed to address the criticism that agile methods
such as Scrum, do not scale to large and more complex system
development projects. SAFe does this through the guidance
provided for scaling agile from the team level to the program
and portfolio levels. It offers different configurations, allowing
organizations to tailor their implementation based on their
specific needs. In providing the additional guidance on how
to structure the development, SAFe is sometimes criticized as
sacrificing the agile principles for the sake of greater discipline
[31].

3.4. Disciplined Agile Delivery

Disciplined Agile Delivery (DAD) is an agile method that builds
on other methods such a Scrum but is intended for the entire
life cycle, including operations, for example, unlike other agile
methods that focus primarily on development [1]. DAD defines
three phases: inception, construction, and transition. During
inception, the project identifies the project vision, stakeholders,
and initial requirements. In construction, the project develops
the system solution on an incremental basis. In transition,
the project puts the design through production and engages
stakeholders for validation. The DAD applies an iterative and
incremental development approach, characteristic of agile
models, during the construction phase.

DAD is mainly intended for larger projects by being enterprise
aware, meaning DAD recognizes the enterprise context
and takes into consideration governance, compliance, and
organizational standards. DAD emphasizes the importance
of validating the architecture in the earlier sprints and
consequently reducing risk. The DAD is particularly appropriate
to software-intensive systems in which the development team
can establish and react to feedback loops between operations
and development (i.e., DevOps, which will be described later).

3.5. Agile methods with hardware

Agile methods, originally developed for software
development, may encounter certain difficulties when applied
to hardware development due to the inherent physicality and
manufacturing aspects involved. We group these constraints
here because they apply to all of the agile models previously
discussed. Some of the constraints that can limit the
application of agile methods for hardware development are:

	• Longer Lead Times: Hardware often requires longer
lead times for designing, ordering materials, and building
components compared to software development. This
can make it challenging to adhere to the short iteration
cycles typically associated with agile methods.

	• Manufacturing Complexity: Manufacturing hardware
involves intricate processes, specialized tools, and strict
quality control measures. Unlike software, which can be
easily modified and updated, modifying and updating
physical hardware components often require different
tools, facilities, specialized personnel, materials, and
so forth. This can limit the flexibility and ability to adapt
quickly, which is a key aspect of agile methods.

	• Costly Iterations: Iterating on hardware designs can be
expensive, especially when it involves tooling, materials,
and production processes. Unlike software, where
changes can be made relatively easily and at a low cost,
hardware iterations often require additional investments.
This can make frequent iterations and experimentation
challenging from a cost and resource perspective.

	• Physical Prototyping: Physical hardware typically
requires the creation of prototypes for testing and
validation. Building physical prototypes can be time-
consuming and costly, which can impact the ability to
iterate rapidly and embrace quick feedback loops, as
typically done in agile methods.

66

	• Supply Chain Dependencies: Hardware development
often relies on complex supply chains, involving multiple
vendors and lead times for procuring components and
materials. This introduces additional dependencies and
challenges in managing schedules, coordination, and
ensuring timely availability of required resources.

	• Regulatory Compliance: Hardware products often
need to comply with industry-specific regulations and
standards. Ensuring compliance can involve extensive
testing, certification processes, and documentation. This
can add complexity and time to the development process,
potentially impacting the agility of the iterative cycles.

	• Law of Physics: The functioning and performance of
hardware systems are bounded by the laws of physics.
As a result, strong coupling generally exists between
design variables and across engineering disciplines.
This makes it very difficult to allocate work in independent
tasks.

Despite these constraints, agile principles and practices
can still be applied to certain aspects of hardware
development. For example, while sprints may not be as
short as with software, the principle of frequent scoping
and assessment of work can be helpful in keeping a healthy
level of productivity and quickly react to misalignments
between needs and solutions. This has been shown in
practice. For example, Yang et al. [39] showed that the use
of agile principles in the development of a hardware product
led to improved communication, reduced project risk,
and increased customer satisfaction. Similarly, Thakurta
et al. [35] showed that the use of these principles in the
development of an embedded system led to improved team
collaboration, faster development cycles, and reduced
project risk. Paasivaara and Lassenius [29] describe
Ericsson’s long journey of adopting agile to the design and
development of their products.

Overall, while the physical constraints of hardware
development pose challenges for the direct application of
agile methods, careful adaptation, and a tailored approach
can help leverage agile principles to enhance collaboration,
flexibility, and customer satisfaction in in this type of projects.

4. COMPARISON BETWEEN PLAN-
DRIVEN VERSUS AGILE DEVELOPMENT
This section compares the category of plan-driven models
versus the category of agile models. We first consider how
the two categories of models address the triple constraint of
project budget, schedule, and scope.

Plan-driven development models tend to assume a fixed
scope-budget-schedule triad (and are often implemented
by fixing the scope only), and only act upon them reactively
when issues are encountered, such as due to the uncertainty
of requirements or the unfolding of technical risks. On the
contrary, scope, and to a lesser extent budget are intentionally
in flux when using agile models. This happens as a result
of organizing the work in iterative time-boxed sprints, as
explained earlier, so that the project can adapt its tasks and
targets as deemed necessary.

It should be noted that, while agile models are generally
implemented to fix budget and schedule (letting scope
change), and plan-driven methods are generally implemented
to fix scope (letting cost and schedule change), these are not
constraints imposed by either of the development methods.
In fact, either kind of development model can implement
techniques that target the fixing of a specific dimension
(e.g., Cost as an Independent Variable (CAIV) fixes cost at
the expense of schedule and scope [6]). The key difference
is whether changes are made reactively to problems or
intentionally embedded in the development process.

Table 2 provides a brief comparison between how plan-driven
models and agile models typologies address core aspects
of the business environment, the system to be developed,
and the development organization in which they are applied.
The table is not intended to be exhaustive, but to broadly hint
at the main differences between the two classes of models.
As an example, one consideration is the type of business
environment the organization and system will operate in.
Organizations working in regulated environments and/or
dealing with safety critical systems will generally need more
planning, documentation, and traceability of requirements.
Plan-driven models address these concerns directly.
However, this does not mean agile models cannot be used in
these environments. For example, Hanssen et al. [16] propose
a variation of Scrum, called SafeScrum, demonstrating agile
principles in the development of safety-critical systems such
as avionics despite the strong belief that agile is inconsistent
with the need to comply with stringent safety regulations.

67

Table 2. Comparison Plan-driven and Agile Models

Contingent Factors Plan-Driven Models Agile Models

Business
Environment

Stability of market and
certainty of requirements

Better for stable and
unchanging requirements

Better in dynamic
environments with

changing requirements

Clarity and certainty
of requirements

Better when requirements
are clear and known

Better able to deal
with ambiguous and
unclear requirements

Regulatory or safety
critical environment

Better for complying with
strict regulations and

policies; ensure traceability
with documentation and plan

--

System

Part of a system of system
with lots of Interconnections

with other systems

Better for planning and
controlling those interfaces

--

Long lead-time items
or must plan for scarce

resources (e.g., test range)

Better for planning the
acquisition of such items

and aligning budget,
schedule, and resources.

Greater risk of not having
such items on hand when
needed or available due to

limited up-front planning

Many needed quality
attributes (-ilities such as
reliability, maintainability,

cybersecurity, etc.)

Plan-based models
identify and define these

requirements early on, which
is useful because the quality

attributes are often met
through multiple aspects of
the overall system design

If quality attributes are
identified during sprints
(especially later sprints),

then risk of rework to have
the system comply with

those requirements because
multiple aspects of system

might have to change

Technological risk present
Attempt to develop plan to
mature the technology prior

to insertion in the system

Rapid learning and risk
reduction through iterations

Organization
Highly geographically
and organizationally

distributed team

The planning and discipline
of these models are

able to accommodate
these scenarios well

Some agile models are
less able to handle such
organizational structures

without significant
modification to principles
(e.g., difficulty of face-to-

face communication). Better
for smaller co-located teams

68

5. TAILORING DEVELOPMENT
MODELS
It is convenient to keep in mind that there is
not an ideal or default preferred model for a
system development. We view the best system
development model as one that best fits:

	• the organization, its people, and its culture;

	• the system to be developed, its complexity,
its connectedness to other systems, and the
extent of new technologies that it uses; and

	• the business environment in which it is
developed, the dynamism of the business,
and the degree of uncertainty surrounding the
development.

For this reason, tailoring of the development models
should be often called for. Tailoring can take the form
of establishing a canonical development model and
adapting it to the particulars of the project, it may
involve a hybrid approach blending aspects from
multiple different development models, or it may be
approached by using different development models
for different parts of the system (e.g., adopting
a Vee model for the hardware components and
an agile model for the software). Tailoring relies
upon the systems engineering team having deep
knowledge of the advantages and drawbacks of
each development model and understanding the
factors affecting the development, as mentioned
earlier (e.g., business environment, system, and
organization).

The agile approaches have been demonstrated
as being very successful in the software industry,
yet there are limitations as aforementioned in
applying them to hardware. For this reason, there
is interest in hybrid approaches that blend agile
and traditional plan-driven development models to
strike a balance between flexibility and the need for
rigorous development processes. When tailoring, it
is essential to address two questions [33]:

1)	 To what degree is agility demanded by the
market, technology, and other environmental
factors?.

2)	 To what degree can the organization be agile?.

In essence, it is important to coordinate the demands or needs
that the system must satisfy with the ability and/or feasibility of the
organization to adopt a particular development model [5]. Tailoring,
in this sense, should not be seen as something to be done when
ideal models cannot be used. Instead, tailoring should be conceived
as a required step when devising what type of model to adopt.
Furthermore, ideal models should serve as paradigms. In reality, a
development model will generally need to be tailored.

Figure 6 refines Table 2 by showing plan-driven models and agile
models not as a dichotomy, but as continua of adequacy between
the two for different variables.

Figure 6. Factors for deciding between plan-driven and agile models

69

One means to combine plan-driven models
with agile principles is to adopt and adapt
important agile concepts at multiple levels
of development. A hybrid method can
iteratively and incrementally evolve the
system according to agile principles while
maintaining some of the predictability
available from plan-based models.

As an example, consider hardware-based
or hardware-intensive systems. This type
of system requires some planning because
hardware often requires parts with long
lead-times, it cannot be refactored, and
customers want to know when the system
will be first deployed. Additionally, larger
systems often have many interfaces
and interactions with other systems that
must be planned for and controlled.
Interactions in this context also include
performance dependencies between
the different components. These issues
are addressed by macro-planning of
the overall development process and
by using a top-down approach starting
with an initial system architecture. Figure
8 shows a high-level view of the system
development activities and Figure 8 shows
the more detailed planning prior to the
next milestone. Both figures show there is
extensive parallelism of the activities, but
they do not depict how the intensity of effort
changes with each activity. For instance,
the problem analysis activity might occur
through to the concept review milestone,
but the amount of manpower and effort will
be greater earlier in the project compared
to just before that milestone.

Figure 7 shows verification and validation
(e.g., testing) occurs continuously
throughout the process. The frequent testing
enables permanent design maturation and
risk reduction. Within each phase, there
are iterations of understanding, designing,
building, and testing ideas through the use
of models. Additionally, there are feedback
loops and iterations between phases. For
instance, as capabilities are analyzed
and defined, the team might rethink how
they framed the problem and revise their
associated analysis. As a result, this
process progressively analyzes, designs,
and evaluates the stakeholder needs,
requirements, and mission to build the
architectural products.

Figure 7. High level plan

Figure 8. Milestone plan and backlog

70

6. MERGING DEVELOPMENT AND
OPERATIONS WITH DEVSECOPS
System development models have been traditionally
designed to end when the system transitions to the utilization
phase of its life cycle. While systems may certainly cycle
back to development from utilization, development models
tend to assume that, in such a case, a new project would
be specified. The sharp boundary between development and
utilization (also referred to as operations) is being challenged
by a novel development model called DevOps.

DevOps emerged from the software engineering community
and aims to break down the barriers often found between
system developers (Dev) and the system operators (Ops)
[22]. DevOps implements a continuous cycle of developing
software, testing it, and pushing the software out to operations
who use the software, monitor its performance, and provide
feedback to development. DevOps is based on having
open and close communication between developers and
operators, continuous feedback, continuous integration, and
steady operational flow.

DevOps has been and continues to be almost exclusively
applied to software-intensive systems. The challenges to
adopting DevOps to hardware are evident. Unlike software,
new features or functions cannot be pushed out over a network,
and moreover, changes to a hardware’s performance usually
entails changing the hardware itself. DevOps has been
challenging to implement even with software for embedded
systems [27]. Only recently, do we see DevOps being applied
in system domains involving both hardware and software, but
with the continuous integration and verification occurring only
with the software components [40].

In military systems, the need for security is paramount, and
DevOps has morphed to include security considerations,
creating a new model concept known as DevSecOps [28].
This approach involves integrating security practices into
every stage of the software development process, from
design and coding to testing and deployment, to ensure that
security is built into the system from the outset. By adopting
a DevSecOps approach, military organizations can help to
mitigate the risks of cyberattacks, protect sensitive data and
systems, and ensure that military operations are not disrupted
by software vulnerabilities or failures. Overall, the DevSecOps
methodology has emerged as a key approach for developing
secure, reliable, and scalable software systems, and its
importance is likely to continue growing in military and other
high-stakes environments.

71

7. CONCLUSIONS
The chapter has reviewed the need for, and role system development models fulfill in systems engineering. The life cycle of
systems has been described as consisting of six stages of concept, development, production, utilization, support, and retirement.
The systems development process covers primarily the stages of concept, development, and production – although recent
approaches seek greater integration between development and utilization (or operation). Development models can be broadly
categorized as either plan-driven or agile. The plan-driven models are the more traditional systems engineering approaches and
include the Waterfall and Vee models.

The Waterfall and Vee models predominantly move through the system development activities in a sequential fashion. Projects
following these models start with planning and generally understanding all the system requirements prior to moving onto design
activities. However, it has been long recognized that actual implementation of these models involves extensive iterations and
recursion of activities.

Agile models have emerged primarily from the software engineering community. Software and its development differ in several
important ways from hardware, which helps explain why agile methods become popular there first. Among these differences is
that software is intangible and can be deployed over a network. Consequently, software is easy and relatively inexpensive to
modify, even after the software is deployed to users. Moreover, the market for software is highly dynamic with changing needs
and frequently introducing new technologies. The agile methods exploit the characteristics of software making it easy to change
in order to thrive in such a dynamic business environment. Agile models are founded on principles of iterative and incremental
development, continuous verification and validation, self-organized teams, continuous integration, and close interaction with
users. The Spiral model was one of several other models that started to more formally and explicitly describe the systems
development process as being iterative and incremental. Other novel agile development models emerged later, such as Scrum,
SAFe, and DAD, which implement these principles.

The chapter has also provided a comparison between plan-driven and agile models along different dimensions to highlight their
strengths and weaknesses. In general, plan-driven approaches are suitable for development projects where requirements are
knowable, technology is mostly mature, and the environment is stable. They are also useful when audit trails and documentation
are necessary such as for safety-critical systems or many defense systems. Agile models, on the contrary, are suitable in
environments where there is high uncertainty and dynamism. The chapter observes that many projects might have characteristics
suitable for plan-driven and other characteristics for agile models. In such cases, the chapter suggests a hybrid plan-driven and
agile model attempting to combine the strengths of each process model. Such tailoring of process models is very important in
systems engineering because there is no single model suitable for every project. Instead, informed and knowledgeable systems
engineers should tailor or customize the system development models to fit the needs of the organization and the development
project.

The chapter described emerging development trends affecting most system development projects such as DevOps. The DevOps
concept interleaves development with operations using continuous feedback for the evolution of the system throughout its service
life. DevOps as well as other emerging development trends can be incorporated into any of the system development models, and
indeed the development models may need to be modified to better exploit these new capabilities.

72

1.	 Ambler, S. W., & Lines, M. (2012). Disciplined agile delivery: A
practitioner’s guide to agile software delivery in the enterprise.
IBM press.

2.	 Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., ... & Thomas, D. (2001). The agile
manifesto.

3.	 Boehm, B. W. (1988). A spiral model of software development
and enhancement. Computer, 21(5), 61-72.

4.	 B. Boehm, Spiral Development: Experience, Principles, and
Refinements, CMU/SEI-2000-SR-008, July 2000.

5.	 Boehm, B., and Turner, R. (2004). Balancing agility and
discipline: A guide for the perplexed. Addison-Wesley
Professional.

6.	 Brady, J. (2001). Systems engineering and cost as an
independent variable. Systems engineering, 4(4), 233-241.

7.	 Chrissis, M. B., Konrad, M., & Shrum, S. (2011). CMMI for
development: guidelines for process integration and product
improvement. Pearson Education.

8.	 De Weck, O. L., Roos, D., & Magee, C. L. (2011). Engineering
systems: Meeting human needs in a complex technological
world. Mit Press.

9.	 Dingsøyr, T., Falessi, D. and Power, K. (2019). “Agile
development at scale: the next frontier”. In: IEEE software 36.2
(2019), pages 30–38.

10.	 Douglass, B. P. (2015). Agile systems engineering. Morgan
Kaufmann.

11.	 Dove, R., Lunney, K., Orosz, M., & Yokell, M. (2023, July).
Agile Systems Engineering–Eight Core Aspects. In INCOSE
International Symposium (Vol. 33, No. 1, pp. 823-837).

12.	 Elssamadisy, A., Abu-Tayeh, G., & Brown, T. (2018). Scaling agile
and lean development in the enterprise. Pearson Education.

13.	 Evans, J. H. (1959). Basic design concepts. Journal of the
American Society for Naval Engineers, 71(4), 671-678.

14.	 Forsberg and Mooz, 1998 à Forsberg, K. and Mooz, H.
(1998), 7.17. System Engineering for Faster, Cheaper, Better.
INCOSE International Symposium, 8: 917-927. https://doi.
org/10.1002/j.2334-5837.1998.tb00130.x.

15.	 Gale, P.A., ‘‘The ship design process,’’ in Ship Des. Construction,
vol. 1, T. Lamb, Ed. Alexandria, VA: SNAME, 2003, ch. 5.

16.	 Hanssen, K. G., Stålhane, T., & Myklebust, T. (2018).
SafeScrum®–agile development of safety-critical software.
Springer Nature Switzerland AG.

REFERENCES

73

17.	 Henning, W.A., and Walter, D.T., (2005). Spiral development in
action: a case study of spiral development in the Global Hawk
Unmanned Aerial Vehicle program. Master’s Thesis. Naval
Postgraduate School, Monterey, CA.

18.	 Jim Highsmith and Alistair Cockburn. “Agile Software
Development: The Business of Innovation”. In: Computer 34.9
(2001), pages 120–127.

19.	 Ibarra H., and Scoular, A. (2019). “The Leader as Coach”. In:
Harvard Business Review (November - December 2019).

20.	 INCOSE (2023). SE Vision 2035: Engineering Solutions for a
Better World. International Council on SE. Retrieved September
1, 2023 from https://www.incose.org/about-systems-
engineering/se-vision-2035.

21.	 ISO/IEC/IEEE International Standard - Systems and software
engineering -- System life cycle processes, 2015-05-15.

22.	Kim, G., Humble, J., Debois, P., & Willis, J. (2016). The DevOps
handbook: How to create world-class agility, reliability (2nd
ed.). IT Revolution Press. https://itrevolution.com/book/the-
devops-handbook/.

23.	Knaster R. and Leffingwell, D. (2017). SAFe 4.0 distilled:
applying the Scaled Agile Framework for lean software and
systems engineering. Addison-Wesley Professional.

24.	Larman, C., & Vodde, B. (2016). Large-scale scrum: More with
LeSS. Addison-Wesley Professional.

25.	Leffingwell, D.: Scaling Software Agility: Best Practices for
Large Enterprises. Pearson Education, Boston (2007)

26.	Lockey, S., Gillespie, N., Holm, D., & Someh, I. A. (2021). A review
of trust in artificial intelligence: Challenges, vulnerabilities and
future directions. Proceedings of the 54th Hawaii International
Conference on System Sciences.

27.	 Lwakatare, L. E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson,
H. H., Bosch, J., & Oivo, M. (2016, January). Towards DevOps
in the embedded systems domain: Why is it so hard? In 2016
49th Hawaii international conference on system sciences
(hicss), pp. 5437-5446.

28.	Miller, A. W., Giachetti, R. E., & Van Bossuyt, D. L. (2022).
Challenges of Adopting DevOps for the Combat Systems
Development Environment, Defense Acquisition Research
Journal, 29(1).

29.	Paasivaara M. and Lassenius, C. (2019). “Empower your agile
organization: Community- based decision making in large-
scale agile development at Ericsson”. In: IEEE Software 36.2
(2019), pages 64–69.

30.	Pahl G. and Beitz, W. (2013). Pahl/Beitz Konstruktionslehre:
Grundlagen erfolgreicher Produktentwicklung. Methoden und
Anwendung. Springer-Verlag, 2013.

31.	 Putta, A., Paasivaara, M., & Lassenius, C. (2018). Benefits
and challenges of adopting the scaled agile framework
(SAFe): preliminary results from a multivocal literature review.
In Product-Focused Software Process Improvement: 19th
International Conference, PROFES 2018, Wolfsburg, Germany,
November 28–30, 2018, Proceedings 19 (pp. 334-351).
Springer International Publishing.

32.	Scheithauer and Forsberg, 2013. à Scheithauer, D.
and Forsberg, K. (2013), 4.5.3 V-Model Views. INCOSE
International Symposium, 23: 502-516. https://doi.
org/10.1002/j.2334-5837.2013.tb03035.x.

33.	Stelzmann, E. (2012). Contextualizing agile systems engineering.
IEEE Aerospace and Electronic Systems Magazine, 27(5), 17-
22.

34.	Schwaber 1997 à Schwaber, K. (1997). SCRUM Development
Process. In: Sutherland, J., Casanave, C., Miller, J., Patel, P.,
Hollowell, G. (eds) Business Object Design and Implementation.
Springer, London. https://doi.org/10.1007/978-1-4471-0947-
1_11.

35.	Thakurta, R., Mukhopadhyay, D., & Das, D. (2020). Applying
agile practices in embedded system development: An industrial
case study. Journal of Systems and Software, 168, 110660.

36.	Ullman, D. G. (2019). Scrum for hardware design: supporting
material for the mechanical design process.

37.	 Wade A Henning and Daniel T Walter. Spiral development in
action: a case study of spiral development in the Global Hawk
Unmanned Aerial Vehicle program. Technical report. Naval
Postgraduate School, Monterey, CA, 2005.

38.	Willett, K. D., Dove, R., Chudnow, A., Eckman, R., Rosser, L.,
Stevens, J. S., ... and Yokell, M. (2021, July). Agility in the Future
of Systems Engineering (FuSE)-A Roadmap of Foundational
Concepts. In INCOSE International Symposium (Vol. 31, No. 1,
pp. 158-174).

39.	Yang, J., Lappas, T., Egan, M., & Bagaria, N. (2019). Applying
Agile methods to hardware product development. Journal of
Systems and Software, 154, 1-14.

40.	Zaeske, W., & Durak, U. (2022). DevOps for Airborne Software:
Exploring Modern Approaches. Springer Nature.

BIOGRAPHIES

75

JUAN CARLOS LARIO MONJE
Juan Carlos Lario Monje is an

aeronautical engineer with a

multidisciplinary experience

in several engineering fields

such as safety, quality,

programs, offsets, contracts,

definition & handling of

requirements, integration, V&V

of systems and Certification

& Qualification. He has

acquired a global perspective

on aeronautical international

programs (civil/military), since its development phase to later

serial production and final entry into service, with specific

involvement on aerodynamics, Electronic Warfare and

Electro-Optical systems. With direct participation in the main

European aeronautical programs, both civil (A380, A350) &

military (A400M, EF2000, Tiger-HAD, NH90), he has reached

a profound knowledge of Spanish aeronautical Industry core

businesses (Airbus, Indra), defence programs end-users (SP

Army, Air Force) and European Contract agencies (NETMA,

OCCAR). With and endless curiosity, he is an enthusiastic

professional of continuous learning and teaching. CSEP

certified by INCOSE.

DR. RONALD GIACHETTI
Dr. Ronald Giachetti is

a Professor of Systems

Engineering at the Naval

Postgraduate School (NPS) in

Monterey, CA. He teaches and

conducts research in model-

based systems engineering,

system architecting, and system

of systems engineering. He

has 30 years of engineering

experience in academia and

industry. He has published

extensively with over 50 technical papers including a

textbook on the design of enterprise systems. He has

lectured internationally in Europe, Latin America, and Asia.

He has held multiple leadership positions including Chair of

the Systems Engineering Department, Dean of the Graduate

School of Engineering at NPS, and Chair of the Corporate

Advisory Board (CAB) for the International Council on

Systems Engineering (INCOSE). He holds engineering

degrees from Rensselaer Polytechnic Institute, New York

University – Polytechnic, and North Carolina State University.

Outside of engineering, he is an avid sailor and races in local

and national regattas.

“All models are wrong, some are useful.”

G.E.P. Box.

CH
AP

TE
R

4
Model-Based Systems

Engineering

David Long, Blue Holon (david.long@incose.net)
Dr. Kaitlin Henderson, Radiance Technologies (kaitlin.henderson@radiancetech.com)

Belinda Misiego, Isdefe (bmisiego@isdefe.es)

Abstract

This chapter presents Model-Based Systems Engineering (MBSE) as an evolution of the discipline that
leverages the power of computer models. It identifies the main elements that MBSE should address to
be successful and demystifies some common misconceptions that lead to weak and/or poor practices
in organizations. After presenting some unprecedented capabilities by adopting MBSE approaches,
the chapter provides some guidance to facilitate the successful adoption of MBSE.

Main topics include the effects of formalizing systems engineering, divergence and convergence of
semantics, and authoring, review, and control of configuration in model-based environments.

Keywords

Model-Based Systems Engineering (MBSE), ontology, metamodel, Systems Modeling Language
(SysML).

78

1. INTRODUCTION
Model-Based Systems Engineering (MBSE), Model-Based
Engineering (MBE), Digital Thread and Digital Twin (DT),
Digital Engineering (DE), and Digital Transformation (yet
another DT). There is an explosion of concepts and the
corresponding acronym soup as the power of digital is
applied to systems engineering and the greater engineering
lifecycle. This chapter will try to clarify the differences
between the various concepts and how they interrelate. It will
move beyond the marketing, myth, and misconception to a
practical understanding of what digital transformation means
for systems engineering, the fundamentals needed to be
known, and the expected value to be achieved.

Before diving into discussions about what MBSE is, let us
look at the environmental context from which it has emerged.
In recent decades, the development and capability of
products have evolved. First, base products built on electro-
mechanical technologies have largely moved to smart
products leveraging electronics and software to bring
new capabilities and an enhanced user experience. Next,
sensors and networks have been introduced to create smart,
connected products with capabilities such as knowing
exactly when the next train will arrive and how many seats
remain available. After, these products needed to be more
and more connected until becoming a product system, with
all the elements coordinated. Today, traditional and intelligent
systems are collaborating as systems of systems (SoS) to
meet the needs of society (e.g., airport operations in which
the flight information system, the transportation system, the
operational safety system, and all the other systems involved
collaborate in a coordinated and connected manner).

In the days of electro-mechanical products, the interactions
between parts, components, and systems were somewhat
limited. Given this low coupling between components
and between the design teams creating them, documents
represented an appropriate solution for capturing architecture
and design data. In a document-based world, data is
dispersed throughout a multitude of documents. However,
as new technologies are introduced and systems become
larger and more complicated, the number and complexity of
interfaces increases dramatically. Data dispersed between
artifacts could generate inconsistencies between them. Plus,
keeping hundreds of documents updated for a complex
system can be an arduous task. Design inconsistencies may
occur due to interpretation discrepancies of the information
from use of approaches, language, or diagrams without
common semantics between stakeholders. Discovering

inconsistencies in the design (and therefore significant
rework) can lead to potential delays and extra costs in
development, and undiscovered inconsistencies can result
in system failure [1].

Looking at the rapidly evolving technological progress in the
world, it is fair to say that the needs from engineering design
processes have exceeded what the capabilities of traditional
systems engineering can provide. In fact, in 2014 INCOSE
published the “System Engineering Vision 2025” [2], with a
statement of where the industry had to move to in order to
solve society needs. The publication highlighted a number of
challenges, including:

	• Mission complexity is growing faster than our ability to
manage it.

	• System design emerges from pieces, rather than from
architecture.

	• Knowledge and investment are lost at project life cycle
phase boundaries.

	• Knowledge and investment are lost between projects.

What worked for electromechanical systems in the 1950s,
1960s, and 1970s is not sufficient to address today’s needs
and technologies. Systems engineers started to make the
leap to model-based approaches to respond with agility and
efficiency to the complex and changing world.

In 2021, INCOSE published the “System Engineering Vision
2035” [3]. One of the headlines of this publication is “The
future of systems engineering is predominantly Model-
Based.” By 2035, it is expected that a family of unified,
integrated MBSE-Systems Modeling and Simulation (SMS)
frameworks will exist.

But what is MBSE? The challenge is the meaning of MBSE
is very muddy, which traces to the breadth and ambiguity of
what constitutes a model. One technical definition of model is
“A physical, mathematical, or otherwise logical representation
of a system, entity, phenomenon, or process” [4]. A broader
definition of model is “a graphical, mathematical (symbolic),
physical, or verbal representation or simplified version of a
concept, phenomenon, relationship, structure, system, or an
aspect of the real world” . A computational fluid dynamics
representation of air flowing over a wing satisfies these
definitions, but so does a drawing of a process flow and a
traditional interface control document. Because of the breadth
of what constitutes a model, different practitioners will have

79

very different interpretations of what MBSE is. Most people
will cite INCOSE’s definition of MBSE, which is “the formalized
application of modeling to support the activities of systems
requirements, design, analysis, verification and validation
starting in the design phase conceptual and continuing in the
development stage and subsequent stages of the life cycle,”
but the ambiguity around “model” and “modeling” remains.

Simply put, MBSE represents a new way of performing
systems engineering; one that uses model-based techniques
to perform systems engineering tasks instead of traditional
document-based ones [5]. It is about moving from capturing
data in natural language documents to richer representations
that reflect and communicate the phenomenology,
architecture, and design of systems, ideally in a machine-
readable form. The central aspect is the system model,
from which all other artifacts are derived. It serves as the
connective tissue that binds together the greater digital
enterprise that enables engineering. If MBSE were to emerge
today, it would have been most likely referred to it as digital
systems engineering.

MBSE should make system descriptive and analytical
models explicit, coherent, consistent, and actionable by
both humans and computers. It should reflect an evolution
from low-fidelity representations in documents to higher-
fidelity, richer representations that machines can read and
interpret. It should improve granularity of knowledge capture
for knowledge management, analysis, and learning. It should
enable one descriptive architectural model connecting
multiple analytical models, which together represent design
with the requisite degree of rigor for the problem and solution
at hand.

MBSE should also leverage models for communication
and analysis, represent “authoritative data” for system
design and specifications, ensure consistent design and
specifications, and provide an explicit system model to
engineering teams. In short, MBSE should be an evolution,
not a revolution, in thinking and approach leveraging modern
technologies and capabilities to better represent data,
information, and knowledge. While evolutionary, this change
offers transformative results. MBSE is expected to improve
system quality, reduce costs, shorten development times,
integrate new technologies and give digital continuity with
manufacturing and operations.

2. NECESSARY (AND IDEAL) ELEMENTS
OF MBSE
There is a fundamental difference between models in systems
engineering and model-based systems engineering. Engineers
have always used models to understand and reason. The output
of engineering has always been some type of model that helps
analyze and advance the understanding of a problem and
solution. MBSE leverages modern techniques to capture and
represent the fundamental information required to engineer a
system. It has traditionally been more on the descriptive and
architectural side, although not inherently limited to them,
extending from a first expression of need through the whole
system life cycle. These models help elicit, capture, and
represent a system so that those computational techniques
(analytical models, modeling & simulation, etc.) traditionally
applied can continue to be used.

In the world of engineering design, architectural models connect
the idea behind a design solution with its implementation as a
real system. They are the way in which the current working team
is aligned, communicate with a higher awareness to minimize
misunderstandings, and capture knowledge over time. These
models attempt to represent the entities of the engineering
problem and their relationship to each other and connect them
to the proposed solution or existing mechanism that addresses
the problem. If one can properly characterize functionally (i.e.,
what the system does) and physically each part of the system
and its interfaces, as well as the interactions and exchanges
between them, then it becomes possible, at the right degree of
fidelity and precision, to pass a detailed component description
down to a subject matter expert to finish out the design in
parallel. The model used in this way is the centerpiece of MBSE.

Four elements are critical to a model [6]:

	• Language: The modeling language enables the clear
expression and representation of the model, so that
understanding and insight can arise. The language must be
clear and unambiguous to depict the model accurately and
understandably.

	• Structure: Structure allows the model to capture system
behavior by clearly describing the relationship between
system’s entities.

	• Argumentation: A model must be capable of making the
critical “argument” that the system fulfills the stakeholder’s
needs. The model must represent the system design in such
a way that the design team can demonstrate that the system
accomplishes the purposes for which it is designed.

80

	• Presentation: A model must include some mechanism
to present the argument in a way that can be seen and
understood by the users, which may include engineers,
customers, and other stakeholders.

These elements can be defined by using metamodels,
semantics, and ontologies. Metamodels, semantics, and
ontologies build the underlying formalities that make so many
of the key benefits of MBSE possible (e.g., collaboration,
modeling sharing, reuse, reduction of ambiguity, etc.). A
metamodel defines the syntax, constraints, and patterns that
make up the modeling language that is used when creating a
model. An ontology can be thought of as a type of metamodel
that defines a common set of terminology, relationships, and
context for a given domain, incorporating precise semantics
to the terms and relationships.

Figure 1 shows an example of part of a metamodel for
systems engineering. It captures (and constrains) the different
concepts that the systems engineer may use to support

their work, aligning the understanding and interpretability
that every member of the team has. For example, an
engineer could not distinguish between a requirement and
a specification, as the metamodel does not offer different
concepts for those two terms. At the same time, the
metamodel does not allow components to directly exchange
inputs and outputs but forces the engineer to think about the
functions that the component performs to think about inputs
and outputs. The impact of this is not only one of fostering
understanding and guaranteeing certain good practices
when reasoning about systems engineering information,
but it also allows to construct machine-readable models to
enable better accessing and processing such information.
In this metamodel example, one could see how an engineer
could query the underlying model to identify all verification
requirements related to a function (through a relational path
through requirements, components, and finally functions),
or enforce rules to guarantee that every component must
execute a function, or every function must have at least one
input and one output to be consistent with systems theory.

Figure 1. Example of a systems engineering metamodel

81

Adding precise semantics to a metamodel enables the use
of axioms, which afford reasoning capabilities. Whereas a
regular metamodel can only guarantee syntactic correctness,
an engineer can leverage the semantics of a model to infer
aspects of the model that stem from the meaning embedded
in the model. For example, whereas a regular metamodel can
only check that every Component executes a Function, an
ontology affords the possibility of checking that a specific
instance of a Function actually represents a function. Imagine
that an engineer defines snake as a Component and fly as a
function, and creates the relationship that the snake performs
the fly function. This is syntactically correct, and a regular
metamodel would consider it valid. However, an ontology
could identify that the model is not sensible because snakes
cannot fly.

There is no unique design for metamodels or ontologies;
different organizations may prefer different ones to better
accommodate their specific context and needs. However,
the metamodel and/or ontology should not be arbitrary.
Concepts, relationships, semantics, and axioms must be
meaningful, internally consistent, and ideally consistent with
systems engineering theory and principles, if one would
want to benefit from its structure and machine-readability (if
implemented as such).

George Box famously said “All models are wrong, but some
are useful. The question is how wrong a model can be and still
be useful.” Whenever engineers deal with models, they must
be deliberate about defining and understanding the purpose
behind that model so that the model is fit for purpose in its
type, scope, and level of fidelity. MBSE can be valid at any
point along the system life cycle, as long as the investment of
effort into the model is aligned with the appropriate purpose.
For example, if the model is being used in the front end of the
lifecycle, then a high-fidelity representation is highly unlikely
to be necessary. In place of precision, it may be better to
seek elicitation: a better understanding and alignment with
the stakeholders to elicit the real needs at the architectural
phase. Whether it is fresh design or reengineering, early life
cycle, or late life cycle, if the purpose is identified and kept
in the forefront, then MBSE can deliver value. If it is not, it is
easy to fall into the trap of modeling for the sake of modeling,
which defeats the purpose of MBSE. The usefulness of a
model is clearly tied to understanding its intended purpose.

The implementation of MBSE requires two pillars in addition
to the modeling language, the tool that enables the creation
and visualization of the models and the method with which
MBSE is implemented [5].

Figure 2. Examples of system models created in different modeling languages

82

The Systems Modeling Language (SysML) is the dominant
language associated with MBSE, but it is important to
note that SysML does not equal MBSE. In fact, SysML is
not the only language, nor is it always the right language.
SysML was developed as a profile of the Unified Modeling
Language (UML) developed by the software engineering
community to help close the communication gap between
system and software engineers during the rise of software-
intensive systems. In this sense, SysML is a general-purpose
graphical language that is intended to model systems, not
necessarily to model all aspects of systems engineering,
despite being abused in this sense by the practicing
community. Other modeling languages include the Lifecycle
Modeling Language (LML), the Object-Process Methodology
(OPM), and various languages tied to specific tools such as
Capella/Arcadia and Vitech Corporation’s Systems Definition
Language (SDL). Some graphical representations are shown
as examples in Figure 2.

Modeling tools are a special class of tools that are designed
and implemented to comply with the rules of one or more
modeling languages and enable users to build well-formed
models in these languages. Good MBSE tools are far more
than diagramming tools. The diagrams are not the model
itself; they are merely views of the underlying model which
contains a set of elements and relationships that are
shown in the diagrams. Much as a computer-aided design
(CAD) tool can present top, front, and side views of the
geometric model of a part, MBSE tools produce a variety
of visualizations of the underlying system model. Some
examples of MBSE tools include Cameo Systems ModelerTM
(Dassault Systemes), CapellaTM (Eclipse open source),
Enterprise ArchitectTM (Sparx Systems), GENESYSTM
(Vitech Corporation), InnoslateTM (SPEC Innovations), and
RhapsodyTM (IBM). Examples of some of their user interfaces
are shown in Figure 3.

Figure 3. Examples of the user interfaces of different MBSE tools

83

Modeling methods and/or methodologies can be seen
as a roadmap with a set of tasks that ensures the
entire team builds the model consistently and works
towards a common purpose. A method helps to define
the scope; how deep and broad the approach should
be towards the model (also based on the opinion of
the development teams and the time available). Some
general methodologies include INCOSE Object-
Oriented Systems Engineering Method (OOSEM),
Systems Modeling Toolbox (SYSMOD), Object-
Process Methodology (OPM), and the Integrated
Systems Engineering and Pipelines of Processes
in Object-Oriented Architectures (ISE&PPOOA). It
should be noted that these methodologies, while
developed with some level of generality in mind,
may not fit the needs of every organization. In fact,
the adoption of a particular MBSE methodology
requires adopting a specific approach to systems
engineering. Therefore, ad-hoc methodologies can
however be implemented by an organization to
better align their implementation of MBSE with their
working processes and specific adoption of systems
engineering practices. Furthermore, because of this
strong connection between MBSE methodologies
and systems engineering practices, consistency with
systems engineering standards may constraint the
implementation of MBSE or vice versa. The adoption of
a specific MBSE methodology may require the change
and/or tailoring of existing standards.

Finally, people are central to implementing MBSE.
When putting together a team to perform MBSE, the
team must collectively exhibit expertise in systems
engineering, the modeling languages of choice, and
the modeling tools of choice, besides any other specific
expertise required to complete the project at hand
(e.g., different analytical methods, application domain,
etc.). Some teams opt to split the expertise between
different team members, while some other teams opt to
guarantee that all team members have expertise in the
three areas. There are advantages and disadvantages
to each approach (e.g., splitting expertise accelerates
the learning curve but is fragile and less scalable), but
explaining them is outside of the scope of this chapter.
It is not known where practitioners and professionals
will be 15 years from now, but the state of practice
and the evolution of MBSE is very fluid and volatile at
the moment. Therefore, it seems fair to suggest right
now looking for a team that has the characteristics fit
for purpose given the business need and context of
application.

3. MODELS ARE MORE THAN JUST
DRAWINGS
When someone unfamiliar with MBSE looks at an MBSE tool, they
will see a collection of drawings and wonder how this is different
from using something like Microsoft PowerPoint or Microsoft
Visio. The power behind MBSE comes from the underlying data
structures, syntax, languages, etc. that make up the actual
model (ref. Figure 4). What a diagram shows is considered a
representation or view of the system model, as explained earlier.
The diagraming capability of MBSE is a great tool to communicate
with different stakeholders, but what makes it actually model-
based is the connectivity between different components that
are unambiguously represented due to the defined syntax and
semantics of the modeling language.

Figure 4. Iceberg model of what a user sees in a diagram
versus the information contained in the model

84

A classic systems engineer will often state that a whiteboard
is one of their greatest tools. They can go to the whiteboard,
begin a sketch, draw bubbles and clouds and arrows, and
label the components. This is useful at a high level and is
very good for human-to-human alignment. But then, as the
development progresses towards a more detailed design,
that flexibility in language and symbology becomes a
hindrance because greater precision is needed. An agreed
upon meaning of symbols and terminology is necessary to
avoid miscommunications and misalignments. There needs
to be rigor in the language to ensure effective communication
and reasoning by both humans and computers. Flexibility
may be useful to understand concepts in the problem space,
but if reusing components is desired, and eventually get
to connecting models with other tools, there needs to be
precision and rigor.

Discussing the precision and consistency of defined
terminologies requires coming back to ontologies.
Establishing an ontology is fundamentally saying that words,
the interrelationships between the words, the concepts that
they embody, and the context within which they are valid
are defined. The ontology is the underlying knowledge
architecture that enables capturing individual pieces of data
unambiguously and reflect the interrelationships to represent
information and knowledge. However, not all language

models are built upon ontologies and/or the modeling
language may hide meaning in its constructs that is unknown
to the team members. An example from a research study
that explored this differentiation between drawing and model
follows.

A number of SysML experts were asked to evaluate the
behavior of a system (specifically a car) given a system
model and a starting condition [7]. The behavioral model
was represented as a SysML state machine diagram, which
is shown in Figure 4. Participants were asked to describe
the behavior of the car when it was in the Braking state
and the conditions releaseBrake and speed = 0 occurred
simultaneously. They were offered multiple choices to
answer: the car will not experience those two conditions
simultaneously when in that state, the situation is outside of
the scope of the model, the system automatically defaults to
one of the transitions, or this is a non-nominal situation that
is not captured by the model. The responses were uniformly
distributed; in other words, there was no agreement between
the experts. The study showed that, while the experts could
read the same diagram, their understanding of what the
model conveyed was different, and this was due to a lack of
understanding of what the modeling constructs embedded
in the model beyond the graphical representation of some of
its aspects.

Figure 5. Behavioral model of the car system using a SysML
state machine diagram [reproduced from [7]]

85

One of the challenges of ontologies is that there are
multiple ontologies in play at the highest level of the system
encapsulation. When the focus is on how systems engineering
is performed and characterizing the resulting system of
interest, there is a rather small core ontology (a general
systems ontology) that enables to capture, communicate,
and reason about concepts such as requirements, functions,
exchanges, components, interfaces, and interrelationships
between those concepts (e.g., satisfying a requirement with
a function or allocating a function to a component). As the
analytical and the phenomenology necessary to develop the
system of interest are brought in, the scope of the required
ontology explodes. The phenomenology for an aircraft,
for an insulin pump, or for an IT system are very different,
therefore, the language around them (the domain specific
ontology) is different. The path to success in MBSE may lie in
picking a base systems ontology that addresses the scope
and language of the team, then specializing it to include
key engineering concepts and concepts that align with the
organization’s methods.

A basic understanding of ontologies better justifies why
models are more than just drawings. Returning to the analogy
of CAD, the underlying ontology of geometry is points and
vectors. If the canopy of a plane is shifted back by 50
centimeters, this implies that the underlying points and vectors
in the data model are also being changed. The top and front
views presented by CAD would then adjust to show the new
position of the canopy. Similarly, in MBSE, if a component is
added to the compositional diagram of a system, this is more
than adding a box on a drawing. It is being specified that
that system has a new subcomponent. Any representation of
the system’s physical architecture would then reflect this new
subcomponent.

4. MBSE IS NOT A SILVER BULLET;
GOOD SYSTEMS ENGINEERING IS A
PRE-REQUISITE FOR GOOD MBSE
Despite its inclusion in the name, MBSE should not be about
modeling. MBSE should be about doing systems engineering
while properly leveraging models and a model-based
approach. Without a proper understanding of the fundamental
principles, processes, and methods for systems engineering,
it is possible to spend a great amount of time and money
modeling, but it will not be value added. Unfortunately, this is
a common mistake that organizations make when adopting
MBSE: purchasing several tool licenses and offering their

engineers short training courses on the tool and/or modeling
language, without guaranteeing a strong underlying expertise
in systems engineering. This is exacerbated by a growth in
professional modelers (expertise in modeling is relatively
easy to build) at the expense of poor systems engineering
practices (gaining expertise in systems engineering is hard).

The key to embracing MBSE is to focus on systems
engineering and recognize that “model-based” is largely
using computer-aided techniques to better execute what was
previously done in a document-based environment. MBSE is
not a point of departure for systems engineering, but rather
an evolution to keep pace with and leverage the rapidly
changing technological landscape. In fact, technology will
continue to evolve, enabling engineers to better represent,
communicate, and analyze data tomorrow than they can
today. What is being today called MBSE is the beginning of a
continuing evolutionary journey for systems engineering.

It is also important to recognize that technology is not always
a blessing. A common trap of MBSE is that it may entice
an engineer to be prematurely precise, particularly when
heavily relying on professional modelers with little systems
engineering expertise, which comes in at the cost of too
much effort and over constraining the design envelope early
in the design journey. Good SE practices and engineering
judgement must be front of mind when progressing through
the system lifecycle moving from higher levels of abstraction
to more detailed understanding. The level of accuracy to be
achieved should be driven by the purpose of the modeling
effort. The same applies to precision. Determining the level
of accuracy and precision that is necessary comes back to
sound SE principles, engineering judgement, and knowing
the purpose behind the modeling effort.

5. NOVEL CAPABILITIES ENABLED BY
MBSE
There are numerous claims of benefits MBSE provides across
literature sources and from observations made by practitioners.
Some of these benefits include better communication,
improved consistency, reduced cost, reduced time, reduced
errors, and improved system understanding [8]. A key
strength of MBSE lies in the ability to clarify communication
and shared understanding across the team. It is the ability to
better capture information over time and free it from so called
drift. Recollections and understanding change, so formally
capturing the system provides a more accurate, more precise
representation over time. A clarified representation highlights

86

where there are gaps in thinking or inconsistent understanding
across the team. A higher fidelity descriptive architectural
representation helps align the team – clarifying understanding,
exposing assumptions, and reflecting the design journey
behind the current solution. At some point in implementation
there will be a question about a design decision, or a new
technology, or a requirements change, so capturing the design
journey is as critical as the resulting design.

Many of the benefits cited above stem from MBSE establishing
an Authoritative Source of Truth (ASOT) for systems [9].
Essentially, this is formalizing that “connective tissue”
discussed earlier. In the early days of MBSE, there was a vision
of MBSE being established as the single source of truth; a
central element that guaranteed all data used in a project were
consistent. In essence, data lived in one location and other
models would point to that location. In this sense, MBSE helped
propagate data changes throughout all models that relied on
such data. However, a single source of truth is just one solution
to the consistency and relevance issue, and comes with some
drawbacks, particularly in terms of vulnerability and efficiency.
Lately, the concept has morphed into the more general ASOT
and authoritative data, where the key is not on the uniqueness
of the location but on the certification of the data being used
and/or sourced. MBSE in this sense enables the identification
and tagging of data used across the modeling environment.

This idea of an ASOT is the enabler for Digital Engineering,
Digital Thread, Digital Twin, and all related digital transformation

artifacts. If the systems engineering team is the technical
connective tissue that binds together the project team, MBSE
is the digital connective tissue that enables Digital Engineering,
which enables creating a Digital Thread, which allows for
development of a Digital Twin. Particularly, one could conceive
MBSE as the subset of DE that allows all the disparate domains
involved in the engineering process to work collectively with
that authoritative source of data [8].

Beyond these benefits, MBSE done well enables novel
capabilities that accelerate and advance the greater systems
lifecycle. At the heart of each of these is representing data
and knowledge in a structure and manner that is computable
by both human and machine. Freeing knowledge from
documents and artifacts, MBSE enables better alignment
across the enterprise providing the right data to the right place
at the right time at the right level of abstraction in full context
presented properly for the consumer to better understand,
analyze, and decide. Contrast this with traditional methods that
represent one set of data (likely both missing information and
including superfluous data for the decision at hand) in a single
presentation and lacking context. This dynamic query and
presentation of information on demand ensures consistency
with the underlying model [10-12]. Properly coupled with
strong visualizations including documents, diagrams, tables,
and modern options such as dynamic animations and
Unreal gaming engines, MBSE unlocks the power of multiple
perspectives from engineer to operator to subject matter
expert throughout the lifecycle (ref. Figure 6).

Figure 6. Example of querying a model

87

Done well, MBSE reflects not only the individual bits of data
but also the relationships and dependencies between them
helping to move from data to information to knowledge
representation. This knowledge map enables classic
traceability analysis, such as checking that all requirements
are satisfied in the solution and that all functions are allocated
to the physical architecture (ref. Figure 7). Moreover, it
supports the rapid evaluation of change enabling the

engineering team to trace the impact of a proposed
change (be that a new requirement or a new component),
identify the affected aspects of the solution architecture,
and evaluate the change in the context of previous design
decisions (ref. Figure 8). While humans are still responsible
for the engineering and analysis, the scoping and context
provided by the knowledge map improves the quality and
accelerates the analysis.

Figure 7. Examples of traceability analysis visualization

Figure 8. Example of a change propagation analysis visualization.
(The diagram is automatically generated when requirement

R1 is flagged because of change. It identifies all elements in
the model that are associated with such a requirement.)

Figure 9. Example of completeness metrics visualization

88

This knowledge map generated through MBSE can
be analyzed through computing techniques to identify
completeness and design integrity issues. For example,
traditional completeness checks such as ensuring
requirements trace to solution elements, requirements are
verified, and functions are allocated can be performed
consistently and rapidly generating metrics to reflect the
maturity of the design (ref. Figure 9). More sophisticated
checks can identify design integrity issues such as
accounting for all inputs, outputs, and interfaces during
decomposition or ensuring interfaces of the right type
transfer exchanges between components (ref. Figure 10).
Moving beyond traditional computing techniques, machine
learning algorithms could be applied to identify patterns
and suggest design alternatives.

Best of all, the system model represents a virtual system
prototype from day one, albeit at a high level of abstraction
early in the project. The model can be dynamically simulated
to identify issues and confirm system performance. As the
system model is refined and analytic models are coupled
with the descriptive architectural model, the level of detail
and precision increases. This enables continuous evaluation
and verification of the design, accelerating defect detection
and enabling the engineering team to rapidly conduct trade
studies.

These examples are not exhaustive, but they should give a
glimpse of the state of the possible when systems engineering
is moved into a modeling environment.

Figure 10. Example of automated design integrity check visualization (Note: Parentheses next to a signal on the sides of the diagram mean that such a signal is
missing at the higher level of encapsulation; Parentheses on a signal next to a box indicate that such a signal is not allocated on the lower level of encapsulation.)

Digital Engineering: an integrated digital approach that uses authoritative sources of systems’
data and models as a continuum across disciplines to support lifecycle activities from concept
to disposal.

Digital Thread: the communication framework that allows connected data flow and integrated
view of an asset’s data throughout its life cycle across traditionally siloed functional perspective.

Digital Twin: a computational model of a particular physical system with bidirectional
communication with its physical counterpart. A digital twin coevolves with the physical system
and reflects the state, status, and history of the system.

89

6. ADOPTING MBSE
At the time of writing this chapter, there is a growing number
of organizations adopting and implementing MBSE around
the world. However, organizations hold differing views of
what MBSE is [13]. In some organizations, MBSE is defined
in terms of the tools. Others define MBSE in terms of the
models, model artifacts, methods, or processes they use.
Some organizations even gloss over the ‘SE’ part of MBSE.
Having the correct expectation of what MBSE is and what
it can provide for an organization is critical for setting up an
adoption effort to be successful in an organization [14].

As has been discussed throughout this chapter, it is critical to
know that MBSE is just a different way of performing systems
engineering. Therefore, when adopting MBSE, it is important
to start from processes and practices and not from the tool to
be used. The organization must focus on selecting where in
their organization MBSE would be the most beneficial with the
identification of business value, not simply technical benefit.

Figure 11. MBSE adoption causal model [from [15]]

Lessons learned indicate that it is easier to adopt MBSE if the
scope is limited at the beginning, as an early demonstration
of benefits can be shown. In fact, improved organizational
outcomes is central to adoption (ref. Figure 11). This comes
down to a common element of change management: people
want to know that something is going to help them before
they commit to learning, applying, and supporting it.

Managers often sidestep this issue when adopting
MBSE because it is difficult to show quantitative benefits
[8]. However, it is still possible to rely on the anecdotal
observations of others that have attempted to implement
MBSE and learn from their shared experiences. Successful
implementation and adoption seems to require a holistic
approach, intentionally targeting the different aspects listed in
Table 1 [13]. For example, organizational units that exhibited
higher degrees of interconnectedness, standardization, and
flexibility reported improved outcomes for MBSE adoption
and implementation with respect to exhibited lesser degrees
[16].

90

While this type of research on MBSE adoption
is helpful, it is important to know that there is
no “one size fits all” approach to successfully
adopt MBSE. As discussed with standards
and methodologies, an organization’s purpose
behind using MBSE can vary widely. An
adoption strategy needs to be in-line with that
purpose, along with several other organizational
factors (e.g. leadership buy-in, financial support,
subject matter expertise of employees, etc.).

There are three main groups within an
organization to consider when defining an
adoption strategy [17]:

1.	 The initiators and drivers of MBSE. It is
necessary to have some level of knowledge
and expertise in the workforce to really drive
the effective use of MBSE in projects. There
are many modeling pitfalls that are easy to
fall into, which could result in the creation of
models that do not actually add value to the
organization. This is a surefire way to make
adoption of MBSE even more difficult. It is
important (especially early on) to show the
benefits of modelling, so it is key to have
the right people on the team supporting the
effort.

2.	 The organizational units that should work
model-based. Building models is great,
but if the models are not being used for
anything then what is the point? For MBSE
to fulfill its intended purpose, it needs to
fit in an organization’s process. In some
cases, this could take adjusting workflows,
job descriptions/responsibilities, or even
the structure of the organization. It is more
than simply translating document-centric
approaches into a model-based world; it is a
digital transformation. An organizational unit
adopting MBSE needs to conscientiously
plan out where in its process it makes sense
to use MBSE to create the most value.

3.	 The organization units responsible for the
time and budget of the engineering projects.
MBSE represents a significant investment in
money and time for an organization. This fact
needs to be considered and used to manage
expectations for leadership and others. The
organizational unit that is adopting MBSE
needs to be given the space and resources
to do it successfully.

Organizational
design

Organizational
enablers/barriers

Organizational
change

management

Workforce
knowledge/ skills

Leadership/
management

support/
commitment

Application of
MBSE methods/
processes and

modeling practices

Integration Training
Adoption/

implementation
strategy and design

Demonstrated
benefits/ results

Resources for
implementation

Culture change
management

Organizational
structure

Tool infrastructure
Willingness to use

tools (employee and
stakeholder buy-in)

Table 1. Aspects necessary for successful MBSE
implementation and adoption [adapted from [13]]

Interconnectedness: people within the organization interact often and
are willing to assist others with problems.

Standardization: the use of MBSE tools and methods are standardized
across the organizational unit.

Flexibility: organizations can adapt easily to change, new technologies,
and processes.

These factors describe some ways an organization can set itself up
for success when adopting MBSE. It is important to have some type of
network established for people who are learning MBSE. This can take
many forms: mentors, coaches, defined experts someone can turn to, or
a network of experienced peers. It is also beneficial to have what tools
and methods are used standardized across the organizational unit. This
can make it easier for informal/formal networks of people to help everyone
else who is learning. For example, if the same tool is used across the
team, it is more likely that people will be able to help if a problem related
to the tool arises. The connection with flexibility highlights the importance
of change management. While this factor is more challenging to enact
in a short period, there are steps can be taken to make sure people in
the organization are prepared to adopt MBSE. Making sure the purpose
of MBSE is clear and explaining how it can be beneficial to someone’s
daily work goes a long way towards having a workforce ready to accept
MBSE.

91

Preparing the workforce, setting up the infrastructure for
adoption, and defining an adoption strategy are critical
enablers for MBSE adoption. But once an organization gets
to that point, they need to do the actual adopting. A key
factor here is training. Many people find MBSE challenging
to learn. This could be because they are actually learning
multiple things at once: a tool, a modeling language, a
method, and system engineering. According to practitioners,
all stakeholders need some level of training, but the amount
and what they need to learn varies [13].

Table 2 shows four categories of roles and their common
MBSE training needs. Different roles may require only a
subset of the components of MBSE (i.e., tool, language,
method, SE concepts) that they need to be familiar with.
For example, someone serving as a ‘model reviewer’ likely
does not need training related to the specific tool or method.
But they do need to be able to understand and interpret
MBSE artifacts. In this case, some training in the modeling
language may be all that is required. Two aspects are
worth noting. First, the roles are not necessarily mutually
exclusive, but a given individual may fulfill more than one
role in different capacities at once. Second, whereas some
teams may decide to split the role of a modeler and a regular
systems engineer, some other teams may assign each
systems engineer (or engineer in general) modeling tasks
without depending on a dedicated team for modeling tasks.

Integration of work is another critical factor to the successful
adoption of MBSE enterprise-wide [15]. Systems engineering in
general involves different functional teams/disciplines to come
together, and this is still the case with MBSE. Coordination
between these two groups is key. A team can create a great
model, but if it does not accurately represent the system then
it is of little use. Additionally, system models are often broken
up into a collection of smaller system models. In other words,
multiple teams are responsible for modeling a component of
the system that is ultimately integrated together. In these cases,
having some level of standardization/consistency across those
groups is critical since those disparate models will need to
ultimately integrate. There are many different ways to correctly
model the same thing, so having some guidelines for groups
to follow relative to some of those decisions will help the final
product be more cohesive and reduce integration effort.

Adoption of MBSE is difficult because there are many moving
parts. But ultimately, there are many ways in which MBSE can
provide value to the team. An organization just needs to find
what that is and use that purpose to navigate through all the
different decisions and components that need to be made.

Categories of roles who need training

Model reviewers

Leaders, stakeholders, or
customers who need to

know how to use the models
to make decisions

Developers
(Modelers)

People who are building and
maintaining the models in the

tools, so they will need detailed
knowledge of how the tool works

Other engineers

People who will be working in
the model to some capacity.

These people are often senior
engineers or people from other

disciplines who are helping
with the content of the model

Administrators
People who work in IT or software
who will be managing the relevant

accounts, licenses, tools, etc.

Table 2. Categories of roles requiring MBSE training

92

7. CONCLUSIONS
Given the speed at which the world keeps accelerating,
transitioning to model-based/digital approaches to engineering
is inevitable. Traditional practices simply cannot keep up with
the demand for rapid development and production of ideas
into reality. Systems engineering itself is not changing; just the
way it is done is. The key to embracing MBSE is to focus on
good systems engineering and recognize that model-based
is largely using computer-aided techniques to better execute
what systems engineers have always done.

MBSE is gaining a foothold in industry and government as
more and more people are starting to see the benefits of
using it. At its core, MBSE is about capturing data in a better
way using modern techniques enabling teams to better
understand, communicate, reason, and retain knowledge. The
cost of adoption in terms of time and money is high, but it is
argued that the cost of not adopting it will be even higher in
the long run.

93

1.	 Blanchard, B.S. and J.E. Blyler, Systems Engineering Management. 5th ed.
2016, Hoboken, NJ, USA: John Wiley & Sons, Inc.

2.	 INCOSE, Systems Engineering Vision 2025. 2014.

3.	 INCOSE, Systems Engineering Vision 2035. 2023.

4.	 Defense, D.o., DoD Modeling and Simulation (M&S) Glossary. 1998.

5.	 Henderson, K. and A. Salado, Is CAD A Good Paradigm for MBSE? INCOSE
International Symposium, 2021. 31(1): p. 144-157.

6.	 Long, D. and Z. Scott, A Primer For Model-Based Systems Engineering.
2nd ed. 2011, USA: Vitech Corporation.

7.	 Cratsley, B., et al., Interpretation Dscrepancies of SysML State Machine:
An Initial Investigation, in Conference on Systems Engineering Research.
2020: Virtual.

8.	 Henderson, K. and A. Salado, Value and benefits of model-based systems
engineering (MBSE): Evidence from the literature. Systems Engineering,
2021. 24(1): p. 51-66.

9.	 Blackburn, M. and T. West, Fundamentals of Digital Engineering, in Systems
Engineering for the Digital Age. Practitioner Perspectives, D. Verma, Editor.
2023, John Wiley and Sons, Inc.: Hoboken, NJ, USA. p. 3-24.

10.	 Salado, A., 5.5.2 Efficient and Effective Systems Integration and Verification
Planning Using a Model-Centric Environment. INCOSE International
Symposium, 2013. 23(1): p. 1159-1173.

11.	 Dunbar, D., et al., Transforming Systems Engineering Through Integrating
Modeling and Simulation and the Digital Thread, in Systems Engineering
for the Digital Age. Practitioner Perspectives, D. Verma, Editor. 2023, John
Wiley and Sons, Inc.: Hoboken, NJ, USA. p. 47-68.

12.	 Dunbar, D., et al., Driving digital engineering integration and interoperability
through semantic integration of models with ontologies. Systems
Engineering, 2023. 26(4): p. 365-378.

13.	 Henderson, K., T. McDermott, and A. Salado, MBSE adoption experiences
in organizations: Lessons learned. Systems Engineering, 2024. 27(1): p.
214-239.

14.	 Henderson, K., et al., Towards Developing Metrics to Evaluate Digital
Engineering. Systems Engineering, 2023. 26: p. 3-31.

15.	 Henderson, K., Exploring the Adoption Process of MBSE: A Closer Look
at Contributing Organizational Structure Factors, in Grado Department of
Industrial and Systems Engineering. 2022, Virginia Tech: Blacksburg, VA,
USA.

16.	 Henderson, K. and A. Salado, The Effects of Organizational Structure
on MBSE Adoption in Industry: Insights from Practitioners. Engineering
Management Journal, 2024. 36(1): p. 117-143.

17.	 Weilkiens, T., Adoption of MBSE in an Organization, in Handbook of Model-
Based Systems Engineering, A.M. Madni, N. Augustine, and M. Sievers,
Editors. 2020, Springer International Publishing: Cham. p. 1-19.BI

BL
IO

GR
AP

HY

94

BIOGRAPHIES

DAVID LONG
David Long is the President

of Blue Holon and a Research

Scientist with the Systems

Engineering Research Center

(SERC). For over 30 years,

he has helped organizations

around the world increase

their systems engineering

proficiency while simultaneously

working to advance the state

of the art. He works with

government and commercial

organizations as they assess, adopt, and deploy new

methods and tools to enhance their engineering enterprise.

Throughout his career, David has played a key technical and

leadership role in advancing and expanding the practice of

systems engineering. David founded and led Vitech where he

developed innovative, industry-leading methods and software

(CORE™ and GENESYS™) to engineer next-generation

systems. David is a frequent presenter at industry events

worldwide delivering keynotes and workshops spanning the

foundations of systems engineering, practical model-based

systems engineering, digital engineering, and the future of

engineering systems. His experiences and efforts led him

to co-author the book A Primer for Model-Based Systems
Engineering to spread the fundamental concepts of this key

approach to modern challenges. An INCOSE Fellow and

Expert Systems Engineering Professional (ESEP), David was

the 2014/2015 President of INCOSE. David currently serves

as INCOSE’s Director for Strategic Integration and as a coach

in INCOSE’s Technical Leadership Institute. David holds a

BS in Engineering Science and Mechanics and an MS in

Systems Engineering from Virginia Tech.

95

BELINDA MISIEGO TEJEDA
Belinda Misiego Tejeda is the

chief of innovation at Isdefe

and coordinates Systems

Engineering Campus in

the company. Through this

Campus, internal training

courses are carried out with its

own personnel in the different

areas of this discipline:

systems engineering initiation,

fundamentals of systems

engineering and various

specific courses. She has more than 20 years of professional

experience in the security and defense sectors, where she

has developed and managed different systems engineering

projects, mainly in the field of sensors and electronic warfare.

Belinda, member of INCOSE and systems engineering

professional (CSEP), was part of the board of the Spanish

Association in Systems Engineering (AEIS), the Spanish

chapter of INCOSE between 2017 and 2022. In addition,

she served as Secretary of the EMEA Director of INCOSE in

2019-2022. Belinda has a BS/MS in Electrical and Computer

Engineering and a graduate certificate in Research and

Market Techniques from the University of Valladolid and a MA

in Contract and Program Management in the Public Sector

from the Spanish University of Distance Education (UNED).

DR. KAITLIN HENDERSON
Dr. Kaitlin Henderson is a

Systems Architect at Radiance

Technologies, where she

supports various SysML

modeling efforts. She has

a PhD in Industrial and

Systems Engineering with a

concentration in Management

Systems from Virginia Tech

in Blacksburg, Virginia. She

also earned her Bachelor’s

and Master’s degrees in

Industrial and Systems Engineering at Virginia Tech. Kaitlin

has contributed to the fields of Model-Based Systems

Engineering (MBSE) and Digital Engineering (DE) with her

works on MBSE adoption, MBSE domain maturity, and

MBSE/DE performance measurement. Kaitlin won the Best

Presentation Award at the SERC Doctoral Student Forum

in 2020 and has been recognized for her 2021 and 2022

publications in Systems Engineering.

“Is the universe really so loosely coupled? Or is this small dimensionality due to the
fact that the humans who developed the equations controlled their experiments in

accordance with their cognitive limitations?”

G. Friedman

CH
AP

TE
R

5
Digital Transformation in

System Development

Christopher L. Delp, Jet Propulsion Laboratory, California Institute
of Technology (christopher.l.delp@jpl.nasa.gov)

Dr. Joe Gregory, The University of Arizona (joegregory@arizona.edu)
Luis Miguel Aparicio Ortega, Isdefe (laparicio@isdefe.es)

Abstract

This chapter presents the novel capabilities enabled by digital models and high computational power
of current workstations, cloud, and grid computing to support systems development, integration,
and qualification. It introduces the concept of digital transformation and explains how it builds on the
processes of digitization and digitalization. The key technologies that enable digital transformation
are presented and discussed. These include formal languages and semantic web technologies. The
chapter then looks at some examples of how digital transformation can lead to improved outcomes
with regards to systems engineering practice. Examples include enhanced traceability, the automated
generation and evaluation of architectures, set-based design, and the integration of physics-based
models into systems engineering models.

Keywords:

Digital engineering, digital thread, tradespace exploration, set-based design, Multidisciplinary Design
Optimization (MDO), semantic web technologies, ontologies, systems model.

98

1. INTRODUCTION
Interest in digital transformation has seen rapid growth in the
last decade. In this chapter, we present an overview of this
rapidly evolving field and discuss some of those relevant,
emerging technologies that digital transformation aims to
leverage and provide examples of how they are being applied
to Systems Engineering (SE). First, to understand what we
mean by Digital Transformation, there is a crucial distinction
that needs to be made between two commonly used terms:
digitization and digitalization.

Digitization refers simply to the change that occurs when an
analog artifact, whatever it may be, is transformed into a digital
artifact. If we take a physical document, such as a report or
a photograph, and convert it into a digital format through
scanning or simply by typing text in a word processor, we have
performed digitization. This kind of process has been taking
place for decades, and probably everyone understands the
benefits of working with digital artifacts instead of with tons of
paper. For example, digitization of information enabled vast
quantities of information to be transmitted digitally and without
loss. This process of digitization was enabled by advances
in computer miniaturization and networking infrastructure,
and it revolutionized the ways in which information can be
managed and communicated, known as the Information Age
or the Third Industrial Revolution.

Digital transformation, however, goes beyond digitization.
In digitalization, engineers work with models and data that
are digitally linked. Any information consumption is just a
visualization of the underlying models and data. In other
words, the information and its visualization are decoupled.

Because of this, digitalization often involves rethinking
traditional processes to take full advantage of the capabilities
that have been made possible by connecting data and
models in a machine-readable manner. Clearly, digitalization
involves some deep thinking about how modern technologies
can be effectively leveraged, particularly when applied
within a business context. When it is to be applied within the
boundary of an organization, digitalization requires careful
consideration of the necessary cultural and organizational
changes, relevant talent acquisition and development, data
governance and security within and across organizational
boundaries, as well as multiple other aspects. Together,
this process of digitization and digitalization to improve
processes within a business context is known as the Digital
Transformation [1].

Before we look at some of the technologies that enable digital
transformation, let us consider what an ideal ‘digitalized’ SE
process might look like. In other words, to understand what is
required to support our digital transformation, we must have
a vision of what our digitally transformed enterprise should
be capable of. In a nutshell, the information generated from
all stages of the system lifecycle is in digital form, is linked
through a data-driven architecture of shared resources, feeds
descriptive and quantitative models, and can be used for
real-time and long-term decision-making” [2] (ref. Figure 1).
Practically speaking, this means that data can be seamlessly
exchanged between the different tools that support modeling
in each of system lifecycle phases. Not only does this provide
the necessary traceability between design decisions, tests,
requirements, and so on; it enables decision support analyses
that were previously infeasible.

Figure 1. The Digital Thread related to Systems Engineering [adapted from [2]]

99

Furthermore, this capability extends beyond the processes
of any single organization – an ideal digital thread enables
collaboration and seamless data exchange across
organizational boundaries to support critical aspects such as
supply chain integration. Within the confines of appropriate
security and privacy protocols, data may be rapidly accessible
across the digital thread to support decision-making at the
enterprise level. Appropriate change propagation pipelines
ensure that downstream effects of a change to the data are
identified and acknowledged.

2. ENABLERS OF DIGITAL TRANSFORMATION

2.1. Computer languages unleash the power of
applied mathematics

It is the thrust of increasingly sophisticated systems coupled
with the critical impacts of quality and cost that drive the
need for systems engineering practices that are quantifiable
and analyzable. Achieving this need often requires the
development of an executable representation of the system.
This intersection of need and the availability of a particular
kind of system – the modern computational environment –
is a rather poetic result: it is now possible to use a human-
developed system to enter a recursive development cycle

whereby improvements in the discipline of SE can deliver
improvements in how we practice the discipline.

The core of this concept is rooted in the ability to mathematically
model the world around us. In Computer Science, the essence
of this innovation is the weaving together of computational
instruction with what is arguably the most significant invention
in human history – language.

Since its inception, systems engineering has focused on the
specification of the systematic behavior of an element known
as a ‘System’. This element can take many forms as long
as the central concept defining its existence is systematic
behavior. Traditional SE focused on informal descriptions,
human thought experiments, and heuristics to tackle the
increasingly complex problems that SE was expected to deal
with [3]. This approach often relied on expensive testing on
real-world builds and rigid inflexible constraints on changes
to meet unforeseen challenges.

The widespread development, deployment, and adoption
of suitable modeling languages to support SE has been
described as ‘The Systems Engineering Challenge’ [3].
In recent decades, increased computational power and
the development of a multitude of declarative modeling
languages have contributed to the advancement of SE. Some
of these are displayed in Figure 2.

Figure 2. Examples of declarative modeling languages to support systems engineering and
some of the standards bodies and open source software foundations that sustain them

100

Graphical languages such as SysML version 1 and CSDL
provide the capability to visually model specifications of
concepts and relationships. Text/code-based languages
such as Julia and Robot expand the power across the lifecycle
to capture detailed execution, analysis, and systems testing
capability. The new generation of hybrid languages such
as AADL, SysML version 2, or Modelica point to a powerful
capability to specify, visualize, code, and analyze systems
across the lifecycle. Information modeling languages such
as OWL/SparQL and OpenAPI/Swagger also play a crucial
role in modern systems modeling and Digital Engineering
(DE). They provide a foundation for supporting the web-
based interoperability required for model integration and
interchange.

The languages presented in Figure 2 can all be considered
‘Declarative Languages’. Declarative languages focus on
semantics capable of being solved in a variety of ways besides
traditional execution. Often, they can be solved using analytic
techniques as opposed to procedural semantics which
execute statements in the order they are read. Declarative
models tend to have mathematical statements that can be
solved in more than one way. It is worth noting as well that while
languages such as MATLAB, Python, or Julia are not strictly
declarative, they build libraries and capabilities used heavily
in engineering that perform analysis on declarative models
such as algebra solvers and other equation-based analysis.
Examples include First-Order Logic (FOL) and Finite State
Machine (FSM). FOL in particular has received significant
attention, and not just in engineering, due to its ability to
precisely capture knowledge and infer new knowledge based
on a set of rules [5]. FSMs are a good example of this type
of language. They declare states, behavior, and events. The
a-causal nature of an FSM can be interpreted differently while
still retaining the mathematical formality of the FSM. The most
direct way to solve an FSM is to define a trajectory of events
and test the FSM to see the output. A less obvious example
would be to use a solver to analyze the entire FSM to find out
if the event trajectory is valid. A third example would be to
analyze the FSM to determine if there are any states defined
such that they can never be reached.

While declarative languages tend to enable formal methods
in DE, there is still value in informal descriptive and
qualitative representations such as narrative text, graphics,
diagrams, and pseudo code. They are an important part of
the development cycle. As models are developed against
informal material they undergo a process called the Model-
Hardening Process. This process captures the relationships
between the qualitative representations and the quantitative
representations as the design matures.

With all the right ingredients, SE can produce precise,
accurate, and complete digital representations of systems
and the processes that will realize them. The ‘right ingredients’
are those that leverage the power of computation and the
precision of formal languages to manage the huge amount
of data that is associated with an SE project, automate SE
processes through inference and reasoning, and preserve
rigor within the system lifecycle. One area we can look to
for inspiration in this regard is an area that has witnessed
huge progress in the last 30 years in terms of information
management and retrieval: the evolution of the World Wide
Web.

2.2. Semantic web technologies

The Semantic Web is an extension of the World Wide Web
that intends to make data machine-readable and provide a
standard structure for data representation and reasoning [6].
At the core of this evolution is the transition from a web that
“consists largely of documents for humans to read to one that
includes data and information for computers to manipulate”
[7]. An obvious first example might be the evolution of the
search engine. Far from being a simple keyword-match
web-crawler algorithm, modern search engines exploit this
hyper-connectivity between data to understand the meaning
behind your search query, employ complex algorithms
utilizing machine-learning to understand user intent, and
often generate a natural-language personalized response.

Semantic web technologies are the technologies that enable
these capabilities. They provide standardized ways to represent
data in triples of subject-predicate-object format that allows
to describe knowledge such as ‘Curiosity is a Mars Rover’
or ‘Curiosity executes Analyze Soil’. In this way, it is possible
to build up complex networks of interconnected data that are
entirely built on this simple triple pattern. By using an ontology,
these networks can be leveraged to check data validity, as well
as to infer new information that we have not explicitly declared.
For example, consider the ontology in Figure 2. In this ontology,
three classes are defined: System, Function, and Mars Rover. It
has also been stated that Mars Rover is a subclass of System.
An object property (a relation between two classes) called
‘executes’ specifies that the domain can only be a System,
and the range can only be a Function. This ontology can be
used to validate the dataset presented earlier (i.e., ‘Curiosity is
a Mars Rover’ and ‘Curiosity executes function “Analyze Soil’’’),
and to infer new information that that was not previously stated.
Because Curiosity is a Mars Rover, and the ontology specifies
that Mars Rover is a subclass of System, it is possible to infer that

101

Curiosity is also a System. Also, because Curiosity (a System)
executes ‘Analyze Soil’, it can be inferred that ‘Analyze Soil’ is
a Function. The validity of the dataset is confirmed because no
rules in the ontology have been broken. If we had stated that
‘Analyze Soil’ executed ‘Curiosity’, our dataset would have been
declared inconsistent, as the range of the relation ‘executes’ can
only ever be a Function.

3.1. Traceability of system design artifacts

Traceability refers to the ability to establish explicit
relationships between elements of the system design (e.g.,
a quantity value, a design decision) across the system
lifecycle. In systems engineering, design traceability is a
common example, whereby all system elements, design
decisions, and test cases can be traced back to a particular
requirement (or set of requirements). The purpose of this is
to be able to ensure that the results of the design can be
explained and checked for review and audit.

DE, and particularly the digital thread, enables unprecedented
traceability across the system lifecycle. One of the main
benefits of this approach is that data can be defined once in
an Authoritative Source of Truth (ASOT), and then distributed
across the digital thread to other models and artifacts
that require access to the data. An ASOT is the source of
a baselined version of data and should be accessible to
authorized applications that intend to use the data in some
analysis or decision, for example. In this way, engineers can
be confident that applications across the entire digital thread
(thus representing the entire system lifecycle) are using a
valid set of data. The establishment of ASOTs within a digital
thread is an effective way to avoid inconsistencies.

Similarly, traceability within a digital thread enables the
identification of change propagation paths. If we consider
a change to a system requirement, for example, traceability
across the digital thread enables engineers to identify the
system elements and tests that will be affected, among
others.

To achieve this degree of traceability, there are two aspects to
consider: data interoperability and technical interoperability
[9]. Data interoperability ensures that there is a consistent
understanding of the relevant terminology, and a standard
data structure to which data can be mapped. Technical
interoperability solves the problem of getting data from
multiple sources into the same database in the first place – or
at least provides point-to-point connections between relevant
tools. Technical interoperability can be streamlined by using
established integration protocols such as REST API. The Open
Services for Lifecycle Collaboration (OSLC) is a community
that develops and releases open-course standards aimed at
improving integration through REST APIs [10].

The Dragon Architecture, under development by NASA
JPL, is a DE environment that comprises multiple systems
and software engineering applications and implements the
digital thread by connecting the tools together in a graph-

Figure 3. Example Knowledge Graph [Legend: rdf: Resource
Description Framework; rdfs: Resource Description

Framework Schema; sys: System Ontology]

As an example, Figure 4 shows a partial representation of the
ontology to support the modeling of the harness design for a
spacecraft.

Figure 4. Partial Representation of Harness Design Ontology, from [8]

3. MODEL-BASED LIFECYCLE MANAGEMENT
AND QUALIFICATION

In this section, we focus on how modern approaches to DE
can support lifecycle management and qualification, e.g.
verification and validation and certification. We present
examples from the literature regarding traceability across
design artifacts, early Verification and Validation (V&V), and
model-based reviews.

102

oriented structure, emphasizing explicit relationships to
form an integrated heterogeneous model [11] (ref. Figure
5). The use of ASOTs and technical interoperability are core
aspects of the Dragon Architecture. It enables the user to
define inter-tool relations, thus providing connectivity that
integrates requirements, architecture, detailed HW and SW
design, test cases, and so on. The Dragon Architecture
achieves this through the application of Internet and World
Wide Web based interoperability technology and standards.
Interoperability through these technologies and standards is
a fundamental principle of the Dragon Architecture.

Although not always necessary, ontologies can help with
data interoperability. Interoperability in Dragon, however,
does require the expression of semantics in order to integrate
and inter operate especially focusing relationships. It is often
the case that Ontology is associated with the Semantic Web
and the Web Ontology Language. While this is certainly a
valid means of modeling an Ontology, it is not the only way

an Ontology can be specified. The application of ontologies
to SE aims to “enable more automated sharing of information
directly between models to ensure model consistency,
improve the rigor of engineering process, and ultimately,
reduce the effort needed to get a clear answer to engineering
questions” [8]. The Digital Engineering Factory (DEF), for
example, is a DE environment under development at the
University of Arizona that enables users to integrate data
from multiple tools and structures this data in accordance
with the University of Arizona Ontology Stack (UAOS) [9]. An
ontology stack is a structured hierarchy of ontologies, based
on the same Top-Level Ontology (TLO), to support data
interoperability between domains. The DEF uses a hub-and-
spoke architecture to integrate data from multiple tools into a
central database (hosted in the Violet tool). This enables users
to define inter-tool connections, thus supporting traceability
between requirements, system architecture, detailed HW and
SW design, verification activities, and project management
(ref. Figure 6).

Figure 5. Dragon Architecture Functional View. This is an illustration intended to communicate the general flow of work and conceptual dependencies.
It is not intended to describe a process or gates. All functions are realizable with off-the-shelf technology except for model checking

103

3.2. Early verification and validation

The potential connectivity offered by the digital thread and its
enabling technologies also makes it possible to move V&V
earlier in the lifecycle [16]. For example, modeling the system
architecture in the early stages of design with an executable
modeling language enables the execution of simulations
and resulting quantitative analyses to assess compliance
to requirements [15]. This is valuable because “finding
problems early is a key enabler to DE providing full potential
value” [13]. Several modeling languages, but not all, provide
these executable capabilities. For example, in SysML, the
behavior captured in activity and state machine diagrams
can be simulated.

In addition to the use of formal methods to execute and
simulate models, which involve a complete, mathematically
grounded representation of a system, lightweight formal
methods can also contribute to early V&V. Lightweight formal
methods involve the mathematical representation of some
part of the system specification. In this way, lightweight formal
methods provide some of the benefits of formal methods,
such as the ability to detect errors in the early stages of
system development, but without the need to redefine the
entire system specification [20].

“One of the strengths of using DE approaches to concept
design is that the various models, tools, and ASOTs are
all connected via a digital thread. They share the same
consistent, authoritative data. During concept design, one
useful application of this digital thread is to connect simulation
models with system definition models…and unambiguously
share requirements, requirements traceability, and system
behaviors” [21].

3.3. Model-based reviews and digital signoffs

The digitalization of SE processes also extends to the major
gates of the system lifecycle: technical reviews. Traditional
document-based review processes have been used by
systems engineers for many years to determine whether
system development programs can progress to the next
stages in their development. However, this traditional
approach to technical reviews often leads to “lengthy
evaluations of static, contractually obligated documents”
that “represent snapshots of the systems as seen through
the prism of the entrance criteria [to the next phase of the
lifecycle], and do not represent a view of the system in its
totality” [22]. Not only is this process inefficient, but it also
often lacks the ability to holistically represent the necessary
system-related information to stakeholders.

Figure 6. The Digital Engineering Factory (DEF), adapted from [12]

104

Model-based reviews have the potential to offer improvements
in this regard (e.g., [24, 25]). First, reviewers can approve
subsets of data/information instead of having to review and
approve monolithic aggregations of information in disparate
and often overlapping documents. This has been coined
as digital signoffs, where even required signoffs can be
assigned to different pieces of data for them to be considered
baselined, accepted, and/or approved [24]. Second,
reviewers can interact with the interoperable ontology stack
to find the information that they consider relevant for the
review, as opposed to having to dig and hunt for treasure
in static documentation. For example, a reviewer might
query the DE repository to identify all verification evidence
related (i.e., traced) with a requirement, identify all functions
that participate in a capability related to a specific need of
a stakeholder, or identify the remaining integration and test
activities for a specific component. In both cases, it is easy
to realize how the use of DE to support technical reviews
can result in an accelerated and more fluid process, while
potentially improving its efficiency and reducing the likelihood
of review gaps.

It should be noted though that model-based reviews come
with challenges as well. Among others, models need to be
comprehensive, not just limited to traditional 3D drawings;
there is a significant learning curve, as the people involved
do not only need to learn the new modeling languages and
tools but also the new processes to operate in a model-based
review and rely on the ability of the reviewers to identify the
necessary information in the digital repository [23]. Adopting
DE can help to mitigate some of these challenges. Data and
technical interoperability provide engineers with a common
data structure and database from which project information
can be retrieved. Semantic web technologies can be
leveraged to automatically validate this dataset and queries
to retrieve, and conveniently present, key information can
be standardized and automated (e.g., in an autogenerated
document or dashboard).

4. BEYOND TRACEABILITY AND LIFECYCLE
MANAGEMENT

So far, we have discussed how DE can be used to enhance
traceability, enable early V&V, and support the model-based
review process. However, DE is not only about traceability
and management. In this section, we provide examples of
how DE can support a set of unprecedented analysis that
have been infeasible in document-based practices. They
include tradespace exploration, set-based design, multi-

disciplinary optimization, the integration of physics models
within system models, and human-system integration.

4.1. The Tradespace Exploration paradigm

When developing a new system, it is crucial to focus efforts
during the early stages of the life cycle on finding a preferred
design solution. Since evaluating the entire set of possible
solutions requires a significant investment, this analysis is not
usually extensive due to the unavailability of the necessary
resources. As a result, hasty and generally unjustified
decisions are made to reduce the design options and only
a few alternatives are evaluated. Consequently, alternatives
that could be more valuable than the chosen ones are
frequently overlooked.

Tradespace Exploration is a method that leverages digital
models and the high computational power of current
computers to enable a rapid and comprehensive in-
depth analysis of the solution space [26]. Through this
strategy, multiple design options are explored as candidate
architectures and analyzed to determine the most suitable
one. In essence, instead of focusing on finding specific
design options, the engineer defines a generic model of
the system that can be automatically instantiated as the
enumeration of different components and values that their
main variables can take. Each resulting solution is evaluated
against a set of decision criteria. Among them, a Pareto Front,
formed by those solutions that dominate the solution space
(that is, there is no solution that performs better in all criteria)
can be identified for choosing the desired solution within the
set.

For illustrative purposes, consider the design of a new tank
with the following desired needs: high transport, high tank
protection, and fair mobility. The generic architecture of the
tank includes Armor, Weapon System, and Propulsion as
its main systems, with each having different design options
(Armor: Conventional steel, Ceramics, or Composite;
Weapon System: 120 mm cannon or Guided missile launcher;
Propulsion: Hybrid electric motor or Internal Combustion
Engine). Furthermore, each instantiation can have different
performance values, such as having different masses.
Considering mass as a surrogate for the overall performance
of the different variants of the different technologies (in this
case, a total of 71 lower level components), it is possible
to enumerate all possible instantiated architectures (e.g.,
Conventional Steel – Performance 1/120 mm Cannon
Performance 1/Hybrid Electric Motor Performance 1,

105

Conventional Steel – Performance 1/120 mm Cannon
Performance 1/Hybrid Electric Motor Performance 2,
Conventional Steel – Performance 1/120 mm Cannon
Performance 1/Hybrid Electric Motor Performance 3, … for a
total of 3,408 architectures) and plot them according to their
cost (the higher the cost the less preferred the alternative is)
and value provided in operations (the higher the value the
more preferred the alternative is; note that both have been
calculated using notional models), identifying then the Pareto
Front (ref. Figure 7, where each apparent line is actually the
effect of many points close together).

(ref. Figure 8). This reduces the risk of erroneous theories and
assumptions of decisions early in the design process, which
is delayed for critical decisions until sufficient information and
knowledge is available to gain flexibility. Furthermore, as a
byproduct of working with sets of solutions instead of with
single solutions, SBD provides greater flexibility to adapt to
unforeseen circumstances. The use of powerful computers
with high computing capacity, and object-oriented modeling,
play a significant role in simultaneously developing and
evaluating various design concepts at a relatively low cost.

Figure 7. Solution Space for Tank Example relating
Cost and Value (Pareto front highlighted)

4.2. The Set-Based Design paradigm

Traditionally, the Point Design Method (PDM) has been
employed for system design. It begins with an analysis of
alternatives, resulting in the selection of a single concept,
which is refined as the development progresses. When a
problem is encountered during development, the solution
is modified as necessary, generally resulting in higher costs
and delays the later the modification is accomplished.

In contrast to this rigid approach, the Set-Based Design (SBD)
paradigm encourages maintaining multiple options open and
evaluating the trade-offs and advantages of each design
rather than quickly converging on a single design [30–32].
It facilitates thorough exploration of the design space and
promotes innovation by deferring commitment to a single
concept. The solution space progressively narrows as more
knowledge and information about the system are acquired

Figure 8. Set-based Design Maturation Process

An SBD essential process consists of three main effects (ref.
Figure 9):

1.	 Definition of the design space, identifying a set of viable
alternatives to be progressively developed independently,
even by different engineering groups, thereby generating
concepts from diverse perspectives. It is crucial to
consider a large number of alternatives for evaluation.

2.	 Discover intersections among different sets of
independent solutions to define the core of the new
design progressively.

3.	 Gradually eliminate concepts that prove incompatible or
contribute limited value.

106

Figure 9. Discovering Intersections in Set-Based
Design process [adapted from [33]]

4.3. The MDO paradigm

Traditionally, system decomposition is performed by manually
fixing characteristics of the components that form the system
and iterating between them until their integration leads to a
satisficing system solution. This is due to the coupling that
generally exists between the different components of a
system. For example, a team designing a satellite may start
by estimating the electrical power consumption of each
component. They would then aggregate the power dissipated
in the different structural panels of the satellite and use that
to inform the design of the thermal system (for dissipation).
Sizing of the thermal system may feedback into the sizing
of the structural panels, and so forth. This iterative process
is generally performed manually: propagating the different
modifications until something seems promising to work.

Instead, in Multidisciplinary Design Optimization (MDO)
the goal is to find an optimal combination of components
by managing conflicting objectives not just a satisficing
one [34]. MDO leverages computer models to execute
optimization algorithms. Particularly, the method consists
of integrating mathematical models of the components and
executing a global optimization function at the system level.
In this way, the design of the components would not lead to
just a satisficing solution but to an optimal system. The work
of the engineering team moves from iterating their coupled

characteristics to developing accurate models of their
components (and their integration), so that the computer can
handle the iterations on its own.

MDO does not only identifies a solution that is optimal, but it
does so more efficiently than human iteration and guarantees
alignment between the decisions at component level and
the objectives of the project at the system level. However,
one should note that robustness of the solution becomes
important, as the accuracy of the underlying models to
perform the optimization is likely coarse at the stage when
MDO is employed.

4.4. Connecting system models with physics-
based models

The connection of system models with physics-based models
is a common capability leveraged within a digital thread.
In essence, behavioral and structural models of a system
architecture can be connected to their design instantiations
in physics-based models, propagating constraints (in one
direction) and results (in the other direction) between the
different models automatically, guaranteeing data consistency
and trustworthiness [11].

For example, Figure 10 shows the use of the Dragon
Architecture to support the architecture and design of a
Rover. Adopting the application of computer languages
allows the flow to occur from informal, qualitative descriptions
to executable mathematically accurate representations in
physics. In this case, the system architecture is modeled
using SysML, which is connected to its physics-based model,
which is established in Modelica. SysML can effectively
represent the functional behavior and interfaces of the rover,
and Modelica does the same for the physical behavior and
interfaces in an executable manner, which is not possible
when using natural language or informal diagrams or
graphical representations. Collectively, both can be used to
represent how signals can be passed to execute the physical
response of the Rover based on the behavior in the systems
model. This illustrates the explicit ability to unambiguously
compare the verify and validate the Power and Drive
Behavioral Specifications against a Physical representation
of the product.

107
Figure 10. Iterative Phases of the Model-Based Development Process including

Multi-Physics Simulation. Enabled by the Dragon Architecture, from [11]

108

4.5. Cognitive assistants

The developments in artificial intelligence and the computing
power available today are enabling the development of
cognitive assistants for systems engineering tasks. A cognitive
assistant is a machine that acts as a virtual engineer, a senior
companion with whom the human engineer works, and that
performs engineering tasks that humans are not capable of
carrying out effectively or efficiently.

With a cognitive assistant acting as a virtual engineer, the
computer moves from being a tool in which we input data,
create models, and run simulations, to a highly experienced
work companion with whom we co-design, to whom we
assign some of our tasks, on whom we rely to better
understand what engineering decisions we should make,
and who ensures that the knowledge generated in our project
is stored within the organization so that other colleagues, and

ourselves, can benefit from it in future projects [28]. Instead
of evaluating design options for a system, we will ask our
virtual companion, What do you think of this design?, Are
we missing a key requirement?, What risk do you think we
assume if we do not conduct this test?, or Would it cost us
much to replace this interface with just a single command?.

Cognitive assistants allow for the extraction and analysis of
large amounts of data from various sources almost instantly
and can provide the human engineer with the answers they
need directly in natural language. Cognitive assistants can
also initiate conversations unilaterally when they believe
they can be useful to the human engineer, such as providing
suggestions to improve an architecture that is currently being
worked on. An example user interface is shown in Figure 11.
By interpreting system models and relying on ontologies,
cognitive assistants can improve their recommendations and
performance when executing these functions.

Figure 11. Daphne’s user interface, a cognitive assistant to support the architecture of space systems [29]

109

5. CONCLUSIONS
This chapter has described how advances in computation and digital technologies provide organizations with the opportunity to
digitalize (not just digitize) their processes in what is known as the ‘Digital Transformation’. DE is about creating interoperable,
rapidly accessible datasets that can be efficiently integrated across the systems lifecycle in what is known as the ‘Digital Thread.’
Declarative languages and Internet based interoperability provide the foundations to manage the data interoperability aspects,
and open standards support the technical interoperability. Semantic web technologies can be leveraged to provide the framework
for its implementation.

Throughout the chapter, multiple examples have been presented. The digital thread can provide unprecedented traceability across
the lifecycle, is an enabler of early V&V, and supports model-based design review. Furthermore, DE gives raise to unprecedented
systems engineering capabilities such as tradespace exploration, SBD, MDO, the integration of physics-based models early
during system architecture, and even the adoption of cognitive assistants thanks to advances in AI. These all contribute to
increasing the effectiveness and efficiency of system development.

110

REFERENCES

111

1.	 “DoD Instruction 5000.89: Test and Evaluation,” 2020.

2.	 V. Singh and K. E. Willcoxy, “Engineering design with digital thread,”
AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. 2018, pp.
1–21, 2018.

3.	 Z. Scott, “Speaking in Tongues: The Systems Engineering Challenge,”
INCOSE Int. Symp., vol. 29, no. 1, pp. 836–849, 2019.

4.	 P. De Saqui-Sannes, R. A. Vingerhoeds, C. Garion, and X. Thirioux, “A
Taxonomy of MBSE Approaches by Languages, Tools and Methods,”
IEEE Access, vol. 10, no. October, pp. 120936–120950, 2022.

5.	 P. Witherell, S. Krishnamurty, I. R. Grosse, and J. C. Wileden,
“Improved knowledge management through first-order logic in
engineering design ontologies,” Artif. Intell. Eng. Des. Anal. Manuf.
AIEDAM, vol. 24, no. 2, pp. 245–257, 2010.

6.	 A. Patel and S. Jain, “Present and future of semantic web technologies:
a research statement,” Int. J. Comput. Appl., pp. 1–10, 2019.

7.	 N. Shadbolt, W. Hall, and T. Berners-Lee, “The semantic web
revisited,” IEEE Intell. Syst., vol. 21, no. 3, pp. 96–101, 2006.

8.	 D. Wagner, S. Y. Kim-Castet, A. Jimenez, M. Elaasar, N. Rouquette,
and S. Jenkins, “CAESAR Model-Based Approach to Harness
Design,” in 2020 IEEE Aerospace Conference, 2020, pp. 1–13.

9.	 J. Gregory and A. Salado, “A Digital Engineering Factory for
Students,” in Conference on Systems Engineering Research (CSER),
Tucson, AZ, USA, 2024.

10.	 OASIS Open Projects, “Open Services for Lifecycle Collaboration.”
2023.

11.	 R. Karban et al., “Towards a Model-Based Product Development
Process from Early Concepts to Engineering Implementation,” in
2023 IEEE Aerospace Conference, 2023, pp. 1–18.

12.	 J. Gregory and A. Salado, “The Digital Engineering Factory:
Considerations, Current Status, and Lessons Learned,” in INCOSE
International Symposium, Dublin, Ireland, 2024.

13.	 A. M. Madni and M. Sievers, “Model-based systems engineering:
Motivation, current status, and research opportunities,” Syst. Eng.,
vol. 21, no. 3, pp. 172–190, 2018.

14.	 R. Karban, F. G. Dekens, S. Herzig, M. Elaasar, and N. Jankevicius,
“Creating system engineering products with executable models in
a model-based engineering environment,” Model. Syst. Eng. Proj.
Manag. Astron. VI, vol. 9911, p. 99110B, 2016.

15.	 M. A. Bone, M. R. Blackburn, D. H. Rhodes, D. N. Cohen, and J.
A. Guerrero, “Transforming systems engineering through digital
engineering,” J. Def. Model. Simul., vol. 16, no. 4, pp. 339–355, 2019.

16.	 K. Giammarco and K. Giles, “Verification and validation of behavior
models using lightweight formal methods,” Discip. Converg. Syst.
Eng. Res., pp. 431–447, 2017.

17.	 R. Stevens, “Digital Twin for Spacecraft Concepts,” IEEE Aerosp.
Conf. Proc., vol. 2023-March, pp. 1–7, 2023.

18.	 W. K. Vaneman, R. Carlson, and C. Wolfgeher, “Defining a Model-
Based Systems Engineering Approach for Milestone Technical
Reviews,” 2019.

19.	 M. R. Blackburn and B. Kruse, “Conducting Design Reviews in a
Digital Engineering Environment,” Insight, vol. 25, no. 4, pp. 42–46,
2022.

20.	 V. Romero, R. Pinquie, and F. Noel, “An Open Benchmark Exercise
for Model-Based Design Reviews,” in IFIP International Federation for
Information Processing, 2023, pp. 176–185.

21.	 R. Pinquié, V. Romero, and F. Noel, “Survey of Model-Based Design
Reviews: Practices & Challenges?,” Proc. Des. Soc., vol. 2, pp. 1945–
1954, 2022.

22.	 A. M. Ross and D. E. Hastings, “The tradespace exploration
paradigm,” 15th Annu. Int. Symp. Int. Counc. Syst. Eng. INCOSE
2005, vol. 2, pp. 1706–1718, 2005.

23.	 N. Shallcross, G. S. Parnell, E. Pohl, and E. Specking, “Set-based
design: The state-of-practice and research opportunities,” Syst. Eng.,
vol. 23, no. 5, pp. 557–578, 2020.

24.	 D. J. Singer, N. Doerry, and M. E. Buckley, “What is set-based
design?,” Nav. Eng. J., vol. 121, no. 4, pp. 31–43, 2009.

25.	 C. Small et al., “A UAV Case Study with Set-based Design,” INCOSE
Int. Symp., vol. 28, no. 1, pp. 1578–1591, 2018.

26.	 D. Raudberget, “Practical applications of set-based concurrent
engineering in industry,” Stroj. Vestnik/Journal Mech. Eng., vol. 56,
no. 11, pp. 685–695, 2010.

27.	 H. Chen, “Multidisciplinary Design Optimization (MDO),” Encycl.
Ocean Eng., no. July, 2021.

28.	 A. Salado and D. Selva, “Asistentes Cognitivos en Ingeniería de
Sistemas,” UEM STEAM Essentials, pp. 1–8, 2021.

29.	 A. Virós and D. Selva, “From design assistants to design peers:
Turning daphne into an ai companion for mission designers,” AIAA
Scitech 2019 Forum, pp. 1–12, 2019.

Disclaimer/Acknowledgements

Part of the research presented in this chapter was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration (80NM0018D0004).

Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government or the Jet
Propulsion Laboratory, California Institute of Technology.

112

BIOGRAPHIES

CHRISTOPHER DELP
Chris Delp serves as the

Technical Group Supervisor for

Systems and Software Solutions

Engineering, a group dedicated

to implementing process-

oriented methodologies for

the creation of robust software

environments designed to

deliver advanced model

based and digital engineering

solutions. In addition, he holds

the position of Manager of

the Computer Aided Engineering Systems Environment

at NASA JPL. This effort is at the forefront of engineering

innovation, providing a state-of-the-art environment for

system modeling, analytical assessments, and simulation

development grounded in Open Engineering principles. In his

previous role, Mr. Delp spearheaded the Model Environment

Development for the Europa Clipper mission, establishing

a Model-Based Engineering Environment and fostering the

growth of the Open MBEE community—a collective focused

on open-source Model-Based Engineering models, software

and frameworks. With a diverse background in Systems

Engineering and Software Engineering on JPL Flight Projects,

his expertise encompasses system architecture and design,

the development and testing of safety-critical software, and

the application of Systems Engineering principles throughout

the project lifecycle. Mr. Delp is esteemed as a leading

authority in Model-Based Systems Engineering (MBSE) and

Model-Based Engineering Environments. He holds an MS in

Systems Engineering from the University of Arizona.

113

DR. JOE GREGORY
Dr. Joe Gregory is a postdoctoral

research associate at the

University of Arizona. His

research interests include

digital engineering, model-

based systems engineering,

and the application of semantic

web technologies to support

engineering. In 2022, he

received his PhD in Aerospace

Engineering from the University

of Bristol for his development of

the SysML-based ‘Spacecraft Early Analysis Model’. He is

the co-chair of the Digital Engineering Information Exchange

(DEIX) Taxonomy Working Group.

L. MIGUEL APARICIO

Luis Miguel Aparicio holds an

BS/MS in Computer Science

and Engineering from the

Polytechnic University of

Madrid and a graduate

certificate in High Logistics

Management from CESEDEN.

He holds various certifications in

logistics, systems engineering,

and project management,

including Lean Six Sigma, ITIL,

INCOSE, PMP, and PRINCE.

After gaining professional experience at Coritel, Telefónica,

and in the public sector, he joined Isdefe in 1999, where

he remains to this day. He has collaborated as an adjunct

professor at Rey Juan Carlos University and currently at the

European University of Madrid. His professional experience

has always revolved around information systems, with a

particular focus on logistics. He currently serves as the Head

of Logistics Systems Area at Isdefe, leading projects to

support the rationalization and modernization of the logistical

systems of the Spanish Armed Forces. He also has significant

experience in projects related to the NATO Codification

System, providing consultancy services in this field and

supporting the development and modernization of SICAD,

the Defense Cataloging System, a tool used in the National

Cataloging Bureaus of Saudi Arabia, Belgium, Colombia,

Peru, and Poland. Among the portfolio of projects managed

within his area, there are several international consultancy

projects, for example, with the European Defence Agency,

NATO, the Military Industries Corporation of Saudi Arabia,

or the National Cataloging Bureau of Jordan. He has also

collaborated with the Armed Forces of Peru, the United Arab

Emirates, Chile, and Ecuador. Currently, it is noteworthy the

active role he plays in supporting the introduction of disruptive

new technologies into Defense logistical information systems,

with projects related to digital transformation, artificial

intelligence, big data, or blockchain.

“Think about the end before the beginning.”

W. Fabrycky

CH
AP

TE
R

6
Digital Transformation in

System Deployment, Operation,
Sustainment, and Retirement

Dr. Kaitlynn Castelle, University of Maryland Applied Research Lab
for Intelligence & Security (kcastelle@arlis.umd.edu)

Miguel Ángel Coll Matamalas, Isdefe (macoll@isdefe.es)

Abstract

This chapter presents the novel capabilities enabled by Model-Based Systems Engineering (MBSE)
and digital engineering to support system deployment, operations, sustainment, and retirement.
Topics include advancements in the application of digital twin and digital thread technologies to
support sustainment of systems through the life cycle and considerations for pursuing digital
transformation and the adoption of advanced model-based technology. The chapter discusses the
importance of planning for the use of these technologies early in the system life cycle to establish a
foundation and strategy conducive to the application of model-based methodologies, automation,
virtual reality, artificial intelligence, and other advanced technologies.

Keywords:

System Deployment, Operation, Sustainment, Retirement, Digital Twin, Digital Thread, Automation,
Model Based Product Support (MBPS), Proactive Maintenance (CBM), Predictive Maintenance
(PdM), Prescriptive Maintenance (RxM), Remaining Useful Life (RUL), Overhaul, Obsolescence
Management, Configuration Management, Digital Transformation.

116

1. INTRODUCTION
Chapter 5 covered the use of digital engineering technology
during the system development phase of the system life
cycle. This chapter will dive into how a system’s digital origin
and foundation, and investments made in digital engineering
technology enabling digital twin and digital thread, may be
used through the later phases of the system’s life cycle. The
chapter also discusses considerations while pursuing this
technology, addressing opportunities and risks through the
deployment, operations and sustainment, and retirement of the
system, including supporting logistics.

Interest in digital engineering technology, particularly those
enabling digital twins and digital thread, has increased in recent
years across various industries, specially manufacturing and
defense. Three main concepts lay at the core of this interest:
digital engineering, digital twin, and digital thread.

Digital engineering is a discipline that leverages advanced
technologies, such as Computer-Aided Design (CAD),
simulation, and data analytics, to support the design,
development, and management of complex systems and
products throughout their entire life cycle. It involves creating
and integrating digital models, simulations, and data-
driven decision-making to optimize design, manufacturing,
deployment, operation, sustainment, and retirement processes,
including logistics.

A digital twin is essentially a virtual representation of a
physical object, system, or process (its physical twin) that
enables real-time monitoring, analysis, and simulation. The
concept of a digital twin allows organizations to have a deeper
understanding of their assets, operations, and performance
by connecting the physical and digital worlds through digital
thread.

The term digital twin has been significantly abused though.
While every digital twin will be a digital model, not every
digital model necessarily constitutes a digital twin. Ideally,
you could substitute a digital twin by its physical twin and
vice versa, without noticing the change. This duality becomes
very valuable because (1) you can experiment with the digital
twin both in development phase and operational testing fairly
inexpensively without risking its physical twin (the actual
system) and (2) a digital model allows for accelerating
discovery of system properties, that is, software simulation
often runs faster than physical testing.

Figure 1 illustrates that there are many types of digital twins
(virtual product twin, virtual process twin, digital factory twin
and digital twin), depending on the phase of the product life
cycle.

The digital thread refers to the means used for connecting the
flow of data and information throughout the entire life cycle of
a system or product. It enables effective communication and
collaboration among various stakeholders across aspects and
stages of the engineering life cycle, to ensure consistency and
traceability across activities.

Figure 1. Digital Twins along the life cycle.

117

A more formal definition of digital thread, provided by the

Defense Acquisition University (DAU), is as follows1:

“An extensible and configurable analytical framework
that seamlessly expedites the controlled interplay of
technical data, software, information, and knowledge in the
digital engineering ecosystem, based on the established
requirements, architectures, formats, and rules for building
digital models. It is used to inform decision makers throughout
a system’s life cycle by providing the capability to access,
integrate, and transform data into actionable information.”

Each organization’s digital transformation journey is unique and
may support greater innovation, cost savings, and reliability
in their products and systems. However, the technology and
applications described in this chapter may not be appropriate
or necessary for all organizations or systems of interest (SoI).
In addition, many of the expected outcomes may not be
achievable if the organization is not prepared to leverage the
technology in certain contexts, or if the data models are not
accessible to the system operating organization. Furthermore,
it should be noted that similar to the application of systems
engineering in physical systems, direct involvement of users,
operators, maintainers, and other active stakeholders is
necessary for the development of the digital twins. However,
although the needs of the system designers and developers
for the digital twin and digital thread may differ from the needs
of the operator during the service phase, the use cases for
later stages of the life cycle should be considered early in the
system development life cycle.

2. APPLICATION OF DIGITAL TWIN,
VIRTUAL ENVIRONMENTS, AND DIGITAL
THREAD TECHNOLOGIES IN LATER
SYSTEM LIFE CYCLE PHASES

2.1. Digitally transforming system deployment

Overall, digital engineering technology has expedited
system deployments, reduced costs, increased agility, and
improved the overall quality of deployed systems [1]. Below
is a description and examples of some capabilities enabled
by digital engineering and its applications during the entry
into service.

1. Find this definition through the following link: https://www.dau.edu/glossary/digital-thread
(last accessed on 23/04/2024).

2.1.1. Streamlined deployments with automation,
virtualization, and hardware-in-the-loop testing

The use of virtualization technology allows for increased
predictability in system deployments. Virtualization involves
creating virtual versions of hardware, software, storage, or
network resources, which may leverage emulation to mimic
their behavior. In this way, systems can be deployed first in
a virtual environment, reducing the need for excess physical
infrastructure. This allows for faster and more efficient
validation and deployment, as virtual systems can be quickly
replicated and scaled as required [2].

Later, as the actual system is deployed, digital technologies
enable the automation of deployment tasks, such as software
installation, configuration, and testing. Automation decreases
the chances of human error and allows for consistent and
repeatable deployments. Furthermore, by facilitating the
adoption of DevOps2 practices (including continuous
integration and deployment), some system changes can
be automatically built, tested, and deployed to production
environments, ensuring a faster and more reliable deployment
process.

2.1.2. Quality control

Digital twins and virtual environments embed detailed
geometric information that, coupled with associated
metadata, helps ensure compliance with design
specifications and standards, enabling better quality control
during manufacturing and assembly. Detailed geometric
information provides the foundation for the development
of accurate simulations, analyses, and visualizations. It
enables a comprehensive understanding of the physical
entity’s shape, structure, and spatial relationships within the
virtual environment, including additional information such as
three-dimensional representation, dimensional accuracy, or
material properties and textures, among others. Metadata
associated with digital twins and virtual environments can
be leveraged to enhance their understanding, management,
and utilization, as it consists of descriptive information and
properties that characterize and provide context to the digital
representation of a physical object or system, such as life
cycle information and accurate item identification (e.g., for
configuration control).

2. DevOps is a software development methodology used as a set of practices and tools
that integrates and automates the work of software development (Dev) and information
technologies operations (Ops) as a means of improving and shortening the systems
development life cycle.

118

2.1.3. System training and familiarization

Digital environments generated through Augmented
Reality (AR) or Virtual Reality (VR) yield immersive learning
experiences that can greatly enhance system training and
familiarization, enabling personnel to better understand and
manage complex systems in a lifelike environment with less
reliance on being in proximity of the physical asset (e.g., see
Figure 2). When successful, these virtual systems can provide
technicians and operators with real-time, on-site maintenance
assistance utilizing AR overlays to communicate visual
instructions and reference manuals directly on the physical
system, resulting in heightened efficiency and accuracy
during maintenance activities.

An example of such a method is product model visualization
in a digital mock-up, which proves valuable when linking
design and logistics supportability information to the
geometric information embedded in digital twins. This
connection, established by integrating technical and
logistics data, creates a spatially aware context that
improves comprehension of maintenance tasks [3]. Product
model visualization is a concept that involves creating and
presenting visual representations of physical objects or

systems, typically in a digital format. The primary goal is to
convey information about the design, structure, and behavior
of a product through graphical and interactive means. In the
context of defense systems training and familiarization, for
example, product model visualization plays a crucial role in
providing an immersive and effective learning experience
in a virtual environment. As an example, when coupled with
the real system, an aviation maintainer can rely on digital
artifacts directly projected and superimposed to the physical
environment instead of relying on memorizing 2D diagrams
and navigating dark, confined areas to locate specific parts
[4]. Digital assets used in this way do not only improve training
effectiveness and efficiency, but also actual task outcomes.

Despite their potential, challenges to adoption of these
technologies remain, including but not limited to, ergonomic
considerations and readily available and affordable VR/AR
solutions [5]. As an intermediate alternative, digital artifacts
can be provided to the operator or maintainer in the form of
Interactive Electronic Technical Publications (IETP) or Manuals
(IETM). These are digital formats of technical documents
that provide comprehensive information, instructions,
and guidance for the operation, maintenance, repair, and
troubleshooting of complex systems or equipment [6]. These

Figure 2. Example of a Digital Twin (link: https://youtu.be/G26mx4TnKyM?si=gR-fqlhmZw0B21-y).

119

publications are designed to replace or supplement
traditional paper-based manuals with electronic versions
that offer various interactive and multimedia elements to
enhance user experience and facilitate efficient learning
and comprehension. Compared to printed manuals,
IETMs are becoming more and more widespread because
they are interactive and easy to use and maintain, as well
as provide insight into the system that would otherwise be
difficult to infer.

2.2. Digitally transforming operations and
sustainment

2.2.1. Model Based Product Support and
configuration management

Model Based Product Support (MBPS) consists of applying
the principles and concepts of digital engineering to
Integrated Life Cycle Support (ILS). In that sense, it refers
to the modelling of any aspect related to ILS, including
its supportability, reliability, and safety characteristics,
both in terms of design and life cycle processes. MBPS
leverages digital models, simulations, the interoperability
of information systems and data to enhance the efficiency
and effectiveness of supporting systems to improve
operational readiness and to optimize sustainment and life
cycle management throughout their useful life. Particularly,
system models generated during system development are
used during the operation and servicing phase to help
understand the system functionality and its external and
internal interfaces.

Data continuity, which is essential to support a coherent
transition between the models generated and/or used
in system development and those generated and/
or used in MBPS, is enabled by the digital thread. On
the other hand, maintaining an accurate configuration
baseline of an asset or system remains critical in order
to ensure it can be logistically supported. Applying
MBPS by using authoritative sources of truth, it becomes
no longer necessary to manually maintain two different
configurations, one for design and one for logistics,
throughout the life cycle, by incorporating all relevant
logistics information directly onto the configured design
elements themselves.

2.2.2. Proactive maintenance strategies enabled by
digital twins and digital thread

Traditionally, both corrective and preventive maintenance
have been the most widely used strategies of maintenance.
In corrective maintenance, repairs are carried out after
the problem has occurred. On the contrary, preventive
maintenance focuses on preventing potential failures before
they occur by executing scheduled maintenance actions,
such as inspections, routine servicing, and component
replacements (generally based on use patterns: running
hours, cycles, number of starts, etc.). However, advancements
in sensors and monitoring technologies and the resulting
development of digital twins and the digital thread enable a
turn towards data-driven maintenance approaches. These
approaches rely on the use of algorithms to make predictions
and recommendations to optimize system’s reliability and the
operational efficiency of the assets.

By moving from reactive to data-driven maintenance,
organizations can minimize asset downtime and reduce
maintenance costs, since potential failures modes can be
detected and addressed before they occur, preventing
operation interruptions and emergency repairs. Three main
proactive maintenance strategies can be distinguished:

	• Condition Based Maintenance (CBM). CBM focuses on
monitoring the real-time condition of equipment by using
various sensors and data collection tools to assess the
current state of the equipment. CBM uses thresholds, or set
conditions, to trigger alarms or maintenance actions when
deviations from normal operating conditions are detected.

CBM typically focuses on a specific set of parameters
relevant to the equipment being monitored, and continuous
monitoring of a few critical factors that directly impact
immediate performance or reliability. The primary objective
of CBM is to monitor the current condition of equipment and
take timely actions to prevent imminent failures or issues.

CBM is used in a broad variety of applications, including
manufacturing, defense, industrial control systems,
healthcare, to diagnose impending failure modes,
thereby reducing maintenance costs, improving reliability,
availability, and safety, extending time between overhauls
(compared with traditional preventive maintenance),
and reducing unnecessary downtime. With the ability to
continuously monitor the asset’s health and performance
metrics, system data can be collected to develop models
enabling proactive detection of failure modes.

120

	• Predictive Maintenance (PdM). PdM also involves
monitoring equipment condition, but it primarily focuses
on using real time data analytics and historical data
to predict when maintenance action is needed. PdM
analyzes patterns and trends in data to forecast potential.

Although CBM and PdM share similarities and often
use similar technologies, there are some distinctions in
them: CBM initiates maintenance actions based on the
real-time condition of the equipment and focused on a
specific set of parameters, while PdM aims to schedule
maintenance activities just before the equipment is likely
to fail, optimizing maintenance timing to prevent failures
and minimize downtime.

PdM often involves more comprehensive data analysis
than CBM, using a broader range of data points and
indicators to predict failures. It may incorporate advanced
analytics, Artificial Intelligence algorithms, like machine
learning, and other sophisticated algorithms to forecast
failures, while CBM uses them less intensively.

	• Prescriptive Maintenance (RxM). Prescriptive
maintenance goes beyond PdM. It does not only
predict potential equipment failures but also prescribes
specific actions to prevent those failures or mitigate
their impact. This approach integrates predictive
analytics with automated decision-making systems to
provide precise recommendations or prescriptions for
maintenance actions. These recommendations can
include detailed instructions on maintenance tasks,
repairs, adjustments, or operational changes. RxM
utilizes sophisticated algorithms of artificial intelligence
and Big Data techniques to analyze extensive sets of
data. It examines historical and real-time data to predict
potential failures and determines the best course of
action to avoid or address these issues. In the context
of RxM, prognosis plays a significant role in determining
the appropriate actions to be recommended. Prognosis
refers to the estimation or prediction of future conditions
or events based on the analysis of current and historical
data. In RxM, prognosis involves forecasting potential
failures, estimating the Remaining Useful Life (RUL), and
predicting the future health and performance of assets
or equipment [6].

Digital twins become central across maintenance approaches
thanks to their capabilities to enable data-driven applications:
real-time monitoring and analysis, predictive and prescriptive
analytics, simulating “what-if” scenarios, health monitoring
and prognosis, and optimization analysis. In predictive
maintenance, digital twins continuously collect real-time data
from sensors embedded in the physical assets and utilize

historical data to analyze trends, patterns, and anomalies. By
leveraging this information, digital twins facilitate predictive
analytics and forecasting of potential failures or performance
degradation. In prescriptive maintenance, digital twins play
a crucial role, by providing not only predictive insights, but
also actionable recommendations. By simulating different
scenarios and analyzing data, digital twins can suggest
specific maintenance actions or strategies to prevent failures
or optimize asset performance. They also aid in prescribing
the most effective actions to be taken based on predictive
analytics and simulations.

Finally, it should be noted that digital twins can also be of value
to support preventive maintenance, since they can assist
in establishing asset’s baseline conditions, continuously
monitoring asset conditions, and identifying deviations from
normal operating parameters by tracking equipment health.

2.2.3. Modernizing Maintenance, Repair and
Overhaul (MRO)

As assets age, there may be a need for component
replacements, upgrades, or redesigns. The geometric
information embedded in digital twins, along with metadata
on materials and manufacturing tolerances, aids in identifying
compatible replacement parts and planning seamless
upgrades. This can help in anticipating the integrability of new
components with the existing system, avoiding compatibility
issues and potential disruptions.

Integrating CAD enables effective collaboration among
stakeholders, seamlessly incorporating modifications from
an asset’s life cycle into the CAD model for future reference.
CAD models created during the design phase become the
basis to provide a visual representation for the physical asset
in the digital twin. This digital representation, with precise
geometric data, later allows maintenance teams to visualize
and understand the asset’s components and assemblies,
aiding in troubleshooting and planning maintenance
activities, and additionally supporting communication of
possible configuration changes to the deployed asset.

Alongside the geometric representation, digital twins
incorporate essential metadata, such as material properties,
manufacturing tolerances, and part numbers. These
metadata provide crucial information for manufacturing,
assembly, and future maintenance activities. Particularly, it
aids maintenance personnel in quickly identifying the right
components, accessing relevant information, and performing

121

repairs more efficiently, reducing system downtime. For
example, maintenance personnel can access the virtual
twin to identify the exact components, understand their
dimensions, and review historical maintenance records. This
enables more efficient and targeted maintenance activities,
minimizing downtime and extending the asset’s useful
life. Similarly, they can utilize the virtual twin to understand
the system’s physical layout, access metadata for part
identification, and troubleshoot issues without direct access
to the physical asset.

2.2.4. Obsolescence management

Obsolescence management is critical for ensuring the
continuous operational readiness, sustainability, and
effectiveness of certain systems over their extended service
lives, which can often span several decades. Effective
obsolescence management requires a proactive and holistic
approach, integrating various strategies throughout the
system’s life cycle to ensure operational readiness, reduce
risks, and manage costs associated with maintaining and
supporting these systems over time. The use of digital models
combined with some emergent manufacturing technologies,
provides new tools for obsolescence management.

Geometric information embedded in digital twins makes
it easier to reverse engineer certain parts and manage
obsolescence, as they are exact replicas of their physical
twins, enabling their manufacturing. Integrating CAD and
Computer-Aided Manufacturing (CAM) systems streamlines
product design and manufacturing processes, which
is especially helpful for modernization and dealing with
obsolete parts. This link can be further reinforced by novel
manufacturing processes, such as additive manufacturing
(also known as 3D printing), as the link between design and
manufacturing can be entirely established as a digital thread.

2.3. Digitally transforming system retirement

Relative to other life cycle phases, system retirement is the
least developed with respect to digital transformation. For
some situations, it may be advantageous to preserve end
use data from retired systems and components that have
reached end of life, such as performance data, as the same
component in the retiring system may continue to be used
in other similar applications. As an example, if you retire a
single aircraft, a certain actuator may still have usable life for
use in other aircraft. Performance data may also be used for

future simulations to influence future redesigns. The digital
thread can also help in better identifying and dealing with
components with special considerations for disposal, such
as hazardous materials or classified hardware and software.

Furthermore, the retirement stage of a given system for
one organization could be, simultaneously, the start of an
acquisition program for another organization (e.g., when an
organization acquires a second-hand aircraft from another
organization). In this case, leveraging or even accepting
the digital twin and digital thread developed with the system
can be challenging for the organization who is receiving the
assets, given that their digital transformation process may not
be mature enough.

By leveraging digital twins and digital threads in the retirement
stage, organizations can enhance sustainability, compliance,
and efficiency in the decommissioning process. These
technologies contribute to responsible and environmentally
friendly practices while providing valuable insights for
ongoing improvement in the development and life cycle
management processes.

2.4. Examples of novel capabilities digitally
transforming the system life cycle

2.4.1. Cloud-enable collaborative model development

Collaborative modelling tools facilitate cross-functional
collaboration, which may be integrated with Product Life
cycle Management (PLM) CAD suites to allow engineers,
designers, and other stakeholders to work together
seamlessly. Changes made in one tool can be communicated
to the other, promoting communication and alignment
between different teams.

The use of collaborative model development technology
supports formalizing model planning, development,
integration, curation, and using models for engineering
activities and decision-making across the life cycle. As
opposed to formal document-based approaches in legacy
systems engineering practices, model-centric organizations
leverage collaborative environments where teams can define
and plan the creation of models to support engineering
activities, ensuring a structured and auditable approach.
This technology facilitates the formal development of models
by providing tools incorporating various techniques and
algorithms, integrating data from different sources, and

122

curating models by refining and optimizing them over time.
Significant productivity gains can be made with emphasis
on the model-based definition and evolution from the legacy
document-based approaches.

2.4.2. Data aggregation and integrated information
systems

For most organizations, there is a significant labor burden
associated with manual processes and disparate systems
used to collect and use data. The modern information system
enabled by digital threads may connect various disciplines
and stages of the asset life cycle. Virtual product and process
models, represented by digital twins and the digital thread,
can enable analysis, performance optimization, decision-
making, operations, by integrating data and information for
downstream users.

Digital twin technology allows real-time (or near-real time) virtual
representations of the current asset state, in which databases,
repositories, and system models from multiple disciplines may
be integrated. A well-architected digital thread can provide
seamless integration and accessibility of relevant data across
the asset’s entire life cycle, from design to operation and
sustainment to enable functionality in the digital twin.

2.4.3. Sensors and IoT

The emergence of novel capabilities in sensor technology
and the implementation of the Internet of Things (IoT) have
revolutionized the way in which digital twins are developed,
offering a seamless integration of the physical and digital
domains. In parallel, advances in microfabrication and
nanotechnology have led to the creation of highly sensitive,
compact, and energy-efficient sensors capable of detecting
a wide array of physical phenomena, necessary to develop
more realistic digital twins.

Concurrently, innovations in IoT technology, including
enhanced connectivity options, robust data processing, and
cloud computing, facilitate the reliable transmission and
analysis of vast amounts of data collected from these sensors.
This IoT infrastructure enables the real-time synchronization
of physical assets with their digital counterparts, creating
dynamic, virtual models that accurately reflect the physical
world.

2.4.4. Cloud computing

The emergence of cloud computing has revolutionized system
deployments. Cloud platforms provide on-demand access
to resources, enabling organizations to easily scale their
systems and deploy them globally. Cloud-based deployment
models, such as Infrastructure as a Service (IaaS) and
Platform as a Service (PaaS), simplify the deployment process
for organizations by abstracting underlying infrastructure
concerns. Specifically, they reduce the need to heavily invest
in physical servers and data centers.

Infrastructure as a Service (IaaS) is a category of cloud
computing services that provides virtualized computing
resources over the internet. In an IaaS model, users can rent
or lease various infrastructure components, such as virtual
machines, storage, and networking, instead of investing in and
maintaining their own physical hardware.

Platform as a Service (PaaS) is a cloud computing service
model that provides a platform allowing customers to develop,
run, and manage software applications without the complexity
of building and maintaining the underlying infrastructure. In a
PaaS model, the cloud provider delivers a comprehensive and
integrated platform that includes development tools, runtime
environments, and other services necessary for building,
deploying, and scaling applications.

3. CONSIDERATIONS FOR PURSUING
DIGITAL TRANSFORMATION ACROSS
THE LIFE CYCLE

3.1. Overview

Digital transformation across the life cycle demands a
comprehensive approach to technical data management
strategy. This strategy should guide the acquisition,
management, and maintenance of the technical data and
software necessary to support a system from inception to
retirement. Considerations such as safeguarding intellectual
property and fostering competition should be central to
the strategy. By securing the required data and rights,
organizations can enhance system design understanding,
optimize operations across varied environments, and unlock
potential cost efficiencies in acquisition and sustainment.

The effectiveness of digital models and digital twin technology
is deeply linked to their accessibility and usability by

123

operational users. These stakeholders depend on intuitive
tools that allow for the realistic simulation of digital twins,
alongside seamless access to comprehensive logistics and
technical data. This data should be open, interoperable,
adaptable, and accessible across cloud and edge
computing environments, necessitating a collaborative effort
that integrates the insights of both technical teams and
operational users right from the design phase.

Ideally, a single digital twin would suffice for all life cycle
phases of a system, incorporating all necessary information,
models, and behaviors. However, embedding operational
and sustainment capabilities effectively in the digital twin
requires attention during the concept, development, and
production stages. The transition towards a unified digital twin
demands a gradual integration of operational and product
support models. Until such comprehensive integration is
achieved, distinctions among design, operational, and
sustainment digital twins remain essential. Without careful
implementation, there is a risk of creating a digital twin
that serves well for design and production but falls short in
operations and sustainment due to an inability to replicate its
physical twin’s behaviors accurately. Thus, a true digital twin
must effectively embody both design and operational and
support functionalities.

The development of a holistic digital twin, equipped with the
necessary capabilities and functionality to support desired
use cases, can be regarded as a standalone software
development project. This project should proceed in tandem
with the development of the System of Interest, highlighting
the need for a multidisciplinary approach. Achieving the
goals of digital transformation necessitates a holistic view
that encompasses people, processes, technology, data,
and strategic objectives, all while maintaining a focus on
establishing a durable digital thread that interconnects all
elements of the life cycle.

Some guidance to implement and/or adopt digital engineering
for later phases of the system life cycle is provided in the
following sections.

3.2. When in doubt, start with a pilot

There is significant upfront work required in preparation for
downstream use of digital twin and digital thread, including
in the system concept and development phases. It can be
overwhelming to figure out where to start, which use cases
to prioritize, and what resources will be needed to mature
the capability.

For many organizations, digital transformation efforts begin with
a pilot project, followed by what is typically a slow, challenging
transition from successful pilot projects to scaled operations [8].
Successful transformation at scale requires thoughtful planning
and coordination to holistically implement the new technology
within the context of the organization. The transformation should
be aligned to strategic goals and commitment to from leadership
to critically evaluate legacy processes, frameworks, and
architectures and make appropriate investments in driving digital
transformation objectives. It also involves leadership commitment
to empowering innovative teams, and fostering a culture that is
open to experimentation and capable of learning from failure.

3.3. Be cognizant of technical data rights

Organizations must plan in advance for the technical data rights
needed to be acquired if the system is designed by an external
entity. If this work is not done upfront, many digital transformation
opportunities may not be achievable due to proprietary or
incompatible formats, inaccessible data, or cost of rework for
the system to produce desired data. In all projects, sponsors
should anticipate technical data required for life cycle activities
and establish rights or options to purchase data in contracts
and service level agreements [9], as well as consult with experts
regarding the appropriate data and technology standards to
invoke in contract specifications.

3.4. Leverage standardization.

It is essential to adopt semantically rich, open, and accessible
data standards, which facilitate interoperability, data linkage,
and contextualization that all stakeholders can use and build
upon for their needs. Emphasis on open data standards
cannot be overstated. In order to have comprehensive data
integration and offer a holistic view of the asset’s history, current
state, and simulate future states, the digital thread must support
integration of data from different sources, such as design
data, manufacturing data, sensor data, maintenance logs, and
operational data.

Various standards development organizations (SDOs) have
developed specifications to address interoperability in digital
twins [10]. Some examples are provided in Table 1. Furthermore,
the domain of digital twins has witnessed a growing expansion
of open-source activities, particularly in the development of
digital twin platforms and data management. These open-
source initiatives contribute to collaboration, innovation, and the
wider adoption of digital twins.

124

Standards
Development

Organization (SDO)
Scope

ISO/TC 184

Establishes industrial data standards
across different domains, including

manufacturing, industrial automation,
and information systems to ensure the

compatibility and interoperability of
digital twins in the smart factory field.

IEEE P3144 Digital
Twin Working Group

The Standard for Digital Twin Maturity
Model and Assessment Methodology in
Industry defines a digital twin maturity

model for industry, including digital twin
capability domains and corresponding

subdomains. This standard also defines
assessment methodologies, including

assessment content, assessment processes,
and assessment maturity levels.

The 3rd Generation
Partnership

Project (3GPP)

Focused on developing standards
for 5G networks, which offer the high-

speed and reliable communication
capabilities required for digital twins.

The Open Geospatial
Consortium (OGC)

Manages geospatial information standards,
which are crucial for digital twins in

smart cities and other domains.

IEC TC65

Focuses on interoperability standards,
specifically in the smart factory

context. Its efforts help to harmonize
communication and data exchange

between various components of digital
twins within the manufacturing domain.

oneM2M

A global initiative that standardizes service
layer IoT platforms, providing common
service functions that are essential for
the effective operation of digital twins.

Table 1. Standardization in digital twin technology.

3.5. Connect traceability and configuration
management across the life cycle

Organizations must plan for traceability to
ensure data is properly managed and easy
to find, and that data flows and interfaces are
maintained in operations and sustainment for the
delivered systems. This may be difficult to invoke
contractually even in a highly regulated industry,
particularly in complex systems designed with
disparate development processes. Furthermore,
technical and logistics information of a system may
reside and be maintained in disparate systems.
Linking the Logistics Supportability Analysis
Record (LSAR) databases and underlying data
sets requires a blueprint for establishing and
maintaining these connections, especially in
distributed and disconnected environments.

3.6. Intentionally enable automation and
analytics

An organization undergoing digital transformation
may seek sensor technology and monitoring
datasets to generate operational profiles or
support development of behavior models.
Monitoring technology may already be present
in the system, displaying the condition of the
asset or its behavior. Modelling and simulation
of the remote asset or fleet is made possible
by combining real-time data with historical and
contextual information. In practice, this requires
significant data capture and data usability,
including careful planning to maintain linkages
between authoritative data sources and robust
methods to maintain links between authoritative
data and automated methods to ingest multiple
sources and formats in secure environments.
However, lack of a pre-existing process foundation
and the need to streamline or transform existing
processes are significant barriers for organizations
to adopt automation [11].

125

3.7. Actively manage knowledge to support
operations & sustainment

When introducing new technology in a production system,
the workforce usually undergoes training for a smooth system
deployment. This generally requires unifying relationships,
processes, and data across the production system
operations, many of which cross organizational boundaries.
Digital threads can facilitate the transfer of knowledge and
lessons learned as an organization integrates and transitions
from one asset to another. Historical data, maintenance
actions, and failure analysis from similar assets can be shared
and used to improve predictive maintenance strategies.
Furthermore, digital threads can also enable collaboration
and knowledge sharing. Authorized personnel, such as
operators, engineers, or subject matter experts, can access
the digital thread to share insights and knowledge, exchange
information, maintain data libraries, or provide support.
This collaborative environment enhances problem-solving
capabilities and facilitates decision-making processes.

3.8. Implementation impacts on life cycle

Developing digital twins for complex systems presents
multifaceted challenges, requiring a strategic approach from the
outset. The development of digital twins generally begins with a
focus on design and production, but this approach must evolve
so that the digital twin can used throughout the entire system life
cycle, from deployment through operations, maintenance, and
eventual retirement.

The inherent value of digital twins lies in their ability to enhance
the availability, accessibility, and accuracy of information. This
is particularly true when data can be contextualized within the
operational environment of users. Such capabilities, conceived
at early life cycle stages, are instrumental in reaping long-term
benefits. They facilitate not just a smoother integration of new
technologies but also support the workforce as it navigates
shifting paradigms. Adjusting traditional program and project
management practices and making upfront investments in a
robust digital infrastructure are essential steps in this direction.

A critical phase in this progression involves augmenting the
digital twin traditionally employed for design and production
with functionalities that are necessary to sustain the system
once it has transitioned into operations. In line with systems
engineering principles, engaging end-users, operators, and
maintainers from the beginning in drafting operational concepts,
defining scenarios, and setting requirements is key to success.

4. CONCLUSIONS
Digital engineering, underpinned by Product Life
Cycle Management (PLM) and Model-Based Systems
Engineering (MBSE) frameworks, plays a crucial role
in the deployment, operations and sustainment, and
retirement phases of system life cycle management.
These methodologies facilitate the creation of digital
twins and digital threads, which serve as dynamic virtual
models mirroring real-world assets throughout their
service life. Such digital foundations enable continuous
evolution and improvement of systems by providing
detailed blueprints for sustainment activities, such as
maintenance. This comprehensive approach ensures
that systems not only meet initial requirements but also
adapt to future needs, thereby extending their utility and
enhancing overall performance.

The implementation of digital engineering principles
faces challenges, including organizational resistance
to change, outdated infrastructure, and skill gaps.
Overcoming these obstacles requires a focused
strategy that highlights the transformation’s unique
benefits, such as improved efficiency and streamlined
operations. Additionally, the rapid pace of technological
advancement necessitates a flexible and collaborative
digital transformation strategy, allowing organizations
to explore innovative solutions and adapt to new
challenges. Successful digital transformation also
involves treating data as a strategic asset, establishing
strong data governance, and ensuring data quality and
security. By prioritizing these elements, organizations
can maximize the benefits of digital engineering, leading
to more reliable, cost-effective, and high-performing
systems throughout their life cycle.

126

REFERENCES

127

1.	 Soybel, J. Designing a Make vs. Buy Strategy for Expendable
and Attritable Aircraft Engine Development, 2021. Doctoral
dissertation, Massachusetts Institute of Technology.

2.	 Singh, J., & Walia, N. K. A comprehensive review of cloud
computing virtual machine consolidation, 2023. IEEE Access.

3.	 Marino & Castelle, 2021. https://www.amentum.com/blog/part-1-
digital-engineering-supports-asset-availability-and-sustainment/.

4.	 Mcneely, J. R. X-Ray Vision: Application of Augmented Reality in
Aviation Maintenance to Simplify Tasks Inhibited by Occlusion,
2022. Doctoral dissertation, Monterey, CA; Naval Postgraduate
School.

5.	 Fingas, J. Microsoft’s HoloLens headsets are giving US Army
testers nausea. Engadget. Published 13 October 2022:
https://www.engadget.com/microsoft-hololens-fails-us-army-
tests-135010970.html.

6.	 Bolton, M. T. W., Waterworth, S. N., & McClurg, R. J. Enabling,
Equipping and Empowering the Support Enterprise through
Digital Transformation. (2018, October) In Conference
Proceedings of INEC.

7.	 D. Galar, K. Goebel, P. Sandborn & U. Kumar. Prognostics and
Remaining Useful Life (RUL) Estimation, 2022. Taylor Francis, 3:
p. 89–134 (DOI: 10.1201/9781003097242).

8.	 Henderson, K., McDermott, T., Van Aken, E., & Salado, A. Towards
Developing Metrics to Evaluate Digital Engineering. Systems
Engineering, 2023. 26, p. 3-31. doi:https://doi.org/10.1002/
sys.21640.

9.	 Thompson, G. E., & McGrath, M. Technical Data as a Service
(TDaaS) and the Valuation of Data Options, 2019. Acquisition
Research Program.

10.	 Song, J., Le Gall, F. Digital Twin Standards, Open Source, and
Best Practices, 2023. In: Crespi, N., Drobot, A.T., Minerva, R. (eds)
The Digital Twin. Springer, Cham. https://doi.org/10.1007/978-3-
031-21343-4_18.

11.	 Lyjack, 2019. https://www.linkedin.com/pulse/how-digital-coach-
can-help-improve-production-systems-craig-lyjak.

128

BIOGRAPHIES

129

MIGUEL ÁNGEL COLL MATAMALAS
Miguel Ángel Coll Matamalas is

a Systems Engineer at Isdefe.

He is currently supporting the

Logistics Support Command of

the Navy in the development

of logistic doctrine, and

activities related to obtaining

Integrated Logistic Support for

ongoing Acquisition Programs.

Specifically, he is involved in

the development of the Digital

Twin of the F-110 Program. He

also participates in the NATO CNAD/LCMG/WG1, responsible

for reviewing the ALP-10 standard (NATO Guidance for

Integrated Life Cycle Support). Miguel Ángel holds an BS/

MS degree in Naval Engineering from UPM (Universidad

Politécnica de Madrid) and has completed an Executive MBA

at IESE (Universidad de Navarra). In his previous professional

stage, he has held various positions related to maintenance

and asset management, both in the maritime sector and in

water infrastructure. With the aim of applying this previous

experience in different areas of sustainment, Miguel Ángel

works on improving system supportability through design

influence, digital twin development, and the applicability of

Prescriptive Maintenance (RxM) and Model-Based Product

Support (MBPS).

DR. KAITLYNN CASTELLE
Dr. Kaitlynn Castelle is an

Associate Research Engineer

in the Acquisition & Industrial

Security mission area with

the University of Maryland

Applied Research Laboratory

for Intelligence and Security.

Previously, she worked for the

defense contracting industry,

where she has served as

a Data Scientist and agile

product manager supporting

the COLUMBIA Submarine Program Office. Her high visibility

work in life cycle analysis leveraging Monte Carlo simulation

supported investments in advanced construction in the

Submarine Industrial Base. She is a co-founder and Program

Manager of the Navy’s Project Blue digital engineering

innovation cell, focused on advancing life cycle capabilities

in support of the sea-based strategic deterrence mission in

collaboration with other DoD programs. Prior to her work in

the defense sector, she served as an adjunct faculty member

at Old Dominion University. She obtained her BS in applied

mathematics and MS and PhD in engineering management

from the Old Dominion University.

130

“Systems engineering requires knowledge and skill. It is impossible to acquire
systems engineering skill in a short course or workshop! […] It is impossible to

learn systems engineering from a systems engineering tool.”

A.W. Wymore

131

The previous six chapters are evidence of the profound transformation that the
landscape of systems engineering is facing. Over the past three decades, we
have witnessed a remarkable journey of growth, innovation, and maturation of the
field. We have seen a considerable expansion of knowledge, the embracing of
new methodologies, and the breaking of traditional boundaries that once confined
our understanding and application of systems engineering principles. The field
has changed in ways that were unimaginable at the time of Isdefe’s “blue books’”
publication.

The conclusion of this first monograph on modern systems engineering marks a new
chapter in the dissemination of the discipline in Spain. This monograph marks the
beginning of the new “blue books” series. It is both a testament to the progress
made and a compass for the future. It encapsulates some key topics of the current
state of practice in systems engineering, highlighting nascent areas and innovative
practices that are shaping the future of the field. The diversity of topics covered—
from the application of model-based systems engineering (MBSE) to the integration
of artificial intelligence and digital twins in system lifecycle management—illustrates
the multifaceted nature of systems engineering and its significance in a rapidly
changing world. In the future, we intend to release additional monographs in the
series to dive deeper into each of these topics. We also conceive the dissemination
of these advances as opportunities for Isdefe engineers to succeed in the challenges
they face, in the technically advanced programs of our society, particularly in these
times of growing insecurity and uncertainty.

It is with a sense of pride and optimism that we release this monograph into the
world. Our aim is for it to serve as a starting point for practitioners, guiding them
through the complexities of modern engineering challenges and inspiring them to
push the boundaries of what is possible in systems engineering. We extend our
deepest gratitude to all who have contributed to this work, and to the readers, who
have the challenging task of adopting and evolving the modern systems engineering
practices we have presented here.

Let this epilogue not signify the end, but rather the commencement of a journey
towards new frontiers in systems engineering and its wider adoption. May the
insights contained within these pages inspire you, driving forward the development of
engineered systems that are not only fit for purpose but also resilient and sustainable
in the face of future challenges. Together, we stand on the threshold of a new era,
ready to explore, innovate, and shape the future of systems engineering for the
betterment of society and the world at large.

Dr. Alejandro Salado
The University of Arizona

EP
IL

OG
UE

Isdefe
C/ Beatriz de Bobadilla, 3

28040 Madrid
Tel.: +34 91 411 50 11

Email: general@isdefe.es
www.isdefe.es

