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“[A system is] any portion of the material universe which we choose to separate in 
thought from the rest of the universe, for the purpose of considering and discussing 

the various changes which may occur within it under various conditions.”

J.W. Gibbs



Around 30 years ago, Ingeniería de Sistemas para la 
Defensa de España S.A. S.M.E. M.P. (Isdefe) published 
the systems engineering “blue books.” The “blue books” 
were a series of sixteen monographs that captured the 
state of the art in systems engineering at the time, in a 
practical and concise manner. The series was a special 
feat because of two main reasons. First, it conformed 
the first systems engineering publications that had been 
ever written in Spanish; and was certainly the largest one 
in scope, still to this day. Second, and most importantly, 
it formally brought systems engineering to Spain at a 
time when, let’s be honest, just a few individuals were 
even aware of what systems engineering was. 

The “blue books” covered a wide range of systems 
engineering topics, arguably the whole body of 
knowledge at the time: from General Systems  Theory to Systems Analysis. The series 
was edited by an editorial board (drafting committee) composed by generals from the 
Spanish Armed Forces, government officials from Spain, and Isdefe employees, and 
was written by several national and international experts in the different topics that it 
covered, including authors such as the late Ben Blanchard, Donald R. Drew, and Jezdimir 
Knezevic, among others. While the “blue books” were really an impressive and unique 
source of knowledge, just a few people had access to them. The monographs served 
as the basis for Isdefe to introduce their employees, clients, and partners to systems 
engineering, and have remained so. (I am very lucky to treasure one copy of the entire 
collection in my office despite having never been an Isdefe employee!).PR
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But time has passed and, while one could argue that it has only been 
a bit short of 30 years since then, the systems engineering landscape 
has significantly changed, both in the size of its body of knowledge 
and in its widespread and external awareness. Some examples, non-
exhaustive, follow:

	• The number of active members of the International Council on 
Systems Engineering (INCOSE) (founded in 1990 and becoming 
international in 1995) has grown exponentially since the 2000’s. 
A similar trend exists for the number of new members that join 
INCOSE.

	• A plethora of new methods that span the whole system life cycle 
has emerged. Systems engineering is not anymore just a process 
or a guide for good engineering, but systems engineers can resort 
to methods that are dedicated to its activities, such as capturing 
requirements, architecting systems, and so forth.

	• Today, we have technology that is dedicated to supporting the 
systems engineer; we no longer must remain cornered to paper, 
word processors, and spreadsheets. 

	• There are more and more educational opportunities for systems 
engineers. We no longer have to limit our learning to on-the-job 
training, but many universities offer graduate programs, several 
offer PhD programs, and some undergraduate programs. INCOSE 
has established a formal certification program, and the number of 
consulting companies offering training and systems engineering 
publications (papers, books, reports, etc.) keep growing every year.

	• People start to spell systems engineering for real. In Spain for 
example, systems engineering has been traditionally associated 
with Information Technology (IT). This is still the case for the most 
part, but since 2014 there is an INCOSE chapter in Spain (Asociación 
Española de Ingeniería de Sistemas, AEIS), a podcast, and a few 
events that get organized every year. In just the last 10 years, the 
amount of Spanish you hear at a systems engineering conference 
has dramatically increased. And it feels good!

In this new context, Isdefe is emerging again as a national leader 
in the field and is set to revise and/or complement the “blue books” 
with a contemporary look at systems engineering. The purpose of 
this monograph is to present a snapshot of the state of the practice 
of systems engineering, including topics that are nascent to practice. 
The monograph is targeted to practitioners in the Spanish government 
and industry (while hopefully reaching a wider, international audience), 
who are engaged in the development of engineered systems, both as 
customers and suppliers, in the defense, security, space, energy, and 
transport sectors. 



The monograph has been developed as an edited collection of chapters 
to be read as a monolithic piece, with each chapter being written by 
one or two international experts in the field in tandem with an Isdefe 
employee. Each chapter can be thought of as an introduction to a topic 
that could become a full monograph in the future to tackle in detail the 
specific topics of the chapter. Our intention with this monograph is that 
after reading a chapter, the reader gains a solid awareness of the state of 
the practice and is left willing to learn more about that topic to implement 
it in their organization. 

It has been our intention to write the monograph with an outreach style 
yet aiming at being technically concise and sound. We have tried to limit 
content that describes visions for the future of systems engineering, 
opinions about the state of affairs in systems engineering, or ‘sales’ 
pitches that are shallow and unsupported by practice or research. 
Our goal has been to keep the content as factual as possible, without 
overstating existing capabilities yet without ignoring modern advances. 
It is important to recognize however that, given the fluid state of the field 
right now, different organizations will be at completely different points of 
maturity with regards to the material presented in the monograph; I dare 
to state that some may not even be mature on the practices described in 
the old “blue books” yet. Such organizations should not take the content 
in this monograph as a utopia, but rather as evidence that there is a path 
for them to develop and mature their systems engineering capabilities.

The monograph contains six chapters:

Chapter 1 presents the current context in which systems engineering is 
applied in Europe, as well as some of the competencies of the systems 
engineer of the 21st century. Main topics include the transition from 
vertical integration to specialization, the complexity of contractual 
structures, the alignment of objectives across the supply chain, 
international teams, dual roles of customer/contractor, and market and 
political constraints.

Chapter 2 presents three aspects of modern and future systems that 
may jeopardize traditional systems engineering practices: highly cyber 
physical systems, distributed governance (systems of systems), and 
learning-based systems and human-machine teaming. Emphasis is 
given to current practices with doubtful effectiveness for such kinds of 
systems and the chapter presents current trends on how to address 
these unique aspects of these new systems.

Chapter 3 presents the need to evolve and adapt systems engineering 
development models to the current context of engineering projects. 
The chapter separates the discussion between traditional, dominantly 
plan-driven approaches to systems development such as the Waterfall 
and Vee models, and agile development approaches that emphasize 
responsiveness. Most projects would benefit from both kinds of models, 
and the authors discuss hybrid approaches and how to tailor the 
development models to the context of particular projects.



Chapter 4 moves the discussion from systems and processes to 
technology for the systems engineer. This chapter formally introduces 
MBSE, and it covers aspects such as the effects of formalizing systems 
engineering, the divergence and convergence of semantics, and 
authoring, conducting reviews, and configuration control in model-
based environments.

Chapter 5 presents the novel capabilities enabled by digital models 
and high computational power of current workstations to support 
system development and integration. Topics include automated 
generation and evaluation of architectures, set-based design, and 
intelligent management of the supply chain and integration process. 
among others.

Finally, Chapter 6 addresses the same aspects as Chapter 5 but applied 
to deployment, operations and sustainment, and retirement. Topics 
include the use of digital twins to perform predictive maintenance, 
Virtual Reality environments to train users, and the use of Artificial 
Intelligence to define operational strategies, among others.

Personally, it has been an honor to edit this first monograph for Isdefe’s 
new series, and to work with such a talented pool of authors. I feel 
fortunate that they all agreed to embark on this adventure with us. I am 
very grateful to Isdefe and their project management team for trusting 
and engaging me in this initiative, as well as for having always showed 
continued support. 

On behalf of the authors, the project management team, and Isdefe, I 
hope that you find the reading educative, enjoyable, and useful. 

Dr. Alejandro Salado
The University of Arizona







TA
BL

E 
OF

 C
ON

TE
NT

S

INTRODUCTION TO SYSTEMS ENGINEERING IN THE 21ST CENTURY

PROLOGUE

1.	 SYSTEMS ENGINEERING IN THE 21ST CENTURY

1.1.	 A traditional perspective to systems engineering
1.2.	 The current European context for systems engineering
1.3.	 Systems engineering of the present-future
1.4.	 Conclusions

2.	 NEW KINDS OF SYSTEMS

2.1.	 Introduction
2.2.	 Evaluation of the effectiveness of traditional SE practices applied to these new kinds of systems
2.3.	 Trends to evolve systems engineering to effectively engineer those types of systems
2.4.	 Conclusions

3.	 EVOLUTION OF SYSTEMS ENGINEERING DEVELOPMENT AND EXECUTION MODELS

3.1.	 Introduction
3.2.	 Plan-driven development models
3.3.	 Evolutionary or agile development models
3.4.	 Comparison between plan-driven versus agile development
3.5.	 Tailoring development models
3.6.	 Merging development and operations with DevOps
3.7.	 Conclusions

4.	 MODEL-BASED SYSTEMS ENGINEERING

4.1.	 Introduction
4.2.	 Necessary (and ideal) elements of MBSE
4.3.	 Models are more than just drawings
4.4.	 MBSE is not a silver bullet; good systems engineering is a pre-requisite for good MBSE
4.5.	 Novel capabilities enabled by MBSE
4.6.	 Adopting MBSE
4.7.	 Conclusions

5.	 DIGITAL TRANSFORMATION IN SYSTEM DEVELOPMENT

5.1.	 Introduction
5.2.	 Enablers of digital transformation
5.3.	 Model-based lifecycle management and qualification
5.4.	 Beyond traceability and lifecycle management
5.5.	 Conclusions

6.	 DIGITAL TRANSFORMATION IN SYSTEM DEPLOYMENT, OPERATION, SUSTAINMENT, AND RETIREMENT

6.1.	 Introduction
6.2.	 Application of digital twin, virtual environments, and digital thread technologies in later system life cycle phases
6.3.	 Considerations for pursuing digital transformation across the life cycle
6.4.	 Conclusions

EPILOGUE

7

15

16
18
24
29

35

36
37
44
51

57

58
60
62
66
68
70
71

77

78
79
83
85
85
89
92

97

98
99

101
104
109

115

116
117
122
125

131



“This is where most of us are today: trained in some other field and picked up 
systems engineering as best we could, engineers with on the job training in SE.”

A.W. Wymore
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Systems Engineering 

in the 21st Century
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Abstract

This chapter presents the current context in which systems engineering is applied in Europe, as well as 
the ideal competencies of the systems engineer of the 21st century. Main topics include the transition 
from vertical integration to specialization, the complexity of contractual structures, the alignment of 
objectives across the supply chain, international teams, dual roles of customer/contractor, and market 
and political constraints.

Keywords
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1. A TRADITIONAL PERSPECTIVE TO 
SYSTEMS ENGINEERING
Traditionally, systems engineering has been conceived as the 
glue that connects disciplines in an engineering endeavor on 
the one hand, and the user or customer on the other. The 
systems engineer acts as a sort of technical coordinator, who 
makes sure that the decisions made by traditional engineers 
(e.g., electrical engineering, mechanical engineering, etc.) 
are well balanced and aligned towards a common goal, 
which is defined at the system level. A common analogy 
has been that of an orchestra director, who makes sure the 
harmonies, timings, and volumes played by each instrument 
are adequately aggregated to deliver a (hopefully) beautiful 
piece of music [1]. Without such a direction, the orchestra 
would likely yield a cacophony instead. The need to balance 
the desires of engineering disciplines has been captured by 
several people using cartoons such as the one in Figure 1, 
which caricaturizes the design of a smartphone as desired 
by different engineering disciplines and the resulting product 
once those have been balanced with the customer in mind.

While technical coordination and integration arguably remains 
the most common representation of systems engineering, 
such a view is incomplete though. Lifecycle is the other pillar 
under which the traditional systems engineering perspective 
is built. The systems engineer also oversees the evolution of 
the system throughout its lifecycle (that is, from conception 
to retirement), and in fact foresees those considerations to 
inform early decisions; the systems engineer thinks about 
the end before the beginning. If technical coordination or 
integration is important to balance the desires of engineering 
disciplines, being intentional about lifecycle considerations is 
important to promote consistency between the actual need 
to be satisfied and the final product that is released into 
operations. This paradigm has also been often represented 
by cartoons, such as the one in Figure 2, since at least the 
60’s.

Figure 1. Balancing engineering silos [2] Figure 2. Integration of lifecycle considerations [2]
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Several tenets are central to this perspective, which include 
among others big picture thinking (sometimes equated with 
a systems mindset), foresight, and communication and 
influence [3]. Big picture thinking is the ability to identify 
connections (or relationships) between parts and understand 
how those relationships yield emergent behaviors at a 
higher level (usually called the system level). Following 
the paradigm of the technical coordinator, the big picture 
thinking is exhibited when an engineer understands, for 
example, that the power consumption of a given part is not 
critical in isolation, but that it has effects on the sizing of the 
power supply, which may affect the required capability of the 
thermal control system, which may in turn affect the design of 
the housing structure, which may affect the electromagnetic 
performance of the system, etc. This applies as well to the 
paradigm of the lifecycle considerations, where big picture 
thinking is exhibited when an engineer understands, for 
example, that a given architecture may achieve an excellent 
performance but at the unbearable cost of a very intricate 
integration process or impossible future maintenance.

Probably unsurprisingly, technical coordination in the context 
of integrating lifecycle considerations is done with the purpose 
of promoting success in the development of the system. That 
is, one wants to avoid the unpleasant surprise that the system 
they developed is infeasible to deploy and operate or even 
unfit for purpose; this is regardless of whether this is the result 
of technical inconsistencies or unbearable operations. The 
ability to foresee and anticipate issues and problems during 
system development becomes therefore instrumental for 
a systems engineer. Because of the strong influence that 
early decisions can have in the success of the development 
effort (both in terms of development efficiency and solution 
effectiveness) [4], foresight and anticipation enable steering 
the development work early on in a way to avoid or easily 
mitigate the consequences of obstacles that could emerge 
during the system’s lifecycle.

The ability to communicate and influence others is essential 
for anyone aiming to coordinate the work of other engineers, 
as well as for anyone working across lifecycle boundaries. 
For example, a systems engineer may have to convince an 
antenna engineer that their awesome antenna is unnecessary, 
and a worse-performing antenna is not only acceptable but 
what they actually need to yield a feasible solution at the 
system level. Similarly, a systems engineer may have to 
convince a thermal engineer that their thermal model does 
not need so much accuracy, and that just a coarse estimate is 
sufficient for a particular project. Coordination does not only 
occur between engineering disciplines though. A systems 
engineer may have to explain to a project manager why 

certain modifications are critical (and do so without resorting 
to technical jargon!), as well as translate some project 
management concerns to their engineering team (and do so 
without appearing to be a manager just cutting down their 
budget!). 

Until very recently and probably in most organizations still 
today, these skills have predominantly been developed 
through experience [3] and have heavily relied upon 
talent [5]. Informally described as scar tissue, the systems 
engineer possesses a knowledge base acquired through 
suffering and learning from multiple mistakes and problems 
in several projects. Every unknown unknown that a systems 
engineer encounters during his/her career (that is, events 
that they are unaware of and still materialize), even before 
they became a systems engineer, is converted into a known 
unknown that is added to his/her personal set of heuristics 
or principles (that is, the engineer knows now that the event 
could occur), acquiring the ability to foresee and act on 
them before they occur again. Essentially, you’ve been there, 
you’ve seen it, you’ve lived through it. In addition, a natural 
byproduct of accumulating such experience is the building 
up of respect and/or reputation among peers [6]. Generally, 
these significantly improve one’s position when it comes 
to exerting influence and persuading others [7], and are 
often associated with career promotions, which afford more 
opportunities to engage in diverse forms of communication. 
Furthermore, those individuals with curiosity to stretch 
beyond one’s domain of expertise, can develop their breadth 
of knowledge as they exchange insights with others in multi- 
or interdisciplinary teams [8]. 

Therefore, systems engineering has been traditionally 
conceived as a step for some senior engineers in their career 
progression: those that were very good in their respective 
domains, developed a solid breadth of knowledge across 
the domains that build up the system of interest, and were 
able to communicate across silos (including to management, 
customers, and other individuals engaged in various areas 
of system development across the lifecycle) would become 
the systems engineer for a specific project [3]. Systems 
engineering would not be something you learnt in college, 
but rather something you would become and grow into.

Given the lack of scientific foundations for the discipline [9], 
processes became early on an effective vehicle to harmonize 
systems engineering work [10]. These became so prevalent 
in systems engineering practice that many started to refer 
to systems engineering as the systems engineering process, 
rather than considering it a discipline. Actually, this view is still 
prevalent in several spheres. (One just needs to search for 
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the term on the internet, and they will find such treatment by 
corporations, federal agencies, and universities as of the time 
of writing this chapter!) Such a process is generally described 
(simplistically) as a top-down sequence of activities that 
transform and decompose needs and requirements into a set 
of components that are later integrated to form a system. This 
view reinforces the idea of systems engineering as a step in 
an engineer’s career progression, since one only needs to 
learn and apply a process to an engineering effort.

Given the proliferation of different processes to support a 
systems engineering effort, such as the Spiral development 
or more recently Agile methodologies, there has been 
a trend in the systems engineering community to not 
consider systems engineering a process itself, but rather a 
methodological approach: the systems approach. In fact, 
this is the purview of the International Council on Systems 
Engineering (INCOSE), which defines systems engineering 
as “a transdisciplinary and integrative approach to enable 
the successful realization, use, and retirement of engineered 
systems, using systems principles and concepts, and 
scientific, technological, and management methods” [11]. 
While the approach paradigm certainly encompasses a 
broader understanding than what the process paradigm did, 
there is still an underlying implication of systems engineering 
not being a discipline itself, but something that can be learnt 
transversally to one’s career.

This conception of systems engineering has remained 
virtually unchanged since the days of the Apollo program. 
In fact, the Apollo program has remained the main paradigm 
for the education of engineers for the most part. No doubt, 
Apollo is probably one of the most, if not the most inspiring 
and bold engineering endeavors humankind has witnessed. 
(We certainly believe so.) One may therefore argue that, if 
such is the case, why not use Apollo as the epitome of how 
engineers are to be educated, trained, and developed? The 
answer to that question may be in the fact that it is also fair 
to acknowledge that the context in which the Apollo program 
happened may not be representative of the contexts that 
most engineers face today.

2. THE CURRENT EUROPEAN CONTEXT 
FOR SYSTEMS ENGINEERING

2.1. Organizational, political, and industrial 
complexity

As stated, the Apollo program was an outstanding 
engineering undertaking. But it also benefited from certain 
contextual features that we do not see often if ever in today’s 
engineering programs. Leaving aside the fact that the Apollo 
program was a race in the middle of a war (even it was the 
Cold War), let us look at how NASA’s funding at the time 
compared with today’s funding situation (ref. Figure 3). 

The are three features to observe. First, one can easily see 
the peak of funding that NASA received during the Apollo 
days, which is around double of what NASA received after 
landing on the Moon. Second, one should note that NASA’s 
budget during the Apollo program was mainly consumed by 
the Apollo program, while today’s budget is spread through 
many ongoing and future NASA projects. This allocation of 
resources further amplifies the funding difference between 
the Apollo program and other NASA programs today (at 
least as consumed per year). The third aspect, which is 
probably the most important one with respect to context for 
engineering practice, was told to the first author of the chapter 
by a colleague, who supervised a PhD student researching 
government funding allocation during the Apollo program.  
Every budget request that NASA solicited to government 
was approved. That means that, while the funding in today’s 
projects reflects NASA budget (what they have available to 
spend), the histogram for the Apollo years show what NASA 
needed to complete the project. Effectively, engineers during 
the Apollo program did not have cost constraints.

But financial resources are not the only contextual difference 
between then and now. Organizations adopt one of two 
primary paradigms to tackle the development of complex 
systems: vertical integration or horizontal integration. In 
vertical integration, a single organization owns all stages of 
the system development process, encompassing conception, 
engineering, manufacturing, and production. Conversely, 
organizations adopting horizontal integration rely on different 
external organizations, which specialize on different aspects 
of the engineering endeavor, allowing them to leverage their 
expertise and knowledge. For example, while a vertically 
integrated organization would design and manufacture 
every component needed for their system, a horizontally 
integrated organization would purchase a given component 



19

(e.g., a battery) to another company that specializes in such 
kind of technology (e.g., a company that only designs and 
builds batteries). While vertical integration offers greater 
control over system development, horizontal integration 
promises higher efficiency due to the allocation of different 
tasks to expert companies in those tasks. It should be noted 
though that vertical and horizontal integration should not be 
understood as binary, but rather a tendency towards more 
vertical integration or more horizonal integration.

Vertical integration was common in the early days of systems 
engineering, probably because existing companies would 
simply grow their existing product portfolio towards products 
of higher complexity and scale. However, horizontal integration 
was later favored in the hopes of higher financial efficiency 
and lower risk promised by specialization and became 
the norm for large scale engineering endeavors. In fact, 
horizontal organization is still the most prevalent approach 
today, particularly in Europe. However, organizations have 
started to accept that specialization in these areas (i.e., 
large scale systems such as those in the defense and space 
sectors) has not lived up to its promise, at least in the way in 
which it has been implemented. 

Horizontal integration introduced the need for contractual 
structures to govern the relationships between the different 
organizations engaged in the development of a system (here, 
the roles of prime contractor, subcontractor, etc. emerge). 
The burden imposed by contractual constraints often leads 
to significant costs that, in many cases, have jeopardized any 
possible gains obtained through specialization1. Furthermore, 

1. While contracts existed before, the fact that budgets were virtually unlimited made 
contracting just a vehicle to communicate work, not a source of risks affecting the 
development effort.

this was an aspect that, while taken into account from 
a philosophical or conceptual perspective in systems 
engineering, was not embedded within systems engineering 
practice in a way that could be operationalized to effectively 
navigate and/or blend contractual and engineering aspects 
of an engineering project. 

In Europe, this situation is exacerbated by the geopolitical 
constraints emerging from the need for various countries to 
not only work together, but to compete and capture European 
funding. It is not uncommon in European projects that the 
funding that an organization may receive to pursue an 
engineering endeavor is proportional and/or bounded by the 
financial contribution that the country made to the project 
through the European financial and political channels. This 
may result from a country’s goal to manage a project, to 
keep control or leadership of a technology, or to develop 
new capabilities or technologies unavailable to the country 
at that time, among others. To compete in this context, many 
multinational companies replicate capabilities in different 
countries instead of fully implementing specialization, 
leading to internal competition that confounds with political 
constraints and competition with other external organizations. 

Today, certain organizations are attempting to transition 
back to vertical integration, in the hopes to integrate their 
engineering teams more easily towards a common goal. 
SpaceX has shown with its rockets a notable example of how 
vertical integration in the 21st century has contributed (albeit 
not the only contributing factor!) to significantly lower the cost 
of a large-scale system with respect to horizontal integration.

Figure 3. NASA funding over time 
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The geopolitical constraints remain though in the European 
context. While in the USA the political and cultural union 
with a centralized government facilitates the execution of 
large-scale engineering programs with a high technological 
content, in the European context, the fragmentation into 
multiple states with diverse political and economic interests 
makes it difficult to tackle large engineering programs that, 
due to their size or complexity, would be impossible to 
undertake alone. Supranational organizations (such as the 
European Space Agency) or international programs (such as 
Eurofighter, A400-M, or the more recent FCAS (Future Combat 
Air System)) try to mitigate the effects of this fragmentation by 
securing stable and prolonged funding commitments from 
member countries. (The boxed text presents some historical 
notes and examples of supranational organizations in Europe 
engaged in the development of large-scale engineered 
systems.) However, these supranational organizations do 
not resolve the problems inherent to particular interests 
of each member country when it comes to the distribution 
of workloads, the assumption of responsibilities, and the 
protection of their national industries and security interests. 

A clear example of these difficulties is evident in the 
establishment of the FCAS program, which involves Germany, 
France, and Spain as the main contributing members. This 
program faced several challenges. One such challenge was 
the prioritization of the interests of certain national industries 
over the needs of the end users. For instance, France, led by 
Dassault, opposed Airbus serving as the national coordinator 
for the other two member countries. Additionally, Germany 
expressed doubts about the project’s viability, while Spain 
preferred Indra over the more international Airbus as its 
national coordinator. These issues resulted in multiple delays 
and disagreements among the member countries and their 
industry partners. Clearly, the fragmented execution of this 
kind of engineering endeavors incurs enormous transaction 
costs related to negotiation and decision making among 
its members. Some of the consequences are the need to 
offer returns to each of the partners, the different weight of 
each of them within the programs, the location of production 
in plants that are sometimes suboptimal, or the need to 
transport parts between them when all the assembly could 
be done in a single location. In the end, all this contributes to 
higher prices for the end customer, excessive development 
times and, in most cases, delays [12].

Some examples of supranational organizations engaged 
in the development of large-scale engineering systems in 
Europe.

In Europe, the treaty establishing the European Economic 
Community (Rome, 1957) and even the 1997 Treaty of 
Amsterdam excluded the arms and defense sector from 
the Community sphere, making it difficult for governments 
to collaborate and to adopt a common development 
framework such as might exist in the United States. One 
of the initial endeavors to foster European cooperation 
in defense affairs emerged with the establishment of the 
Independent European Programme Group (IEPG) in 1976. 
This initiative was conceived as a technical association 
in alignment with the principles of the Atlantic Alliance, 
emphasizing the preservation of each member country’s 
national responsibilities. The resolutions produced by the 
IEPG, though lacking binding authority, primarily served 
as a mechanism for exchanging information regarding 
national armament and equipment procurement procedures. 
Furthermore, they facilitated the investigation and evaluation 
of potential frameworks for overseeing joint projects.

In 1992, the IEPG became the Western European Armaments 
Group (WEAG) and was integrated into the Western European 
Union (WEU) as the body responsible for armaments 
cooperation. Despite continuing the procedures and relations 
of the IEPG, it established a series of new objectives such 
as the search for competition between the different national 
markets, the reinforcement of the technological base, and 
cooperation in defense R&D. In 1996, the Western European 
Armaments Organization (WEAO) was established; a new 
WEU subsidiary body essentially dedicated to managing 
research and technology activities.

Given the limited impact of these initiatives, a group of 
countries began to make progress in this field through 
different agreements until 1996, when the Organization 
for Joint Armament Cooperation (OCCAR) was formed, 
the main organization in the field of industrial cooperation 
in armaments and the embryo of the European Defence 
Agency (EDA). OCCAR’s Program portfolio currently includes 
17 important armament programs with a total operational 
budget in 2023 of about 6 Billion €: A400M, BOXER, COBRA, 
ESSOR, FREMM, FSAF-PAAMS, LSS, LWT, MALE RPAS, 
MAST-F, MMCM, MUSIS, NVC, PPA, REACT, TIGER, and 
U212 NFS. The governance of OCCAR and the management 
of the OCCAR programs follow the OCCAR rules. 

Meanwhile, in Spain, ISDEFE (Ingeniería de Sistemas para 
la Defensa de España), a state-owned company, was 
established in 1985. It was created to serve as a resource 
for providing technical support in complex projects, with a 
particular focus on the defense, aeronautics, and information 
and communications technology sectors. Additionally, 
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ISDEFE was tasked with offering technical assistance to 
the Ministry of Defense in systems engineering efforts, 
particularly related to the Modernization Programs of 
the Armed Forces. Since its inception, ISDEFE has been 
actively implementing Systems Engineering methodologies 
in the development processes of various systems, including 
command and control systems, air traffic control, platform 
reengineering, logistics chain optimization, intelligence and 
electronic warfare systems, and surveillance and border 
control systems. Notably, ISDEFE has played a crucial role 
in numerous military programs, such as the F-110 frigates, 
the VCR 8x8 wheeled armored vehicle, the A400M military 
transport aircraft, the Tigre helicopter, the S-80 submarine, 
and many others.

In 2004, the European Defense Agency (EDA) was founded 
to help its twenty-seven member states (all EU countries) to 
develop their military resources by pooling national interests 
and catalyzing the operational, technological, and industrial 
aspects required to implement multinational weapons 
systems programs, delegating the actual management of 
the programs in their development and production phases 
to organizations such as OCCAR.

In the aerospace field, two initiatives set the European 
framework for collaboration in systems engineering: the 
creation in 1975 of the European Space Agency (ESA) 
and the establishment in 2000 of the aerospace company 
European Aeronautic Defence and Space (EADS), renamed 
in 2014 as Airbus Group. 

The creation of the European Space Agency (ESA), like that 
of EDA, was preceded by the creation of other bodies such 
as the European Space Research Organization (ESRO) 
in 1962, the European Shuttle Development Organization 
(ELDO), the European Space Research and Technology 
Centre (ESTEC), which would be responsible for the 
development of satellites and space vehicles, and the 
European Space Operations Centre (ESOC), responsible 
for the control of satellite operations. In 1973, with the global 
agreement of all member countries, three projects were 
approved (Spacelab, the Ariane Program, and Marots) 
and a fundamental decision was taken: the creation of the 
European Space Agency (ESA).

The European Commission has sought to overcome the issues 
of fragmentation by establishing the following initiatives:

	• The Directorate-General for Defence Industry and Space 
(DEFIS), which directs the European Commission’s 
activities in these sectors. In the defense industry field. 
DEFIS is responsible for maintaining the competitiveness 
and innovation of the European defense industry by 
ensuring the evolution of a capable European defense 
technological and industrial base. In the space domain, 
DG DEFIS is responsible for the implementation of the 
EU Space Programme, consisting of the European Earth 
Observation Programme (Copernicus), the European 
Global Navigation Satellite System (Galileo), and the 
European Geostationary Navigation Overlay System 
(EGNOS).

	• The European Defence Action Plan (EDAP) of November 
2016, which seeks to promote a strong and competitive 
European Defense Technological and Industrial Base 
(EDTIB) based on the European Defence Fund (EDF), 
main EDAP funding framework. This plan is based on four 
pillars through which specific actions and programs are 
implemented in the fields of research and development, 
enabling European defense supply chains and building a 
single European defense market.

	• The Permanent Structured Cooperation (PESCO), of 
December 2017, which integrates 26 countries and 
whose key objectives are the improvement of defense 
capabilities, cooperation in military operations, and the 
development of joint military capabilities. Its ultimate goal 
is to strengthen the Union’s strategic autonomy in defense 
matters.

These initiatives add to the ever-increasing set of regulations 
imposed by governments and federal agencies that 
organizations and engineered systems must comply with. 
Public agencies in Europe frequently navigate rigorous 
and highly regulated tendering procedures. While these 
procedures aim to ensure transparency and equal 
opportunities for bidders, they can sometimes become 
intricate and time-consuming. This complexity may lead 
to delays in the selection and contracting of engineering 
organizations. Moreover, the holistic nature of systems 
engineering demands bidding for contracts of various types 
(e.g., supplies, software licenses, consulting, works, etc.) 
involving multiple suppliers and subcontractors, which adds 
to the challenge of management and contractual relationships 
among stakeholders. Additionally, in the case of extensive 
transnational consortia, country-specific regulations for 
public procurement, data protection, and intellectual property 
must be harmonized.
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In the context of Spain, for example, Article 99.1 of the 
Public Sector Contracts Law stipulates that “the object 
of public sector contracts must be determined. The 
same may be defined in attention to the specific needs 
or functionalities that are intended to be satisfied, without 
closing the object of the contract to a single solution.” This 
requirement compels organizations to clearly define the 
functional needs of contracted systems from the outset, 
preventing the project from leveraging the knowledge of 
companies during its early phases and, in some cases, the 
adoption of innovative development models, processes, 
or approaches, like Model-Based Systems Engineering 
(MBSE), if these are not mandated by the customer.

Time will tell if these initiatives succeed, but past 
experiences do not seem to correlate the addition of more 
governing bodies and regulations with success in system 
development. Concerns for overreliance on processes have 
been claimed as early as in 1969 already during the Apollo 
program, “If I plot a graph versus time of what appears to 
be a recent rising tide of costs, cost overruns, unsatisfactory 
performance and unhappiness among engineers, I have 
reason to worry. […] If I plot on the same graph versus time 
the rise in talk, directives … I see high correlation between 
the two graphs” [10], and were reaffirmed in 2010 by former 
NASA Administrator Mike Griffin [5]. In simplistic terms, 
each new regulation adds a new constraint that the solution 
must satisfy. And we know that each constraint reduces the 
solution space, and that a reduction of the solution space 
generally reduces the affordability of the developed system 
[13].

International collaboration, essential for major European 
programs, as described, presents other challenges that 
span beyond those formally introduced by geopolitical 
constraints. Some examples are listed below:

	• Effective communication between multicultural and 
multilingual teams is not straightforward. Communication 
problems stem not only from language barriers but also 
from cultural nuances in communication styles. For 
example, what may be considered direct and clear 
communication in one cultural environment, may be 
considered disrespectful or confrontational in another. 
At the same time, multilingual teams may find it difficult 
to convey technical information accurately and in a way 
that is understood by all members because of losses of 
information in translation, as well as decreased cognitive 
performance due to the increase demand in cognitive 
load when speaking a second language.

	• Coordination of activities involving personnel working 
in different locations and using different tools and 
technologies in their local work environment can lead 
to delays in exchanging information and coordinating 
activities. In addition, there are legal and security 
concerns for organizations within large consortia as cross-
border data exchange may be subject to restrictions, 
which can add complexity to information exchange and 
collaboration efforts. 

	• Cultural and work habit differences may need to be 
overcome in order to achieve the ultimate goal of a joint 
system that meets expectations. The way decisions 
are made can vary greatly from one culture to another. 
Some cultures may prefer a consensus-based approach, 
while others rely on hierarchical decision-making. These 
differences can affect the effectiveness of the decision-
making processes in a collaborative project. 

These issues should not be interpreted as stating that 
international collaboration should not be pursued. Not only is 
international collaboration necessary to develop some large-
scale systems, as explained earlier, but it is also preferable in 
many situations because of several benefits that it can yield, 
such as leveraging expertise and knowledge. For example, 
in the case of the Spanish S-80 submarine program, the 
Spanish Ministry of Defense contracted with the US Navy and 
General Dynamics-Electric Boat, which allow them to rethink 
the program and implement better engineering processes 
and methodologies, including adopting the NASA Systems 
Engineering Handbook. The point made in this section is that 
this sets a new context in which systems engineering must 
be applied, and for which methods and/or approaches may 
need to be evolved.

2.2. Engineering and technological complexity: 
New systems, new methods

We have seen in recent years, and continue to see, 
the emergence of new kinds of systems that exhibit 
fundamental differences with respect to those with which 
systems engineering was born. Traditional systems were 
characterized by being predominantly hardware-based 
(software was an isolated tiny part in those where there was 
software at all), monolithic (their capabilities did not depend 
on the capabilities of other systems), often developed in a 
green field (no dependency on legacy systems), and lacking 
agency (high predictability on the command-and-control 
behavior of the system). Traditional systems are less and 
less common, if they exist at all. For example, when the first 
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airplanes were developed, all supporting systems also had 
to be developed to support the airplane (hence their name). 
Today, new airplanes are developed within the constraints 
of the existing supporting systems; support systems are 
no longer in a supporting role but in an enabling one. In 
other words, the development of contemporary systems is 
significantly constrained by their need to interact with many 
systems that are already in place (i.e., legacy systems).

However, the strongest novelties come from the increase in 
importance and size of software components in contemporary 
systems, the transition into distributed governance structures, 
and the emergence of agency.

In the past, software was limited to some very specific 
functionalities that were otherwise too difficult to implement 
in hardware. Software was conceived as a last resort, not a 
preferred go-to solution. Codes could be entirely reviewed 
and tested. Today, software drives most of the functionality of 
existing systems or, at least, most functionalities depend on 
software. One only needs to look at how cars have evolved; 
even the handbrake is controlled by software! The increase 
in the reliance on software, together with the increase in 
its complexity, challenges many of the assumptions under 
which systems engineering has been traditionally practiced. 
Software can be evolved quickly, it can be deployed 
incrementally, it introduces security vulnerabilities of an 
unprecedented diversity and potential severity, it is difficult 
if not impossible to comprehensively test, and it can be 
deployed and upgraded on the fly during operations, among 
others.

Traditional systems were monolithic in the sense that they 
alone could yield their intended capabilities; assuming 
supporting systems were in place. For example, a television 
would work fine as long as you could connect it to the 
power grid and tune its antenna. Today we are living the 
proliferation of systems of systems (SoS): those that are 
heavily interconnected with and rely on the capabilities of 
other independent systems whose primary goal is not to 
serve in a supporting role. In other words, systems that each 
have their own purpose are somehow leveraged to yield 
unanticipated capabilities. In the example of the television 
before, the purpose of the power grid is to provide energy to 
household devices and the purpose of the content providers 
is to provide content to consumers. Hence, in both cases 
the systems’ purposes are to serve the television. However, 
a smartphone affords you the capability of personal 
navigation by leveraging signals provided by the Global 
Positioning System (GPS), even though the GPS’s primary 
purpose is to guide missiles, not to help you find your way 

somewhere. Recognizing that not every collection of systems 
is necessarily a SoS is essential to avoid falling into the trap 
of calling and treating everything a SoS, as the term is often 
abused and has become a buzzword. Differentiating both is 
important because traditional systems engineering practices 
are likely ineffective and sometimes even infeasible to tackle 
the unique aspects of SoS [14]. In fact, there are even system 
attributes or performance metrics, such as availability, that 
we do not even know how to compute and/or predict for a 
SoS [15]. Certainly, one cannot simply use traditional systems 
engineering to engineer and/or integrate a SoS and expect 
to be successful. The application of systems engineering 
must be adapted (not tailored!) but, in all honesty, the 
systems engineering community has only started to grasp 
how to do so. As a body of practice, we are confident that 
managerial and governance independence of the constituent 
systems that form the SoS seem to be the latent factors that 
must inform the evolution. As the ISO standard to apply 
systems engineering to SoS indicates, approaches based on 
command and control assumptions, availability of information 
(e.g., to support verification), existence of requirements, or 
guaranteed services may be powerless [14]. Some have 
even claimed that SoS cannot actually be engineered, but 
only integrated [16], which makes processes related to 
requirements and architecture inapplicable. Instead, novel 
systems engineering methods that are based on persuasion 
and influence, use of incentives (e.g., mechanism design), 
opportunistic federations, or blended development and 
operation are being developed.

If distributed governance and the complexity of an ever-
increasing reliance on software were not enough changes to 
the systems we must work with, we have started to witness 
the incorporation of agency in cyber-physical systems, 
mainly through artificial intelligence. The exhibition of agency 
dramatically changes several core assumptions that are 
central to systems engineering practice. For example, 
whereas traditional systems are considered to exhibit 
invariant behavior, in the sense that the behavior is set once 
the system is built, intelligent systems are designed to change 
their behavior as needed. 

This challenges the effectiveness of many traditional systems 
engineering practices, which need to be evolved. For 
example, and certainly not exhaustively:

	• Since an intelligent system may change its behavior 
between the test environment and the operational 
environment, tests in test environment may no longer be 
good proxies to predict system behavior during operation 
[17].
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	• If an intelligent system is expected to learn from 
its experiences, individual systems may exhibit an 
uncontrolled variability of its behavior with respect 
to its class or family. As a result, product lines may 
no longer be able to bound a class of systems [18].

	• Intelligent systems have a stable underlying/
supporting functionality (that is, to optimize a 
reward function) and the main driver of system 
performance and behavior is the training data. 
Functional decomposition is no longer able to 
capture how the system works, since it is data that 
drives behavior. How does this impact functional-
based analyses such as fault-tree analysis or Failure 
Modes and Effects Critical Analysis (FMECA)?

While some of these problems may be relevant for 
software-based intelligent systems (such as a function 
that predicts your purchasing behavior in an online 
store), their solutions may not be directly transferrable 
to general systems, because of the highly coupled 
effects of the physical world. A new evolution of 
systems engineering is therefore necessary.

3. SYSTEMS ENGINEERING OF THE 
PRESENT-FUTURE

Traditional systems engineering paradigms and 
methods are becoming ineffective to deal with the new 
contexts – organizational and technological – in which 
engineering endeavors are being undertaken. The 
role of a single senior engineer trying to coordinate 
technical efforts by managing information in countless 
documents, manually controlling configuration items, 
relying on free-style sketches to model different 
system facets, and gut-feeling most decisions is 
slowly fading away. Methods underpinned by science, 
formal decision making, formal modeling, digitalization 
of engineering artifacts, and a diversity of systems 
engineering competencies that can be distributed 
within a team are shaping the present and future of 
systems engineering.

An overview of some aspects that are relevant to 
the contemporary and evolving context of systems 
engineering is discussed in the following sections. Note 
that these sections are not intended to provide a vision 
for the future of systems engineering or a roadmap for 
its evolution; some proposals can be found in other 
publications (e.g., [19]). 

3.1. Emerging theories and foundations

The origins of systems engineering and its development as an 
engineering practice in the 1960’s were accompanied by several 
efforts to formalize the discipline. Pioneers such as Wymore (e.g., 
[20]), Warfield (e.g., [21]), or Mesarovic (e.g., [22]), among others, 
tried to develop mathematical foundations to support systems 
engineering practice, which, as stated earlier, was primarily driven 
by intuition, talent, and eventually processes. However, it is fair to 
state that their work did not succeed in traversing the academic 
realm into informing systems engineering practice at the time. For 
several years their work did not only remain unused but the very 
interest in discovering the foundations of systems engineering 
faded away against more applied and readily usable research that 
focused on developing methods.

Today, there is a growing recognition, both in academia and 
industry, for the need of scientific foundations to inform systems 
engineering practice. Science is a core element of engineering. 
Absent of scientific principles, we would probably talk of 
craftmanship rather than engineering. Certainly, humans built 
bridges and manufactured products well before Newton formulated 
the first laws of motion. People resorted to their intuition, heuristics, 
and experience and were successful with them; here we are today, 
writing a book chapter on a computer! But we would not say that 
they practiced engineering. Engineering a bridge or a product 
is an entirely different feat, since the underlying science enables 
us not only to understand how things work, but also to use that 
knowledge to better predict the results of our decisions to improve 
the effectiveness and efficiency of the products. 

By the same token, we should probably be calling systems craft to 
what we do today, and not use the term systems engineering yet. 
We have not been able to even agree on or find a rigorous definition 
for what a system is! [23] Let alone more intricate concepts such 
as requirements, needs, specifications, architecture, ilities, etc. 
To move our systems engineering practice, which is built upon 
experience, gut feeling, good practices, and supposedly good 
ideas, into real engineering, where we can undoubtfully assess the 
goodness of a systems engineering method and have a common 
and consistent set of concepts and associated vocabulary, among 
others, we need scientific foundations to build upon. 

The U.S. National Science Foundation (NSF) has been supporting 
and funding fundamental research in systems engineering for at 
least two decades. The Department of Defense (DoD) funded the 
Systems Engineering Research Center (SERC) 15 years ago as a 
network of collaborating universities with the goal of transforming 
systems engineering practice by creating innovative methods, 
tools, and processes and bringing academia and practice closer 
together. As of the time of writing this chapter, INCOSE has 
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launched its Future of Systems Engineering (FuSE) initiative, 
which includes the Foundations of Systems Engineering as 
one of its fundamental tracks. While we are far from having 
a comprehensive and mature set of scientific principles to 
underpin systems engineering, research has already unveiled 
several of them, even if most have still not transitioned into 
practice. 

Today, we know that most of the decision methods and/or 
processes that are used in practice are fundamentally flawed 
and their recommendations should not be trusted, and why. 
We know that risk matrices generally embed wrong orders 
of criticality, and why. We know that most categorizations 
of requirements lead to poor requirements, and why. We 
know that verification agreements between customers and 
contractors should be based on programmatic discussions, 
not on technical ones, and why. We know that existing MBSE 
tools are unable to model requirements and that flagging 
models as requirements leads to poor solution spaces, and 
why. We know that decisions in engineering should not be 
consensual in general, and why. We know that verification 
plans should not be baselined and contracted early in the 
system development, and why. And, moreover, we also know 
how many of those activities should be done, and why. The 
list keeps going but we are not trying to be exhaustive, just 
indicative. 

3.2. Systems engineering beyond technical 
coordination

The conceptualization of the systems engineer as a technical 
coordinator or technical manager has significantly expanded 
in recent years. In addition to these, the systems engineers 
of today can take other roles, including but not limited 
to requirements engineer, system designer or architect, 
system analyst, verification and validation engineer, interface 
engineer, operations engineer, and information engineer 
(including configuration management and metrics) [24].

Lately, we are even seeing a significant growth of job 
demands for system modelers (or unfortunately called MBSE 
engineers), engineers that specialize in the application of 
MBSE and support traditional systems engineers or systems 
engineering teams with modeling needs, from converting 
their ideas into formal models to taking care of model 
management tasks. In essence, as the field matures, systems 
engineers may specialize in the different processes or tasks 
that systems engineering encompasses. 

To aid the personal development of the systems engineer, 
INCOSE has developed a framework that captures the 
competencies that a systems engineer can acquire and 
should acquire when targeting certain competency level 
[25]. The framework categorizes competencies between 
core (those that all systems engineers should have, such 
as systems thinking or critical thinking), professional 
(those that relate to the work of the systems engineer 
within an engineering team, such as technical leadership 
or negotiation), management (those related to technical 
coordination, such as risk management), and technical 
(those that relate to systems engineering processes, such 
as requirements or architecture). And it divides expertise 
between five competency levels, from awareness to expert. 
An example is shown in Table 1.

A core benefit of the framework is the recognition that a 
systems engineer does not need to impersonate the knows-
it-all role, but that his/her competencies can be developed in 
line with the systems engineering role that he/she may take. 
This allows teams to move from every engineer executing 
systems engineering in their domain (for which strong systems 
engineering competency cannot probably be developed) to 
assigning high competency roles within the team, sharing 
different systems engineering tasks.

Modern systems engineering needs 
to address these deficiencies, whilst 
recognizing the organizational and 
governance complexity inherent 
in conception and development of 

large-scale systems. 
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Specialization in different systems engineering areas is 
meaningful. And, while we are going in a good direction, 
there is still work to be done. For example, it is highly unlikely 
that someone would assign an electronics engineer the 
responsibility to perform the structural analysis of an airplane. 
For such a task, you would choose an engineer that had 
graduated college with a mechanical engineering degree, 
had several years of experience conducting structural 
analyses of growing complexity, and had potentially pursued 
advanced degrees in structural engineering. However, we 
find it absolutely sensible to take that electronics engineer 
and assign him/her the task of writing requirements for a 
multimillion-dollar system after just offering him/her a 2-day 
seminar on requirements engineering. Yet, most of the 
research and reports of most frequent causes of project failure 
do not list incorrect structural analyses as one of the main 
causes; eliciting the right requirements right is recurrently 
listed though (e.g., [26, 27]).

To fill this need, academia is stepping up, both through 
research (as explained in the previous section) and education. 
The first undergraduate program in systems engineering 
started in the early 1960’s at the University of Arizona, with a 

heavy focus on math, and one of the first master degrees (if 
not the first one) in the late 1960’s at Virginia Tech, with a heavy 
focus on technical coordination and integration. However, 
it was not until the mid-2000’s that the Stevens Institute of 
Technology reimagined systems engineering education, with 
master degrees that focused on the different specialization 
areas and competencies that are required in modern systems 
engineering. Such a paradigm has triggered immense growth 
of master level offerings in the United States of America. 

This has been driven by the demands of industry; it is just 
too risky to rely the future of multimillion dollar ventures on 
individuals that ignore good systems engineering practices 
and methods. Formal systems engineering is also slowly 
making its way into Europe, although maybe too slowly. 
Systems engineering degrees are rather scattered in 
different countries, instead of being regularly offered by 
most universities. For example, as of the time of writing this 
chapter, only the European University of Madrid offers a  
postgraduate program in systems engineering in the country, 
and it is not even a masters degree after the last educational 
reform. To clarify, it is not the degree that matters, but the 
competencies and expertise that formal education can 

Awareness
Supervised 
practitioner

Practitioner Lead practitioner Expert

Describes 
different types of 

requirements

Assists with the 
elicitation of 

requirements from 
stakeholders

Elicits and validates 
stakeholder 

requirements

Defines and 
documents 
enterprise-

level policies, 
procedures, 

guidance and 
best practice 

for requirements 
elicitation and 
management 

processes, including 
associated tools

Coaches lead 
practitioners in 
requirements 
elicitation and 
management

Explains why there 
is a need for good 

quality requirements

Describes the 
characteristics 
of good quality 

requirements and 
provides examples

Writes good 
quality, consistent 

requirements

Reviews and judges 
the suitability and 

completeness of the 
requirements set

Advises and 
arbitrates on 

complex or sensitive 
requirements-
related issues

Table 1. Example of competencies for requirements definition at different levels of competency [extracted from [25]]
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yield. This is something not even discussable for traditional 
engineering disciplines, and hopefully a future paradigm for 
systems engineering.

The growth and development of formal systems engineering 
education at all levels (undergraduate, graduate, and even 
recently apprenticeship) is also changing how systems 
engineering exists as a career. If traditionally systems 
engineering has been a career progression, as described 
earlier in the chapter, we start to see systems engineering 
as a career choice itself, where one can progress from junior 
positions to more senior positions. For example, a junior 
systems engineer might be responsible for deriving and 
managing uncritical requirements for the system, while the 
senior systems engineer can focus his/her attention to just the 
subject of critical ones.

The emergence and adoption of MBSE is also contributing 
to this paradigm change, as it is becoming increasingly 
easier for an organization to recruit MBSE talent directly out 
of college than train and change the ways of its more senior 
personnel. In fact, some community colleges have started to 
offer associate degrees/apprenticeships for system modelers 
that would take jobs similar to those that drafters had with 
respect to mechanical drawings.

3.3. Novel methods and tools

The advancement of affordable computational power, together 
with the formalization of systems engineering (as discussed 
in section 3.1), have enabled the development of computer-
based methods and tools to support systems engineering 
activities in unprecedented ways. Probably, the most impactful 
innovation has been the development of MBSE.

In a nutshell, MBSE promotes the use of formal machine-
readable models to capture systems engineering artifacts that 
used to be captured in narrative form or informal models using 
general office tools (e.g., word processors, spreadsheets, or 
free drawing tools). In principle, there is no limitation on what 
systems engineering artifact is captured as a model (e.g., 
requirements, use cases, functional architectures, physical 
architectures, or verification plans, among others). But in 
addition, MBSE also captures the relationships between those 
artifacts (e.g., allocation of requirements to components, 
allocation of functions to components, traceability between 
requirements and their verification activities, etc.). The 
transition into a model-based environment is expected to 
provide several benefits, including among others better 
communication, improved consistency of information, 

reduction of development errors, and improved time and cost 
efficiency [28]. While there seems to be informal agreement 
within the community of practice about these benefits, it is 
important to mention that there is a general of lack evidence 
that these benefits can be actually realized [28]. 

Today, MBSE is experiencing rapid growth in availability and 
capabilities of tools, underlying modeling languages, and 
industry and government adoption that we could only dream 
of 10 years ago. In this sense, the adoption of Computer-
Aided Design (CAD) in mechanical engineering has been 
often used as an analogy for how MBSE could transform SE. 
Several organizations are pursuing a similar transition path, 
opting to acquire software licenses, provide a short training to 
their employees on tool usage, and let them run with MBSE. 
However, MBSE is not just a technological evolution, as CAD 
was [29]. MBSE has implications at the process and methods 
levels, in addition to the adoption of dedicated computer tools, 
which also need to mature for the technological adoption to be 
successful in the long term. In other words, MBSE does not 
improve poor systems engineering. For example, in terms of 
modeling, users can now choose between SLD (the proprietary 
language of Vitech Corporation, Inc.), the Systems Modeling 
Language (SysML, managed by the Object Management 
Group and for which its v2 is currently being developed), 
Capella (an open language developed by Thales), the Object 
Process Methodology (a language underpinning an ISO 
standard), and the Lifecycle Modeling Language (LML). These 
languages or modeling frameworks do not only have different 
strengths and weaknesses, but their underlying structure has 
significant implications to the practice of systems engineering. 
Furthermore, the languages do not offer in most cases a direct 
translation to guarantee compatibility between them. Failing to 
realize that the three facets need to be considered for adopting 
MBSE leads to failure [30, 31].

MBSE adoption has primarily focused on the early development 
activities, mainly supporting requirements management, 
system architecture, and change propagation assessment, 
and is predominantly descriptive. That is, systems engineering 
models are used to describe aspects of the system (for example, 
how two components interface with each other) rather than to 
support quantitative analyses (e.g., evaluating the system level 
performance given the performance of its components). There 
are certainly exceptions to this, which have proven the feasibility 
of using MBSE in later phases of the system development (such 
as, for example, to plan test and integration activities [32, 33]), 
and the value of extending descriptive models to perform 
quantitative analyses [34] or executable simulations [35]. But 
these are not widely available or employed yet.
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Furthermore, MBSE discussions are shifting towards a 
more general, digital engineering paradigm. In a digital 
engineering environment, all engineering artifacts are 
captured in computer models that are semantically 
connected with each other. This means, for example, that 
the power consumption attribute in an electronics model is 
connected with its corresponding power dissipation attribute 
in a thermal model and with its corresponding power 
consumption attribute in a power budget system model. 
This does not imply that all models use the same data and/
or values for each parameter. Rather, digital engineering 
enables the formalization of authoritative sources of truth, 
which ensure the validity and truthfulness of the data sources. 
Digital engineering does not invalidate or substitutes MBSE, 
but it is intended to expand its ideas beyond the scope of 
systems engineering and throughout the entire lifecycle, 
from problem formulation to manufacturing to operational 
support.

Differently than with the adoption of MBSE, which has been 
facilitated through hybrid top-down and bottom-up efforts 
(that is, led in some cases by teams of engineers and in 
some cases supported by corporate leadership or customer 
mandate) [30], the adoption of digital engineering is being 
strongly mandated from leadership. The U.S. Department of 
Defense (DoD), for example, has established a dedicated 
Digital Engineering strategy [36], which has been rapidly 
flown down into its service branches. A similar action has 
been taken by the Ministerio de Defensa in Spain [37]. 
This approach surfaces a conflict between the urgency 
with which the customer or organizational leadership 
desires to advance their capability and the readiness of the 
community of practice to provide effective solutions in terms 
of processes and tools. Today, the envisioned capability is 
still far away from technological readiness.

Computational power has also enabled the acceleration 
of otherwise time-demanding tasks. Traditionally, the 
exploration of the solution space during conceptual design 
or system architecture efforts has been limited to trading-
off a handful of alternatives in search of the most preferred 
solution. However, structured system models can be used 
now to increase the size of the solution space that can be 
explored, called tradespace, and automatically evaluate 
thousands if not millions of solutions at once [38]. Sensibly, 
the larger the solution space that is explored, the more likely 
it will be to find a better solution. This changes the focus of 
conceptual design from refining a reduced set of individual 
possible solutions to construct modular structural models 
that enable breadth and depth of exploration. 

Furthermore, system development has been traditionally 
limited to a single solution that is chosen and iteratively 
refined until it goes into production and is later deployed. 
This means that a system concept or system architecture 
is chosen, and then it goes through detailed design, 
where iterations may occur, as the solution is refined into a 
working one with sufficient maturity to be manufactured and 
eventually deployed.

This paradigm has been called point-based design, since 
the design is based on choosing a single solution (point) in 
the solution space early on. However, computer models can 
significantly reduce the effort that it takes to maintain and 
refine a solution. The novel paradigm of set-based design 
proposes to leverage this advantage to avoid anchoring to 
a specific solution early in the system development [39], 
when knowledge is limited [4]. In set-based design, a set 
of solutions (points) in the solution space are chosen and 
refined together. Unattractive solutions are only discarded 
from the set once there is sufficient knowledge to do 
so with sufficient confidence. This provides flexibility in 
the development process without requiring changes to 
solutions, as acceptable solutions are retained. 

The way in which past experiences and organizational 
knowledge may be used in systems engineering is also 
dramatically changing thanks to the use of machine-
readable models and computational support. Cognitive 
assistants are machines (usually software systems) that aid 
humans in cognitive tasks [40]. Amazon’s Alexa or Apple’s 
Siri are good examples of cognitive assistants that we have 
started to use frequently, and ChatGPT is further amplifying 
the capabilities that this kind of systems can provide to 
humans. A key aspect is that the engineer can use natural 
language to dynamically and iteratively develop systems 
engineering artifacts with the support of the assistant. 
In systems engineering, for example, we have now the 
capability of not only asking a cognitive assistant to develop 
conceptual solutions or systems architectures for a given set 
of parameters, but also to explore the tradespace in several 
directions and explain its choices and recommendations 
[41-43]. 

The evolution of methods and tools has not been limited to 
those enabled by advances in computational capabilities 
though. We are also witnessing the emergence of new 
development processes, models, and paradigms that have 
emerged out of necessity to cope with the peculiarities of 
the new context and kinds of missions in which and to which 
systems engineering is applied now, as discussed in the 
previous sections. 
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4. CONCLUSIONS
The systems engineering landscape has changed in 
recent years, and seeds have been planted to promote 
further changes in the years to come. This chapter has 
hinted at what those changes are and why they have been 
or are necessary. Resources are not unlimited anymore; 
rather, they are generally scarce. Systems engineering 
endeavors trespass geopolitical boundaries and must 
balance the consequences of industrial consolidations, 
rapidly evolving technologies, and the emergence of 
agile startups and rapidly changing market needs. The 
nature of the systems we must develop and work with 
now has also changed. Most developments are no longer 
in a green field, and we must often have to reconcile the 
constraints of large legacy systems with novel aspects 
related to increased cyber nature of systems, distributed 
governance, and even intelligence.

The systems engineer must outgrowth themselves 
from just being a technical coordinator to a systems 
engineering expert. Growing into a systems engineer on 
the job is not sufficient to effectively deal with today’s 
systems engineering efforts. The systems engineer 
must learn novel methods and techniques, many of 
which start to be underpinned by research; many good 
practices have turned out to be not that good and many 
mature processes are no longer relevant. Technology 
is taking the center stage of the systems engineering 
effort, starting with the provision of digital assets that 
can connect across domains and moving into the use 
of cognitive assistants to augment the capabilities of the 
human engineer. While still nascent, these capabilities 
are rapidly evolving. 

Systems engineering has arrived in the 21st century, 
and it will only keep maturing and evolving. Is your 
organization ready to modernize its systems engineering 
practices?.

Development processes that are more iterative, less 
scaffolded, and more rapid to field systems are becoming 
more and more frequent (e.g., agile, DevOps) and integrated 
with more traditional ones (e.g., Waterfall, Vee). Considerable 
progress has been made to develop the notion of systems 
of systems engineering, which has been lately redefined as 
mission engineering. 

In mission engineering, the 
focus is deliberately put on 
the planning and integration 
of current and future system 
capabilities towards fulfilling 
current and future operational 

needs. 

The main distinction here is that those system capabilities 
are provided by independently governed and/or managed 
systems. 

This discussion is not exhaustive. There are other advances 
in systems engineering that are probably worth noting, 
but these should provide an idea of what the landscape of 
the current practice of systems engineering is (even if still 
futuristic for some organizations).
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This chapter presents four aspects of modern and future systems that are shifting traditional systems 
engineering practices: adaptability in systems, highly interconnected cyber-physical systems, learning-
based systems with human-machine teaming, and distributed governance in systems of systems. 
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1. INTRODUCTION

There are several trends that are changing the nature of the 
systems we develop and interact with today:

1.	 The pace of technological innovation continues to 
increase. With the availability of basic research on 
the internet, science and technology have become 
more of a commodity and the introduction of technical 
innovations into existing missions and platforms drives us 
to continuous adaptation and change. Systems are much 
less stable than they used to be, and competition favors 
those who can adapt the quickest to technology-driven 
change, not necessarily those who can invest the most to 
bring technologies to the mission.

2.	 The behavior of systems is and will continue to be defined 
more by software than hardware. All systems are or will be 
largely digital and will be supported by connected digital 
infrastructures. Hardware systems remain important 
but trend further towards more general purpose, more 
affordable and distributed even in critical applications 
like defense.

3.	 Data is increasingly collected and available for analysis. 
Computer storage and processing power continues to 
grow exponentially. Modern systems and future systems 
more so, adapt to changing internal and external 
conditions, as informed by changing data. The way we 
develop systems ought to change to better harvest and 
act on this data, and to take advantage of data and models 
to improve efficiency in development and management of 
programs. 

4.	 Everything is becoming interconnected, and complex 
global systems of systems abound. Increasingly cyber-
physical systems (CPS) are connected to other systems 
to share data and other resources as larger systems of 
systems. This opens both new opportunities and new 
vulnerabilities in system capabilities. Systems engineering 
(SE) rigor is necessary to balance the openness of these 
systems with other concerns such as safety, security, 
privacy, assurance, and alike.

5.	 Automation and user customization make systems 
more efficient, configurable, and adaptive. In particular, 
human tasks are much more dependent on teaming 
with automated or partially automated systems. This will 
continue to advance with artificial intelligence (AI) and 
machine learning (ML) to a new class of system known 
as a Learning Based Systems (LBS). An LBS is a new 
class of computing systems that achieves its function and 
performance through ML techniques. In the near future, 
human operators and LBS will both interact and adapt to 
jointly complete complex missions, a concept known as 
Human-Machine Teaming (HMT).

These trends are creating new kinds of systems, which we 
have categorized into four evolutionary and interrelated 
types: 

	• Highly Adaptable Systems: Modern systems make 
extensive use of software for their user-valued functionality 
as it is easier to change and minimizes production costs. 
Systems are becoming more and more tailorable in 
function to individual users. As a result, there is a trend 
toward systems that are easier to adapt to changing 
needs. In addition, highly adaptable development and 
support practices have permeated system business 
models to emphasize more frequent and consistent 
delivery of value in terms of capability introduction and 
flexibility. Learning and iteration have become more 
valued than up-front requirements understanding and 
stability, even in critical systems.

	• Highly interconnected Cyber-Physical Systems: 
Modern systems are highly interconnected and fully 
dependent on software defined functionality. The Internet 
of Things (IoT) as an infrastructure is leading to large 
scale CPS systems such as smart cities, interconnected 
transportation, ubiquitous sensing, and manufacturing 
4.0. Highly interconnected CPSs raise concerns over 
safety, security, and trust in domains where these have 
not previously been priorities. Large scale interconnected 
CPS increase the complexity and effective surface area of 
the systems we interact with. Digital twins (digital models 
of CPS connected to and operating with physical CPS) 
are now a rapidly growing domain of SE.

	• Learning-based systems and human-machine teaming: 
Emerging systems will have increasing composition with 
LBS, which are systems whose behaviors are learned 
instead of programmed. These will be teamed with human 
users to augment human intelligence and agency (HMT). 
The impact of these systems on human tasking and 
situational awareness will also be an emergent property 
of future systems. LBS are expanding definitions of 
trustworthiness in systems, from primarily dependability 
concerns to human concerns such as ethics and fairness. 
Uncertainty management as well as test, verification, and 
validation of LBS are emerging challenges for SE.

	• Distributed governance in systems of systems: The 
performance and capabilities of a system depend on 
information and shared functions with external systems 
that cannot be fully controlled. This leads to complex 
emergent behaviors and different methods of governance. 
Systems of systems (SoS) methodologies have been 
established to help manage governance, but as with 
other historical SE practices these are not keeping up with 
the rapid adaptation of SoS and shared governance.
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The underlying theme across all four kinds of systems is the 
rapid growth in system complexity. Figure 1 highlights the 
related complexity concerns being driven by these new kinds 
of systems [12].

SE has always been viewed as a methodology to help manage 
system complexity, but the types of systems and their related 
system concerns are shifting, and the established methods 
are due to be updated. That is the subject of this chapter.

The next section evaluates the effectiveness of historically 
established SE methods in dealing with these new kinds 
of systems and SE concerns. Following that, we discuss 
some of the trends that are driving changes in the ways we 
practice SE as a result of these new kinds of systems. These 
discussions are not derived from exhaustive literature review, 
but from ongoing research and research roadmapping in the 
Systems Engineering Research Center (SERC) at the Stevens 
Institute of Technology in Hoboken, New Jersey, USA. 

2. EVALUATION OF THE EFFECTIVENESS 
OF TRADITIONAL SE PRACTICES APPLIED 
TO THESE NEW KINDS OF SYSTEMS

2.1. Highly adaptable systems

Adaptability in systems is defined as the ability of a system to 
adapt itself efficiently and quickly to changed circumstances. 
An adaptive system is therefore a system that is able to fit its 
behavior according to changes in its environment or in parts 

of the system itself [28]. The Systems Engineering Body of 
Knowledge (SEBOK) further discusses system adaptability 
as the system’s ability to satisfy externally driven mission 
and requirement changes with or without modification, as 
measured by some value indicator such as cost, time, or 
resources [29]. This definition implies that context-driven 
change is an intentional process. This does not effectively 
capture the nature of today’s LBS, which are continuously 
updating themselves based on learned behaviors or outputs 
that are responsive to changing external context. For this 
kind of systems, it is no longer appropriate to segregate a 
system from its external context; both must be understood 
and modeled. 

Highly adaptable systems are software-intensive, highly 
connected, and have extensive automation and user 
configuration capabilities. At their core are sets of data 
that drive the behavior of the system, which is defined by 
software logic, algorithms, and control and data management 
functions. The underlying mechanism is a connection 
between the sets of data in the system and the external 
environment that allows the behaviors of the system to rapidly 
change in response to external context changes. This can be 
an intentional data-driven learning and modification process 
responding to changing mission, or can be highly automated 
in response to changing external context as with emerging 
LBS.

However, SE, strongly influenced by aerospace and defense 
needs, has continued to be linked with the physical realization 
of large complex systems and other critical capabilities that 
are intended to persist for many years. The need for rigorous 
definition, analysis, and testing of these critical systems will 
always exist, but the lifecycle processes we choose to use 

Figure 1. Characteristics of increasing complexity in systems. [12]
Copyright © 2021 by INCOSE
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should be tailored to the system’s actual use and life. For 
example, SE for modern systems tends to be more model-
based, agile, and responsive to user needs, which may be 
accomplished with more adaptable and efficient lifecycle 
processes by leveraging data and models [16]. Software 
systems engineering (SSE), information technology and 
enterprise architecture, distributed modeling and simulation, 
and automated manufacturing systems must all be leveraged 
in a convergent fashion to address lifecycle management of 
highly adaptable systems. 

Modern SE technical and management processes transform 
data into views through models, which support analyses 
leading to decisions. This digital process flow supports 
“Data Transformed into Models then Analyzed through 
Views to make Decisions documented in Digital Artifacts.” 
This process flow is not new, but is evolving from a largely 
manual, inefficient process flow to a highly automated 
process flow driven by rapid, consistent, and value-driven 
adaptation cycles. (Software development practices have 
evolved to manage this automation.) Figure 2 redraws the 
widely depicted “Define -> Realize -> Deploy&Use” stages 
of the SE Vee-model lifecycle process in a circular process 
to represent it as a: 

1)	 set of data at the core, interpreted by model 
transformations, leading to design decisions,

2)	 layered across disciplines and engineering tasks to 
produce decision artifacts, and

3)	 in continuous iterative processes that could be entered 
from any point.

The challenge in highly adaptable systems is maintaining 
appropriate SE rigor and associated process definition to 
ensure these systems remain scalable, resilient, safe, secure, 
and usable by human operators. New SE lifecycle processes 
address shared and authoritatively managed sets of digital 
data and models associated with the system’s entire lifecycle, 
not just a single engineering or program lifecycle [16].

2.2. Highly connected Cyber-Physical Systems 
(CPS)

Highly adaptable systems are evolving from software-only 
systems to fully connected software/hardware systems known 
as CPS. The U.S. National Science Foundation (NSF) defines 
CPS as “engineered systems that are built from, and depend 
upon, the seamless integration of computational algorithms 
and physical components” [19]. A CPS has computers and 
networks that control physical processes, often characterized 
by feedback loops that affect computations and the physical 
outcomes of those computations. Figure 3 provides a general 
layered depiction of a CPS framework [11]. As shown in 
the figure, the design of CPS must address these control 
activities in a device of interest but also the interconnected 
human and machine systems that interact with it, which may 
occur at long ranges over cyber networks [10]. 

Furthermore, CPS transform the way in which people interact 
with systems [19]. For example, humans can now interact with 
engineered systems over cyber networks instead of directly 
(such as controlling a thermostat from a mobile phone) or even 
across multiple interconnected CPS and large-scale software 

Figure 2. Circular Processes with Data at the Core [16] Figure 3. A general framework for CPS [11]. Republished courtesy 
of the National Institute of Standards and Technology
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systems. These interactions are enabled by higher degrees 
of automation and autonomy [19], which increase however 
the complexity of the system control methods and the speed 
of evolution of the system in response to its external domain.

Traditionally, SE has distinguished how a system is constituted 
internally (i.e., its structure) from how the system manifests 
itself externally (i.e., its behavior) and deduced the function 
from the structure. This notion is the foundation underlying 
hierarchical construction of systems with defined input and 
output interfaces across multiple modular components. It has 
resulted in a focus on structural system representations in 
SE, supporting physical trades in primarily physical systems.  
Highly connected CPS, however, are heterarchical in nature.  
They are comprised of numerous, heterogeneous elements 
acting both independently and interdependently. Because 
of this complexity, traditional structural decomposition and 
physics-based models are insufficient. In complex systems, 
form (structure) and function (behavior) are intrinsically 
linked and not separable. The complexity of the system 
control methods (behavioral) and the evolution of the external 
domain that interacts with the system (adaptive) cannot be 
ignored. These changes are a product of the computer/
network interactions and increased use of digital data in the 
control functions, along with the connected nature of the 
external environment and users.

As an example, Figure 4 shows a functional and structural 
view of the highly cyber-physical systems emerging in 
transportation systems today. In practice these systems 

are more often built from general purpose programmable 
hardware while behaviors are programmed by software. 
Their function in the full system may evolve incrementally 
over time, as we are seeing in vehicle automation today. 
Mechanisms that determine the qualities of these system, 
such as safety, adaptability, or resilience, are intentionally 
supported in the hardware and software designs but also 
realized by investment in both system structure/function 
today and architecture evolution over time. This is a concept 
known as technical debt, where decisions made in the 
current design gradually limit the system’s ability to support 
new capabilities in the future. Informing decisions that drive 
both the immediate and long-term qualities of the systems 
they support are thus critical.

The complexity of these networks of CPS results in emergent 
behaviors that cannot be fully modeled and predicted, 
or even structurally decomposed in traditional ways. The 
technology traditionally employed by the SE is also going 
through an evolution towards digital engineering (DE) and 
simulation-based design practices. Time invested in up-
front digital simulation of these emergent behaviors is 
essential to both short-term and long-term design decisions. 
These simulations can also be deployed to monitor the CPS 
behaviors after installation to more rapidly and accurately 
detect undesired behaviors in use. This is the driver for and 
concept behind digital twins, which will be expanded in 
Chapter 6. In this paradigm, both the realized system and 
the virtual simulated system and interconnected products are 
holistically planned and managed with full SE life cycles. As 

Figure 4. The automobile as a highly connected CPS [2].
Image from https://telecom.economictimes.indiatimes.com/tele-talk/connected-car-opportunity-propels-multi-billion-dollar-turf-war/2971
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can be seen, the concerns of a modern systems engineer 
expand in this context from just the structure/behavior and 
domain-driven non-functional qualities of the system itself, to 
also include its interaction in the larger connected context 
and environment, and finally to how both the realized system 
and its companion virtual twins are managed and evolved 
over the full lifecycle. This has become a multi-disciplinary 
challenge requiring a shift in SE skillsets to integrate across 
the principles, foundations, and characteristics listed in Table 
1 in a holistic manner. 

The SE concerns of CPS can also be stated in terms of 
trustworthiness, related to the ability of the CPS to withstand 
instability, unexpected conditions, and gracefully return 
to predictable but possibly degraded performance [11]. 
This is truly a system concern in highly connected CPS. 
These characteristics of trustworthiness, which include 
dependability, safety, reliability, privacy, security, and 
resilience, have for the most part evolved within distinct 
disciplinary and education silos. Historically, SE practice has 
treated these as disparate sub-disciplines. Large SE and 
integration projects often have property-specific leads, who 

represent discrete viewpoints within the trade-off process 
overseen by the chief systems engineer/integrator. Functional 
requirements often have caused engineers and designers to 
prioritize each property differently, based on domain-specific 
requirements and perspectives (e.g., energy, manufacturing, 
transportation, etc.). Achieving a certain level of success in 
each property is typically vital to the overall success of the 
system. Trends in the engineering of highly connected CPS 
suggest that SE disciplines are converging toward increased 
interdependency. 

This is particularly important for highly connected CPS, in 
which systems-based holistic thinking is critical to supporting 
trustworthiness objectives and avoid problems arising with 
respect to one property, or protections inserted to address 
one dimension of concern, do not compromise other primary 
system objectives or cause deleterious unintended effects 
[17]. 

Awareness Supervised practitioner Practitioner

Communication and Networking
Basic computing concepts, 

including software engineering
Security and privacy

Embedded systems, both 
hardware and software

Discrete and continuous mathematics Discrete and continuous mathematics

Real time systems
Physical world computing, 

including sensors, actuators, 
and real-time control

Interoperability

Physical world computing, safety, 
reliability, security, performance, 

and risk management

Cross-cutting application of 
sensing, actuation, control, 

communication, and computing

Reliability and dependability, 
Safety, Stability and performance

Human interaction with CPS, 
including ease of use

Modeling of heterogeneous and 
dynamic systems integrating control, 

computing, and communication
Human factors and usability

CPS system development 
(emphasizing concepts of resilience 

and safety, test and verification)
Power and energy management

Table 1. NAS CPS principles, Characteristics, and Foundations [18]
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Thus, we have today a multi-disciplinary challenge associating 
together foundational disciplines of various schools, such as 
engineering, computing, and human interaction. We also 
have a multi-disciplinary challenge across traditional SE sub-
disciplines related to (1) dependability in computing systems 
(availability, reliability, safety, integrity, and maintainability), 
(2) system security engineering (confidentiality, integrity, 
and availability), (3) information systems (management, 
communications, and privacy), and (4) cybersecurity 
(threats and protection). This is also a system governance 
challenge, both in the enterprise systems that develop highly 
connected CPS, and in the emergent behaviors of the CPS 
themselves [17]. There is a need for a more interdisciplinary 
approach to system design, founded on rigorous system 
functional modeling and simulation, evolutionary design, and 
rigorous evaluation. As digital engineering and Model-Based 
Systems Engineering (MBSE) become more prevalent, 
there is potential to transform traditional system design and 
evaluation processes to more holistic and more evidence-
based forms using models (to be further elaborated in 
Chapters 4 through 6). Verification and validation of highly 
connected CPS through test and evaluation have historically 
been the gold standard but is significantly expensive and 
fraught with difficulty as systems become more complex, 
more expansive, and more inter-dependent on other systems 
to realize their intended capabilities. Again, bringing data and 
models into this process aims to relieve some of the expense 
and make the entire process more flexible and amenable to 
changes that can occur across a system’s lifecycle.  

2.3. Learning-based systems and human-machine 
teaming

Concepts of highly adapted systems, highly interconnected 
systems, and resulting distributed governance are placing 
SE in the midst of a digital transformation driven by 
advanced modeling tools, data integration, and the resulting 
digital twins. Data, models, and computing systems are 
all converging with machine learning (ML) techniques to 
enable a new class of computing system that achieves its 
function and performance through the use of ML – known as 
a Learning Based System. Applications of LBS are evolving 
exponentially into many domains. 

LBS are types of AI models that use ML algorithms to make 
decisions and solve problems without being explicitly 
programmed. ML algorithms independently detect, analyze, 
and learn patterns directly from input data and modify their 
behavior accordingly to predict new output. LBSs differ from 

a longer legacy of rule-based AI systems in their ability to 
achieve scale, provide adaptability, and handle complex 
tasks. Rule-based systems are a type of AI model that uses a 
set of prewritten rules to make decisions and solve problems. 
Developers create rules based on human expert knowledge 
that enable the system to process input data and produce a 
result. Almost all systems of the future, and the tools we use 
to design them with, are evolving to include compositions of 
rule-based and learning-based components.

The number of systems with some level of learning capacity 
is increasing exponentially today. In some applications, these 
systems work closely with humans; in others, operations are 
largely autonomous.  In these systems, distributed teams 
of humans work with distributed teams of autonomous 
systems, with relationships that can change dynamically. 
Likewise, SE is evolving to more of a technological discipline 
that uses LBS to define and manage digital data and 
descriptive models that link different disciplines together. 
The SE digital engineering transformation is being followed 
by transformational advances in the discipline of SE using 
AI and ML technology for automation of many engineering 
tasks, designed to augment human intelligence. At the same 
time, the application of AI, ML, and autonomy to many of 
today’s complex and critical systems drives the need for new 
SE methods, processes, and tools. 

A primary goal of SE is to ensure that the behavior and 
performance of complex engineered systems meet the 
expected outcomes driven by user needs, and that the 
configuration of the system is managed across its lifetime.  
Advances in AI and ML application means that future system 
components may learn and adapt more rapidly, and that 
behavior and performance may be non-deterministic with 
less predictable but manageable outcomes. This is the 
LBS challenge. The inability to explicitly validate system 
behaviors or the time it takes to do that will impact trust 
in these systems and is driving change in the way the SE 
community traditionally addresses system validation [26]. 
The uncertainty present in multiple AI/ML components that 
interact defies traditional decomposition methods used by 
the SE community, requiring new synthesis methods. Finally, 
as systems develop means for co-learning between human 
users and machines, traditional models that separate human 
behaviors from the machine will need to be revisited [14].

Thus, the emerging SE challenge is to produce systems 
that gain value from their ability to learn, which may be 
inherently non-deterministic, but that are also appropriately 
robust, predictable, and trustworthy in the type of critical and 
complex uses common to the application of SE practices 
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today. This includes both human and machine behaviors in 
joint decision environments, highly reliant on good human-
systems design and presentation of decision information. It 
also includes the adaptation of test and evaluation processes 
to co-learning environments [14]. 

The future SE challenge involves LBS that actually adapt 
and learn dynamically from their environments. These 
environments could be real, simulated, or a mix of both 
thanks to the generation of synthetic data, which offers new 
approaches for system training and development but, on the 
other hand, generates the need for synthetic data validation. 
In this rapidly emerging future, machine-to-machine and 
human-to-machine (and maybe machine-to-human) trust will 
be critical. In this future, systems will be expected to learn 
to modify or create new behaviors as the context changes 
and this may happen fairly rapidly. Methods that revalidate 
system performance extremely rapidly or “on the fly” are not 
part of the current SE practice set and must be developed 
along with these types of learning systems [14].

The future of LBS and SE is difficult to predict at this point. The 
SE discipline is entering a period of rapid change where it will 
be trying to catch up to the evolving use of ML algorithms 
and resulting LBS. The complexity of engineered systems 
is rapidly increasing, but the automated tools that systems 
engineer’s use are also evolving to manage that complexity – 
albeit at a slower pace. The transformation of SE away from 
manual paper-based workflows to a fully digital and model-
based set of practices is actually quite urgent.

2.4. Distributed governance in systems of systems

The distinguishing feature of a system of systems (SoS) is 
the behaviors of the “whole” come from individual constituent 
systems that act independently and autonomously [3]. 
Furthermore, SoS are generally sociotechnical systems: 
technology-driven systems that involve significant human and 
social participation, where that participation in turn influences 
the architecture and design of the technical system [13]. 
In other words, the human is a part of the system, not an 
external agent.

In order to determine appropriate architecting principles, 
SoS engineering (SoSE) literature defines a classification 
system for SoS linked to the degree of managerial control in 
the SoS. The four SoS classes are Directed, Collaborative, 
Virtual, and Acknowledged SoS. The degree of central 
control or governance over SoS changes is the primary 
distinction of each class [4]. In a directed SoS, the integrated 

SoS is created to serve a specific purpose and is governed 
centrally. The constituent systems remain independent, 
but their normal operations are directed through a central 
authority. In a collaborative SoS, the constituent systems 
volunteer to collaborate and there is not a central control 
agent with authority to direct their operations. However, 
there is still a governance function determining an agreed 
upon purpose for the SoS. In collaborative SoS standards, 
regulations, norms, and circumstances drive the operation of 
the constituent systems. 

SoS literature additionally distinguishes the collaborative SoS 
classifications as virtual and acknowledged. Virtual SoS are 
collaborative but develop without a centrally agreed upon 
purpose or set of goals. Governance is fully distributed. 
Acknowledged SoS have a recognized objective set and a 
designated managerial component, have resources allocated 
for development, but changes are based on collaboration 
objectives. Governance remains distributed but conforms 
to centrally determined policies and outcomes. A good 
example of a collaborative SoS is automotive traffic on the 
interstate highways. Whether or not this highway traffic SoS 
is viewed as virtual or acknowledged is linked to stakeholder 
perspectives. Drivers would view it as virtual (its goals are 
determined by my individual need to get from point a to point 
b), while highway transportation officials would view it as 
acknowledged (its goals are to safely and efficiently manage 
interstate traffic). Today’s and future adaptable and highly 
interconnected systems are more collaborative and struggle 
with managerial control, and individual perspectives and 
behaviors will affect system behaviors in ways that cannot be 
easily predicted by traditional SE decomposition.

The Wave model is an established framework for evaluating 
and planning evolution in systems of systems (ref. Figure 5). 
The model recognizes that evolution is continuously driven 

Figure 5. The wave model [7]
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by input from the external context, and unlike traditional 
SE it views the analysis of system change as an ongoing 
process with multiple overlapping increments. In the Wave 
model, system evolution is a forward-looking process with 
feedback at each iteration, and managerial control strategies 
attempt to group multiple constituent changes into SoS level 
architectural changes to create efficiency in the test and 
validation process [7].

A different perspective is given in the innovation literature, 
called “transition management” [21]. Innovation literature 
counters the Wave model with a more bottom-up view of system 
evolution. Innovation system models recognize innovation as 
a complex adaptive process where lower-level innovations 
in constituent systems form niches of adoption, which over 
time produce broader changes in established SoS regimes, 
eventually resulting in transformation of the existing landscape 
(or context). Today one can view the public development of 
driverless automotive technologies as such an evolution “in-
process.” The primary aspect of this model is that innovation 
progresses through social layers and can be modeled as a 

multi-scale or multi-layer social phenomenon, as opposed to 
the more mechanistic view of the Wave model. Figure 6 shows 
this process as reflected in transition management literature.

The competing phenomena in these two views of SoS 
evolution are differing models of distributed governance. The 
SE perspective in the wave model assumes that SoS change 
can be planned and managed over time by some governance 
mechanism. The innovation perspective in the technology 
transition model notes that change will evolve from bottom-
up technology evolution that cannot be governed but can 
be encouraged or guided. In defense systems, distributed 
governance of the SoS and constituent systems is a set of 
agreement processes between military organizations. In 
commercial innovation, distributed governance is determined 
by market factors. A SE challenge today in this regard 
derives from the commercial marketplace driving technology 
innovation and the defense and aerospace industries primarily 
driving SE methods and tools in a somewhat insulated form 
from that larger marketplace.

Figure 6. A dynamic multilevel SoS perspective on technology transitions [8]
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This brings the concern of current SE methods being slow 
to change and not adapting well to the current dynamics 
of distributed governance in more adaptable, highly 
interconnected systems. Trying to fully predict emerging 
SoS requirements and rigidly plan SoS updates up-front runs 
counter to current commercial business markets. Commercial 
businesses do aim to centralize governance of SoS value but 
recognize actual SoS emergent capabilities require openness 
and experimentation ahead of rigid planning.

Technology is also driving the execution of distributed 
governance models. Recent technologies such as software 
orchestration and blockchain/distributed ledger technology 
(DLT) have led to the emergence of “leaderless organizations” 
where rules and system goals are distributed via software 
automation and people are allowed to self-organize their 
tasking. These same technologies will likely help to manage 
“authoritative data and models” in future SE, but the 
governance of these is an open question at this point. This is 
not just a commercial trend; emerging military command and 
control concepts envision future military SoS as an internet 
of things, ideally moving from rigidly connected platforms 
to more flexible distributions of capabilities managed 
by distributed control centers in line with the concept of 
collaborative combat. The same concepts of highly adaptive 
systems, highly interconnected CPS, and LBS/HMT emerge 
together to transform military operations. All these trends 
point to the need for SE methods and processes that center 
on agility and flexibility, along with improved integration of the 
business reasons for these traits.

3. TRENDS TO EVOLVE SYSTEMS 
ENGINEERING TO EFFECTIVELY ENGINEER 
THOSE TYPES OF SYSTEMS

3.1. Digitalization

The core change driving the discipline of SE today is 
the transition towards digital engineering, a paradigm 
where “shared and authoritatively managed data” can be 
transformed through “shared and authoritatively managed 
models” and related tools to create Digital Artifacts that can 
be used by various decision-makers and others needing 
digital access to the design and descriptions of the system 
across its lifetime [20]. These artifacts were almost always 
paper documents or drawings in the early years. Now they 
are generally based on digital technologies, but workflows 
still tend to be document driven instead of data driven.

The workflow view in Figure 7 shows conceptually how shared 
and authoritatively managed data should be transformed into 
digital artifacts in different life cycle stages in any SE process. 
Data, federated data models, and distributed data storage 
are the foundational infrastructure of modern SE. This is a 
distributed federation of data and models, governed across 
organizations, with authoritative processes to manage data 
and model provenance and configuration. 

Figure 7. Data Transformation into the Life Cycle
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Figure 7 is particularly relevant to SE modernization, as 
“Data Management” is not currently defined as a disciplinary 
process in SE standards. Data, models, and data storage 
systems can each be conceived and treated as a separate 
system that must also be developed and deployed in support 
of the fielded system. These must be defined and built along 
with other system development aspects. These also have 
their own lifecycles. New SE lifecycle processes are evolving 
to address shared and authoritatively managed sets of digital 
data and models associated with the system’s entire lifecycle, 
not just individual engineering or program lifecycles. This 
mental model has been depicted as a combination of a 
conventional Vee model with a mirrored Vee model to create 
a design diamond that incorporates digital counterparts 
of a product at all stages of its lifecycle (ref. Figure 8) [5]. 
The virtual system and the physical system are anticipated 
to evolve together in the long-term across the full system 
lifecycle. 

Systems engineers have long used digital data and various 
modeling and analysis tools to produce digital artifacts for 
decision-making (such as Microsoft PowerPoint slides). 

However, the underlying data models have not been 
“seamlessly shared” in digital workflows and tools, or likely 
not shared at all. Furthermore, authority for that data has often 
been held by independent activities generally organized 
by discipline. Today, much of the transformation from data 
to models to decisions is still a manual interpretation of 
disparate data and analyses. This manual interpretation limits 
our ability to be iterative and responsive across disciplines 
and disciplinary tools. It is inefficient and non-holistic. The 
evolution of SE is a fully integrated, iterative workflow where 
the system is the focus, not the owner of the data or the 
particular element of a design. Today’s primary challenge 
in digital engineering is not so much being “model-based,” 
it is understanding, creating, and validating the underlying 
data model that integrates across requirements, design, 
test, disciplines, and disciplinary processes, with it being 
shareable and shared. The value of SE in the future can 
be realized through a more seamless and efficient transfer 
of data and models, starting from underlying performance 
drivers through models to decisions and ease of drilling back 
down from decisions to data. This is currently not the state of 
SE practice, but a target to define capability roadmaps.

Figure 8. The Boeing “Diamond” showing the full lifecycle existence of virtual and physical (adapted from [5])
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3.2. The digital ecosystem

Collaboration between disciplines and organizations requires 
establishing high assurance interfaces between multiple 
engineering, development, and management applications in 
a digital engineering ecosystem. The future digital ecosystem 
for SE is envisioned as a service-oriented architecture 
to provide flexibility and adaptability between tool suites 
across and between organizations, as shown in Figure 8. 
Data exchange between applications may be technically 
envisioned as a set of collaborative APIs for data and 
information sharing, as well as query and response. Maturing 
standards, moving towards open systems, and building up 
experience implementing digital SE are necessary to facilitate 
the adoption of digital engineering in organizations [16]. 

3.3. The digital system model

One of the most impactful changes in SE in recent years 
has been the maturation and adoption of MBSE, which is 
presented with certain level of detail in Chapter 4. MBSE is the 

Figure 9. An Operational View of a Digital Ecosystem.
(SE: systems engineering, HW: hardware, SW: software, T&E: test & evaluation, Mfg: 
manufacturing, Mgmt: management, Sus: sustainment, PEO: program executives)

formalized application of modeling to support SE activities, 
including system requirements, design, analysis, verification, 
and validation activities beginning in the conceptual design 
phase and continuing throughout development, production, 
and later life cycle phases. MBSE has a particular value in the 
digital ecosystem as an approach to express and capture the 
relationships, interdependencies, and associated processes 
connecting systems level models and other disciplinary 
models as well as the life cycle process flow. For example, 
system models are useful for showing relationships among 
requirements, system functions, physical components, 
suppliers, acquirers, and users. Being machine-readable, 
formal models allow relationships between data elements 
to be established and to be processed by software thus 
enabling efficiency-improving capabilities.

In MBSE, the system model is used as the central repository 
for design decisions that span multiple engineering and 
business concerns; design decisions are captured as model 
elements in that digital system model [6]. This is the emerging 
digital product of the SE function.
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The practice of SE is still learning the most productive uses of 
MBSE. Initially the focus has been on a digital representation 
of the system specification, to include concept of operations, 
requirements, work breakdown structure, use cases and 
functions, and performance analyses. The concept of the 
digital system model as the central repository for design 
decisions (or at least an index to this) informed by executable 
simulations and/or quantitative analyses is the core use of 
MBSE in DE, and is still evolving, together with systems 
modeling languages and tools. 

The use of a digital system model should eventually apply 
to all systems in all domains, but the concept is still in its 
infancy. Most systems are still developed and deployed 
without this formal but holistic set of models and views, 
leading to continued late lifecycle failures and rework. As new 
kinds of systems become more adaptable, interconnected, 
distributed, and learning-based, the importance of the MBSE 
activity should gain value. While there is still a way to go in 
terms of maturity of capabilities enabled by MBSE, initiating 
the transition is already feasible and valuable.

3.4. Data models, ontologies, and semantic web 
technology

As the digital basis for SE grows, it is relying more on defined 
and structured data (data modeling). SE practices now include 
machine usable languages and development of taxonomies, 
lexicon, and data ontologies to enable interoperability 
for computationally based data synthesis, analysis, and 
exploration. Connectivity across the digital system model 
starts at the data layer. Development and maintenance of an 
enterprise data model and environment has become part of 
SE work. The data model defines the specific structure and 
relationships of the data elements that inform higher level 
system models and analyses. A digital ontology is a reusable 
framework that models generalized data – general objects 
that have common properties and not specified individual 
entities. A data model that rests on top of a digital ontology 
supports greater interoperability and reusability of the data. 

A recent SERC workshop report on digital ontologies 
summarized the need for and value of effective digital 
ontology development as one of the means to digital 
interoperability [25]. Traditional SE applications mainly rely on 
documents to capture and exchange information. Documents 
do not promote interoperability, efficiency, and automation, 
given their lack of formalism in both syntax and semantics. 
Ontology-enabled methods allow us to make inferences on 

data and information to determine new facts and discover 
previously unseen gaps and relationships. They also make 
it possible to uniquely identify data elements so that different 
data systems can refer to the same concepts without having 
to pass around or duplicate unwieldy data structures. These 
ontologies are a pragmatic means to formally describe the 
relevant entities and relations of a system, implement those 
descriptions and relationships, and be useful for our specific 
purposes and objectives. For example, the Common Core 
Military Ontologies represent data from different military 
branches in a common structure that allows data sharing 
and data aggregation in each domain using generic reusable 
data representations. The common ontology enables 
data interoperability in joint operations. In SE, syntactic 
interoperability across formal requirements, design, and 
test language is vital, but insufficient. Data interoperability 
is necessary to enable the digital infrastructure to exchange 
and aggregate requirements, design, and analysis 
information. The value of ontologies lies in what they allow us 
to communicate, and multi-disciplinary communication is at 
the core of SE and DE.

The SE community needs but does not yet have a broad 
understanding of the different ontological and related data 
modeling methods necessary to ensure data sharing and 
interoperability. The SE community is set to expand education 
and training to include those foundations of data architecting, 
data modeling, and data science specifically relevant for 
tomorrow’s systems engineers. 

3.5. Agility

Data transformations into and out of the shared and 
authoritatively managed federations of data and models 
described in the previous section are expected to happen 
iteratively and continuously across the entire life of a 
system. These data and models might originate in any 
phase of a system’s lifecycle and any function associated 
with engineering and management. To respond to this 
new context, SE practices are becoming more agile and 
responsive. Increasing responsiveness does not mean 
eliminating critical SE processes, just increasing the number 
of iterations and shortening the cycle time between them. 
A recent workshop on agile practice in hardware-intensive 
systems captured a number of themes that must be better 
adopted into SE practice [1].

Commercial industry has adopted agile practices in software, 
hardware/software systems, and services to address rapidly 
changing threats to and opportunities in their business. A 
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primary goal of agile practices in SE is to shift learning to 
as early as possible in the development process, that is, 
being intentional in the early design stages of systems to 
accommodate innovation in later stages of development. 
Agile practices augmented by digital models, prototypes, 
and test infrastructures help bring learning forward, reduce 
integration risks, and create more flexibility in long-term 
design decision points as a result. Choosing the appropriate 
systems, subsystems, or elements of the system to 
emphasize in this strategy helps anticipate evolution of parts 
of the system that have the most potential for change or those 
for which innovative change will have the most pronounced 
performance gain. Newer areas critical to SE, like software SE, 
information technology, enterprise architecture, distributed 
modeling & simulation, and automated manufacturing 
systems enable this transition.

The underlying premises of agile practices include direct 
collaboration between users and developers, encouragement 
of simplicity, and creation of continuous flow of value. In large 
scale defense systems, for example, the flow from warfighter 
need to capability passes through many organizations and 

processes before it becomes a program (of any type). This 
changes interpretation of needs and requirements, isolates 
the real customer from the capability development, and 
interrupts the flow of work from need to capability. On the 
contrary, commercial industry has pioneered many different 
ways to determine customer needs and responses using 
analytics embedded in the products themselves, accelerating 
customer understanding. 

Similarly, agile practices challenge the single batch mindset 
and the belief that everything must be understood before 
implementation. This implies an enterprise-level shift to 
allow more frequent delivery of working systems (or system 
elements) through reconciliation of development and delivery 
cycles for best effect. Rather than compounding the effect of 
slower cycles that drive the pace of system-level delivery, a 
refactoring of the contributing streams of work can assure flow 
enabled by smaller batches of work. Milestone completion 
remains important but must be translated into buying down 
risk, not just criteria completion. Integrating both a consistent 
work cadence and milestone-driven goals are critical to agile 
in hardware-intensive systems. Meaningful movement of 

Figure 10. Today’s systems should plan for deploying working software 
frequently into all aspects of program planning and development
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prototypes from virtual environments to physical realizations 
to operational use has tangible benefits when the software is 
reused from one product to another. Programs should embed 
deployable software into simulation and training systems, 
allowing all developers and users to experience the operational 
use of the product and enabling Live Virtual Constructive (LVC) 
environments. Figure 10 depicts this approach.

What remains consistent with current SE practice is thoughtful 
decomposition and partitioning. Breaking down complex 
systems into smaller, manageable components allows 
for faster learning and better understanding of individual 
elements. Agile practices take advantage of modularity to 
architect systems that can be evolved over time. Control 
of interfaces and application program interfaces (APIs) is 
fundamental to both defining the work in the system and the 
team skills needed to do the work. Modular Open Systems 
Approaches (MOSA) precede agile development in both 
software and hardware systems. As a note, this partitioning 
must consider existing structural system decompositions 
as an area for innovation as blindly following traditional 
subsystem decompositions can limit agility.

Finally, agile practice in hardware-intensive systems requires 
front-end investment in test activities and infrastructure to 
buy down end-item risk. For example, SpaceX™ considers 
launch failures a data collection investment. Their mindset of 
corporate learning from multiple launch failures is a strong 
example of the culture and mindset required for innovation 
and continuous improvement in agile practice [9]. Investment 
in model-based engineering tools, multiple systems-level 
prototypes, and hardware-in-the-loop environments is critical 
for successful agile implementation in hardware-intensive 
systems. This is more difficult in hardware-intensive programs 
than software-only programs because the tools are more 
diverse and less well-integrated than in today’s software 
development environments. 

3.6. Modular and Open Systems Approaches 
(MOSA)

In highly adaptive and interconnected systems, as mentioned 
earlier, one needs intentionality in the early design stages to 
accommodate adaptation in later stages of development. 
Particularly in large scale critical systems like defense and 
aerospace systems, platforms may have lifecycles spanning 
decades. Choosing the appropriate systems, subsystems, 
or elements of the system to emphasize in this strategy 
helps anticipate evolution of parts of the system that have 

the most potential for change or those for which innovative 
change will have the most pronounced performance gain. 
Choosing the related business strategy is equally important 
to the success of the system over its life cycle. This is the 
driver behind a MOSA – an intentional design approach to 
maintain a technical and business basis for future flexibility 
and innovation in the system. Decomposition into smaller and 
smaller functional capabilities and hardware components 
reduces complexity at the component level, as well as the 
size of the associated work teams. However, modularity 
must be carefully designed and planned as an architectural 
strategy in a lifecycle planning activity. The skills to do this 
successfully are specialized and in high demand. 

Decomposing to smaller modules increases agility but also 
increases integration risk. Standardization of interfaces, 
and particularly the use of open interfaces, can help reduce 
such risk. Open standards were almost always defined by 
documents in the past, making interpretation, compliance, 
and actual interoperability a challenge. With the introduction 
of the Internet Protocol (IP), “plug and play” capabilities 
into Microsoft WindowsTM products, and the AndroidTM 
operating system, open standards have been more often 
implemented as open-source software. The adoption of digital 
engineering and a digital system model facilitates formalizing 
the interfaces between modules in a digital baseline to 
eliminate interpretation and miscommunication [22].

3.7. AI4SE and SE4AI

It is difficult to predict exactly how AI and ML will impact 
SE today, but in the near future SE will undergo significant 
change in methods, processes, tools, and skills as part 
of the AI and ML megatrends. At an early 2019 Future of 
Systems Engineering (FuSE) workshop hosted by INCOSE, 
the terms AI for SE and SE for AI were first used to describe 
this dual transformation [15]. The “AI4SE” and “SE4AI” 
labels have quickly become metaphors for an upcoming 
rapid evolutionary phase in the SE Community. AI4SE may 
be defined as the application of augmented intelligence and 
machine learning techniques to support the practice of SE. 
Goals in such applications include achieving scale in model 
construction, confidence in design space exploration, and 
automated validation coverage. SE4AI may be defined as 
the application of SE methods to the design and operation 
of learning-based systems. Key research application areas 
include the development of principles for learning-based 
systems design, models of life cycle evolution, and model 
curation methods [14]. These are summarized from published 
SERC roadmaps on AI and Autonomy drivers for SE [14].
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SE and software engieneering are fields that have language-
based models that are very amenable to machine automation. 
Tools exist today that use large language models to author 
software code. AI-based tools that author SE requirements 
and descriptive models are beginning to emerge at the time 
of this writing. Some of the technologies and use cases to 
watch for include automated construction of models from 
features in semantic data, used in both creation of new 
models and correctness of developed models; automated 
search through data and models; automation of evidence-
based models for assuring correctness and completeness of 
system requirements and design; automation of certification 
and accreditation processes via models and automation of 
quality assurance data; and eventually chatbots or cognitive 
assistants that automate many mundane data entry, 
exploration, engineering calculation tasks, and workflows.

Likewise, the emerging needs levied on SE by LBS will 
introduce significant changes in SE methods, processes, and 
tools. Most of these are reflected in the other trends in sections 
3.1-3.6. Some of the more direct expectations include:

	• Architecting new combinations of live and virtual digital 
architectures that dynamically adjust their structure and 
functionality.

	• New methodologies to support human and machine 
situational awareness of impending risks and behavioral 
concerns.

	• Methods, processes, and tools to connect system risk 
analysis results with AI software modules related to those 
risks.

	• New analytical and evaluation methods that calibrate trust 
in LBS, beyond traditional availability and dependability 
concerns to concepts of ethics, fairness, etc.

	• New mission level analysis and risk models arising from 
human and AI collaboration in shared tasks and functions.

	• Methods for addressing AI-related system test and 
evaluation addressing these systems’ ability to adapt and 
learn from changing deployment contexts.

	• Computer-based simulation and training supporting 
non-static objectives and/or goals (games, course of 
action analysis) necessary to provide contextual learning 
environments for these systems.

This will also be a transformation of the SE workforce, 
with significantly more integration of software and human 
behavioral sciences at the forefront. As digital engineering 
evolves and traditional engineering models and practices rely 
more on the underlying data, many engineering tasks related 
to data collection and search, data manipulation, and data 
analysis will become automated. Also, the machine learning 
of modeled relationships and underlying data will become 
more powerful over time. This should be a positive change, 
automating many mundane engineering tasks leading to a 
greater focus on problem solving and design for the human 
engineer. Engineering speed and quality should improve 
as more engineering test and validation activities become 
automated. The idea of “cognitive assistants” that broadly 
support the engineer will evolve but they must evolve in a way 
that supports the problem solving and associated learning 
processes associated with engineering [14, 23].
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4. CONCLUSIONS
This chapter presented four new types of systems that collectively are driving significant change in the SE community. These 
systems are highly adaptive, are highly connected including CPS and other systems that are the traditional core of SE, are 
governed in a highly distributed and flexible manner, and increasingly learn new behaviors and adapt on their own. 

Seven trends that will significantly change the SE discipline are discussed, primarily from research and road mapping activities 
over the past 5 years in the SERC. These are digitalization, agile processes, the evolving digital SE ecosystem, modularity and 
open business models, digital system models, ontologies and semantic technology, and, of course, AI and ML. Many of these 
trends are occurring independently of each other, and it is the role of SE to be the integrator of these as well as the systems we 
impact. Some of these will be further elaborated in the following chapters.

There are numerous other trends that have not been included in this chapter but may also need to be incorporated into the evolution 
of SE practice. These have been chosen because, in our experience, are having the strongest impact in SE transformation at the 
time of writing this chapter.
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Abstract

This chapter presents the need to evolve and adapt systems engineering development models to the 
current context of engineering projects. The chapter separates the discussion between traditional, 
dominantly plan-driven approaches to systems development such as the Waterfall and Vee models, and 
discussion of agile development approaches that emphasize responsiveness and are characterized 
as highly iterative and incremental. Most projects could benefit from both, and we discuss hybrid 
approaches and how to tailor the development models to the context of particular projects. The chapter 
discusses other emergent methods including the merging of development with operations through 
DevOps. 
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1. INTRODUCTION

A system development model defines an approach to 
develop a system to satisfy some needs expressed by one 
or more stakeholders. The development of large scale and 
complex systems often entails multiple technologies and 
a large number of diverse individuals bringing different 
knowledge and skills to the effort. This chapter first describes 
the purpose and intent of system development models. The 
models are organized into two categories: plan-driven models 
and agile models. Plan-driven models assume we sufficiently 
understand the needs and solution such that we can plan 
the development project in advance and then develop the 
system according to the plan.  Agile models take the position 
that we do not fully understand the needs or solution and 
therefore the project execution must be adaptive or flexible, 
allowing for changes in the needs and/or the solution. After 
introducing multiple representative development models, the 
chapter then discusses how to tailor a development model 
to a particular project considering all the contextual factors 
contributing to a successful outcome. 

1.1. System development context

The development of large-scale, complex systems places 
multiple demands of organizational nature (i.e., over the 
organization that develops the system, also called the 
realization system), which a system development model is 
intended to address.  In this sense, the basic demands a team 
developing a new system will have to face are understanding 
the stakeholder needs, creating a concept addressing those 
needs, designing and integrating the concept with hardware, 
software, processes, and people, and then implementing the 
designed system so that it can be deployed. 

System development is almost always constrained by 
schedule and budget, and system development models 
must be realizable in these conditions. An organization 
engages the work of a large number of people with different 
knowledge and skills during the system development, all of 
whom must be organized in an effective way to design and 
build the system.  A development model provides a means to 
understand how to organize the work of all these individuals.  
Many systems include new or emerging technologies, which 
introduce risk into the development. Under these conditions, 
a system development model must provide for means to 
mature such technologies and to assess the associated risks 
to the development organization as well as to the system itself 
(e.g., risks that may materialize during system operation).

Many systems, such as those incorporating greater 
autonomy or artificial intelligence, face the challenge of 
maturing a technology in parallel to system development. 
At the same time, safety-critical systems, such as aircraft 
or medical devices, must be developed and will operate 
in highly regulated environments. These aspects generally 
impose severe constraints on the generation of information 
and data during system development, which is enabled and/
or facilitated by adopting a suitable development model.

Since software has become an essential component of most 
systems, system development must now contend with the 
generally high complexity introduced by software, potential 
security vulnerabilities previously unaccounted for, and 
rapid deployment at almost the click of a button. In the past, 
when systems consisted mostly of hardware components, 
the system capabilities generally remained unchanged 
once the system was deployed. Because software is not 
physical (it is a set of instructions that must be installed on 
hardware), it enables system owners to continuously update 
system capabilities during utilization. Furthermore, software 
components have also enabled the implementation of 
artificial intelligence, which can create scenarios in which the 
algorithms and/or decisions made by the system can change 
over time [26]. This creates challenges for system verification 
as well as for human trust in the system concerning safety as 
well as other issues. Collectively, these characteristics affect 
the development process of software-intensive systems and 
any software components found in larger systems.

This section has described the context surrounding modern 
large-scale and/or complex system development projects. 
System development models have evolved to contend with 
many of the issues presented above.

1.2. Definition of a system development model

A system development model provides a structured framework 
and set of guidelines for organizing the development 
activities and coordinating the technical development of a 
system. Development models are often governed by a set of 
principles and/or best practices. The use of a development 
model helps in organizing and managing the associated 
efforts, ensuring a certain quality level, reducing risks, and 
improving collaboration and communication among team 
members and other stakeholders.

Following a defined process is correlated with a higher 
likelihood of delivering successful system and capabilities 
within the constraints imposed on time, cost, and quality [7].
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System development models generally divide the process 
into phases to describe the progress or evolution of the 
system through its life cycle. Milestones are decision gates 
marking the completion of a phase, at which time the 
development organization decides whether to continue the 
system development to the next phase, to wait for a complete 
accomplishment of certain identified pending actions, or, as 
a worst case, terminate the project.  Entry and exit criteria for 
each milestone are generally well defined in advance in order 
to minimize any undesirable uncertainties. In this sense, the 
risk of going ahead is often estimated and weighed before 
making the decision.

1.3. System life cycle model

The development of a system must be understood in 
the context of the system life cycle.  A system life cycle 
describes the phases a system goes through from its 
initial conceptualization to its retirement or disposal, of 
which development is just one portion. Figure 1 shows an 
example of how ISO/IEC 15288 defines them.  The arrows 
indicate the existence of multiple potential paths through the 
different phases, which may involve iteration and repetition. 
A new, unprecedented system might go through the phases 
sequentially from concept to development, to production, 
and to utilization and support, before being retired. Instead, 

an existing system might be upgraded and cycled back from 
utilization to concept again. Some systems may be designed 
and deployed incrementally and would transit through 
multiple iterations of the phases for different aspects of the 
overall system. 

It should be noted that systems engineering activities such as 
the elicitation of stakeholder needs or system integration are 
not exclusively associated with any of the individual phases of 
the system lifecycle. Furthermore, some system engineering 
activities may be executed iteratively and recursively at 
multiple levels of the system hierarchy. Consequently, systems 
engineering spans all the phases of a system’s life cycle.

1.4. System development models

As the body of knowledge surrounding process models 
evolves, the International Council on Systems Engineering 
(INCOSE) has revised their classification of system 
development models several times [20]. We describe two 
categories as: 

1)	 Pre-specified or plan-driven models.

2)	 Evolutionary or agile models.

Figure 1. System life cycle (adopted figure from INCOSE Handbook, 2023)
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The first category includes traditional models such as the 
Waterfall model and the Vee model. The second category 
describes an evolution away from strictly plan-driven 
models and includes the Spiral model based on iterative 
development cycles. The second category has come to be 
called agile methods and borrows heavily from the software 
engineering community. The categorization is according to 
the dominant characteristics of the corresponding models. 
Nevertheless, it should be noted that certain overlap 
between the categories exist because most models share 
characteristics. For instance, many authors present the 
Waterfall model as the archetypical plan-driven model 
with strictly sequential execution of activities. Yet, the 
original article by Royce acknowledged iteration among 
the activities. In fact, iteration and recursion are always 
inherent to any development process, within and between 
its different phases.

2. PLAN-DRIVEN DEVELOPMENT 
MODELS 
Plan-driven models describe a class of system 
development models that prioritize the predictability 
available through adhering to a plan laying out a 
structured development approach.  This section reviews 
the archetypical plan-driven development models of the 
Waterfall and the Vee models.

2.1. Waterfall model

The Waterfall model is a plan-driven model in which all 
engineering activities are defined and planned at the start of 
the project. Each activity in the Waterfall model is supposed 
to be executed completely before the next activity begins.  
Moreover, the output of the preceding activity becomes 
input to the next activity. Iteration of activities is not planned 
in the Waterfall model but is expected to happen only when 
problems are not fixable at one stage and, in such a case, the 
project moves just to the previous stage. Figure 2 shows the 
obvious sequential structure of the activities in the Waterfall 
model.

Although the Waterfall model is often criticized and almost 
considered irrelevant in systems engineering circles these 
days, the model is still well suited and useful for projects in 
which:

	• it is possible to confidently know the requirements at the 
beginning,

	• those requirements will be stable and unchanging,

	• there is little technical risk, and/or

	• there are hazardous risks that require careful progression 
of activities. 

Under these conditions, the Waterfall model’s sequential 
and structured approach for system development provides 
the benefits of predictability and easier coordination of the 
work activities.

Figure 2. Waterfall model
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The Waterfall model becomes a challenge to implement and can cause 
extensive and expensive rework under scenarios where:

	• the requirements are poorly known,

	• the requirements are likely to evolve or change, and/or

	• it is possible that new requirements emerge during development. 

Any issues discovered during later activities such as testing and/or 
integration can mean a significant amount of rework, since the team may 
need to go all the way back to requirements and redesign the system. 
Such rework usually causes significant budget overruns and schedule 
slips. Furthermore, the Waterfall model does not explicitly incorporate 
stakeholder feedback during the lifecycle, since the activity is timeboxed 
within its own stage, which limits its ability to validate concepts before 
doing too much work or to adapt to changing needs. Moreover, the 
tightness of the development process eliminates any opportunity for 
incrementally deploying the system. These aspects make the Waterfall 
model unattractive for most engineering projects.

2.2. Vee model

The systems engineering Vee model is a plan-driven model that leverages 
the hierarchical nature of most complex systems. Development occurs 
in a top-down fashion in which a system is recursively decomposed into 
lower-level systems (which may be assigned names as subsystems, 
components, etc.). Importantly, the Vee model recognizes uncertainty 
and technical maturity are not uniform across all elements of the system, 
and hence allows for different system elements to evolve at different 
paces. This is actually its key tenet, that while all activities must end in 
sequence (as was the case for the Waterfall model), activities may begin 
in any order. That is, within the Vee model, the activities might not begin 
in the same order for every system element, but their completion does 

occur per the constraints of the process such that 
integration cannot be completed until all system 
elements are manufactured. In fact, the Vee model 
emphasizes the validation and verification at each 
level and between levels, which can quickly lead 
to iteration as the team resolves any issues [32] 
to reduce the financial and schedule impacts of 
rework. For example, the Vee model encourages 
to begin validation in parallel with the elicitation 
of stakeholder needs, start verification in parallel 
with derivation of requirements, start integration as 
soon as system architecture starts, etc.

Figure 3 shows the original, canonical Vee model 
[14] of which there are now many variations 
(many of them are inconsistent with the concepts 
expressed in the original Vee model). The left-hand 
side of the Vee depicts the decomposition effort 
as stakeholder needs being mapped into system 
design concepts and eventually derived into a 
system specification. At the bottom of the Vee 
model, those system elements are designed and 
built, and give way to the right-hand side of the Vee 
model, which depicts the synthesis or integration 
effort as those elements are integrated up the 
system hierarchy with verification and validation 
occurring at each step. The symmetry between 
the left- and right-hand sides of the Vee model 
highlights the interdependencies between each 
stage on the left with the corresponding one on 
the right.  For instance, the concept of operations 
on the left side defines measures of effectiveness 
and performance that are the basis of the system 
validation occurring later in the project.  

The Vee model is particularly suited for system 
development projects that require a systematic 
and structured approach, where:

	• systems in question are large,

	• involve many building components, which 
have different levels of maturity and therefore 
risks, and

	• have stringent safety and reliability constraints. 

The Vee model, or minor variations of it, is probably 
the most common mode used in industries such as 
aerospace, defense, and automotive.

Figure 3. Vee Model
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The Vee encounters some of the same shortfalls as 
experienced with the Waterfall model. The Vee model 
suffers from poor responsiveness to significant changes 
in requirements or poor initial assumptions that are not 
discovered until later in the process. The result is costly 
rework with the concomitant delays in schedule.

3. EVOLUTIONARY OR AGILE 
DEVELOPMENT MODELS
Evolutionary or agile models describe a class of 
highly iterative and incremental approaches to system 
development. Agile models carry out iteration and 
incremental development based on short development 
cycles called sprints or iterations. Iteration describes the 
repetition of the same activities during each sprint such 
as analysis, design, test, and build for a small portion of 
the system. We see the incremental aspect through the 
delivery of value or system capabilities at the end of each 
sprint. Agile models emphasize the end of a sprint should 
result in a measurable outcome. For software systems, 
each sprint usually ends with functional code that can be 
delivered to stakeholders. For hardware-intense systems, a 
sprint might not result in actual hardware because of the 
longer development time required, and instead a sprint 
may result in risk reduction, an engineering specification, or 
completion of an engineering analysis. This type of model 
emphasizes value delivery as an incremental process 
whether such delivery is some visible portion of the system 
or advancement of the project at the end of each sprint.

Unlike plan-driven models, the agile models do much less 
planning and requirements analysis during the beginning 
of system development. Agile models are highly adaptive 
and flexible approaches because as the project team plans 
each new sprint, they will make course corrections based 
on what they learned during the previous sprint. Hence, 
agile methods are updating their plans on a regular basis 
driven by the cadence of the sprints.

The agile models are based on a set of principles informing 
a mindset and then implemented by multiple, different 
methods. The principles were described in the Agile 
Manifesto [2] and are listed in Table 1.

1.	 Early and continuous delivery of value to the 
customer

2.	 Acceptance of changing requirements, important for 
competitive advantage

3.	 Frequent incremental delivery of value to 
stakeholders

4.	 Users and developers working together

5.	 Focus on the people, self-organized teams

6.	 Face-to-face communication is most effective for 
teamwork

7.	 Working software is primary measure of progress

8.	 Development speed should be sustainable 
indefinitely

9.	 Continuous attention to good design

10.	 Keeping the design as simple as possible and avoid 
doing unnecessary work

11.	 Best architectures emerge from self-organized 
teams

12.	 Regular meetings for teams to reflect on lessons 
learned

A differentiating aspect of the agile models is that they 
comingle principles on how to develop a system with 
principles on how to organize the development team.  This is 
a differential aspect with respect to many of the plan-driven 
models, which provide little guidance about the project 
management considerations of the system development. 
The principles dealing with continuous delivery, acceptance 
of changing requirements, using working software as the 
measure of progress, steady development speed, constant 
attention to good design, and simple design are principles 
all dealing with system development.  Agile models uniformly 
prescribe self-organizing, multidisciplinary teams working in 
close collaboration with end users (generalizable to general 

Table 1. Agile Principles 
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stakeholders) to deliver value incrementally. Furthermore, 
they place greater value on face-to-face communication 
and regular meetings as a means for better coordination 
and faster recognition and adoption of lessons learned, 
which are intended to improve the management of 
development teams.

Agile methods have been widely adopted and routinely 
practiced in software development projects to improve 
team collaboration, communication, and flexibility 
in responding to changes in customer and/or user 
requirements. The  application of agile principles 
to systems  engineering processes, particularly in 
the development of complex systems with hardware 
components, remains an area of active research and 
discussion. Several studies have shown the benefits 
of applying agile principles to systems engineering 
processes. Dove et al. [11] studied the application of 
agile principles in several companies and identified 
eight principles for agile systems engineering consistent 
with the agile manifesto including attentive situational 
awareness, attentive decision making, agile operations 
concept, product line architecture, shared knowledge 
management, continual integration and test, common 
mission teaming, and iterative and incremental 
development. The International Council on Systems 
Engineering (INCOSE) has a team that has been looking 
at how agility can be infused or adopted by systems 
engineering organizations [38]. Their work is part of the 
Future of Systems Engineering (FUSE) initiative of INCOSE 
and emphasizes how development organizations can 
become more agile through process and workforce 
development. Therefore, while agile models are proven 
and the dominant approach in the software, systems 
engineering is still examining and trying to understand 
how best to adopt agile principles given the constraints 
of physicality imposed by hardware.

Next, we present the Spiral model, which was introduced 
in the 1980s, as an example of an evolutionary model.  
Then, Scrum is presented because it is widely used 
in the software industry and the iterative process and 
concepts from Scrum are heavily borrowed by other 
evolutionary models. Finally, we discuss two system 
development models that adopt agile concepts from 
Scrum for larger projects including both hardware and 
software: the Scaled Agile Framework (SAFe) and the 
Disciplined Agile Delivery (DAD).

3.1. Spiral model

The Spiral model was introduced for software development 
and emphasizes reducing risk through incremental 
commitment from stakeholders throughout system 
development [3]. A project following the Spiral model does 
iterations to progressively develop the definition of a software 
system and eventually deliver it to a customer. The cycles 
consist of the four activities (ref. Figure 4): 

1)	 determining objectives, alternatives, and constraints,

2)	 evaluating the alternatives, identifying and resolving risks,

3)	 developing and verifying the product, and

4)	 planning the next phase.

Each iteration or spiral results in a prototype or build of the 
system, albeit often a partial build.  Consequently, the project 
develops and deploys the system in increments.  

The Spiral model is suitable in system development contexts 
characterized by uncertain or evolving requirements 
and projects where risks are significant and need to be 
continuously assessed and mitigated throughout the project 
lifecycle. However, the use of the Spiral model is generally only 
possible when the system can be deployed in increments.  
Software systems was one of the original domains for which 

Figure 4. Spiral Model
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the Spiral model was intended [4], but it has also been applied to 
other domains. For example, the ship design process is usually 
shown as a Spiral model because ship design involves multiple 
technical specialties with a high degree of interdependence 
between them. In the ship design spiral, the designers make 
decisions on hull form, hull size, power, hydrostatics, and so on 
and must iterate through these decisions on they converge on 
an acceptable design [13,15]. The spiral model has also been 
applied to the development of the Global Hawk unmanned 
aircraft, which was able to deploy capabilities incrementally with 
each spiral [17].

3.2. Scrum

Scrum is an agile software development model for managing 
self-organized teams in short iterations called sprints delivering 
working code at the end of each sprint [34]. The popularity and 
success of Scrum for software development has motivated 
people to adapt the Scrum development model to systems 
involving both hardware and software [e.g., 3, 10]. Figure 5 
shows the Scrum process. Teams work from a backlog of work 
items that were identified in conjunction with a Product Owner 
representing the voice of the customer. The work items are 
requirements for features or functions often expressed as user 
stories. During the sprint planning session, the team selects 
work items to analyze, design, develop, and test in the next 
sprint. The sprint is the actual development iteration and is 

typically of two weeks duration for software development but 
may be longer and even vary for hardware development. The 
team will have a regular meeting to discuss progress of the 
sprint. A sprint retrospective meeting is held at the end of the 
sprint for the team to discuss ways in which they can improve.  
Scrum is a learning process and focuses on the people and 
interactions between people in developing software.

Scrum works well in dynamic environments where requirements 
change (because new and/or changed requirements can be 
worked into the backlog and be addressed in future sprints), 
as well as with systems that can be built and deployed 
incrementally. Adoption of the Scrum development model 
requires implementing a corresponding organizational culture, 
as with other agile models, because it intertwines development 
processes with team management and communication 
principles. An organization that does not subscribe to such 
working principles as established by the team would likely not 
be successful in performing a Scrum process.

Because Scrum was originally applied to small projects, there 
were some initial doubts about its suitability to guide large 
projects. However, variants such as Large-Scale Scrum (LeSS) 
[24] were proposed to address this potential shortcoming. 
While Scrum has been adapted and applied for systems 
development, it is not widely practiced, and many questions 
remain as to its applicability in different system development 
contexts.

Figure 5. Scrum Process
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3.3. Scaled Agile Framework

The Scaled Agile Framework (SAFe) describes a structured 
and scalable approach to implementing agile principles and 
practices in organizations with multiple teams working on 
complex projects [25]. The teams consist of individuals who 
have the ability to do the analysis, design, build, and test of 
their work. They work on the systems development through 
Agile Release Trains (ARTs), which are defined time frames 
(typically 8-12 weeks) during which multiple teams synchronize 
their work to develop and deliver a capability of value to the 
stakeholders. Hence, ART cycles are strictly time-boxed and 
their scope is allowed to vary.

The teams plan the development goals of an ART through an 
event called Program Increment (PI) Planning. The PI Planning 
brings together all teams within an ART to plan and align their 
work for the upcoming program increment. During PI Planning, 
teams collaborate to define objectives, break down work, 
estimate effort, and establish dependencies.  SAFe includes a 
lot of guidance on management of the development team and 
how it should be organized.

SAFe was developed to address the criticism that agile methods 
such as Scrum, do not scale to large and more complex system 
development projects. SAFe does this through the guidance 
provided for scaling agile from the team level to the program 
and portfolio levels. It offers different configurations, allowing 
organizations to tailor their implementation based on their 
specific needs.  In providing the additional guidance on how 
to structure the development, SAFe is sometimes criticized as 
sacrificing the agile principles for the sake of greater discipline 
[31]. 

3.4. Disciplined Agile Delivery

Disciplined Agile Delivery (DAD) is an agile method that builds 
on other methods such a Scrum but is intended for the entire 
life cycle, including operations, for example, unlike other agile 
methods that focus primarily on development [1]. DAD defines 
three phases:  inception, construction, and transition. During 
inception, the project identifies the project vision, stakeholders, 
and initial requirements. In construction, the project develops 
the system solution on an incremental basis. In transition, 
the project puts the design through production and engages 
stakeholders for validation. The DAD applies an iterative and 
incremental development approach, characteristic of agile 
models, during the construction phase.

DAD is mainly intended for larger projects by being enterprise 
aware, meaning DAD recognizes the enterprise context 
and takes into consideration governance, compliance, and 
organizational standards. DAD emphasizes the importance 
of validating the architecture in the earlier sprints and 
consequently reducing risk. The DAD is particularly appropriate 
to software-intensive systems in which the development team 
can establish and react to feedback loops between operations 
and development (i.e., DevOps, which will be described later).

3.5. Agile methods with hardware

Agile methods, originally developed for software 
development, may encounter certain difficulties when applied 
to hardware development due to the inherent physicality and 
manufacturing aspects involved. We group these constraints 
here because they apply to all of the agile models previously 
discussed. Some of the constraints that can limit the 
application of agile methods for hardware development are:

	• Longer Lead Times: Hardware often requires longer 
lead times for designing, ordering materials, and building 
components compared to software development. This 
can make it challenging to adhere to the short iteration 
cycles typically associated with agile methods.

	• Manufacturing Complexity: Manufacturing hardware 
involves intricate processes, specialized tools, and strict 
quality control measures. Unlike software, which can be 
easily modified and updated, modifying and updating 
physical hardware components often require different 
tools, facilities, specialized personnel, materials, and 
so forth. This can limit the flexibility and ability to adapt 
quickly, which is a key aspect of agile methods.

	• Costly Iterations: Iterating on hardware designs can be 
expensive, especially when it involves tooling, materials, 
and production processes. Unlike software, where 
changes can be made relatively easily and at a low cost, 
hardware iterations often require additional investments. 
This can make frequent iterations and experimentation 
challenging from a cost and resource perspective.

	• Physical Prototyping: Physical hardware typically 
requires the creation of prototypes for testing and 
validation. Building physical prototypes can be time-
consuming and costly, which can impact the ability to 
iterate rapidly and embrace quick feedback loops, as 
typically done in agile methods.
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	• Supply Chain Dependencies: Hardware development 
often relies on complex supply chains, involving multiple 
vendors and lead times for procuring components and 
materials. This introduces additional dependencies and 
challenges in managing schedules, coordination, and 
ensuring timely availability of required resources.

	• Regulatory Compliance: Hardware products often 
need to comply with industry-specific regulations and 
standards. Ensuring compliance can involve extensive 
testing, certification processes, and documentation. This 
can add complexity and time to the development process, 
potentially impacting the agility of the iterative cycles.

	• Law of Physics: The functioning and performance of 
hardware systems are bounded by the laws of physics. 
As a result, strong coupling generally exists between 
design variables and across engineering disciplines. 
This makes it very difficult to allocate work in independent 
tasks.

Despite these constraints, agile principles and practices 
can still be applied to certain aspects of hardware 
development. For example, while sprints may not be as 
short as with software, the principle of frequent scoping 
and assessment of work can be helpful in keeping a healthy 
level of productivity and quickly react to misalignments 
between needs and solutions. This has been shown in 
practice. For example, Yang et al. [39] showed that the use 
of agile principles in the development of a hardware product 
led to improved communication, reduced project risk, 
and increased customer satisfaction. Similarly, Thakurta 
et al. [35] showed that the use of these principles in the 
development of an embedded system led to improved team 
collaboration, faster development cycles, and reduced 
project risk. Paasivaara and Lassenius [29] describe 
Ericsson’s long journey of adopting agile to the design and 
development of their products. 

Overall, while the physical constraints of hardware 
development pose challenges for the direct application of 
agile methods, careful adaptation, and a tailored approach 
can help leverage agile principles to enhance collaboration, 
flexibility, and customer satisfaction in in this type of projects.

4. COMPARISON BETWEEN PLAN-
DRIVEN VERSUS AGILE DEVELOPMENT
This section compares the category of plan-driven models 
versus the category of agile models. We first consider how 
the two categories of models address the triple constraint of 
project budget, schedule, and scope.

Plan-driven development models tend to assume a fixed 
scope-budget-schedule triad (and are often implemented 
by fixing the scope only), and only act upon them reactively 
when issues are encountered, such as due to the uncertainty 
of requirements or the unfolding of technical risks. On the 
contrary, scope, and to a lesser extent budget are intentionally 
in flux when using agile models. This happens as a result 
of organizing the work in iterative time-boxed sprints, as 
explained earlier, so that the project can adapt its tasks and 
targets as deemed necessary. 

It should be noted that, while agile models are generally 
implemented to fix budget and schedule (letting scope 
change), and plan-driven methods are generally implemented 
to fix scope (letting cost and schedule change), these are not 
constraints imposed by either of the development methods. 
In fact, either kind of development model can implement 
techniques that target the fixing of a specific dimension 
(e.g., Cost as an Independent Variable (CAIV) fixes cost at 
the expense of schedule and scope [6]). The key difference 
is whether changes are made reactively to problems or 
intentionally embedded in the development process.

Table 2 provides a brief comparison between how plan-driven 
models and agile models typologies  address core aspects 
of the business environment, the system to be developed, 
and the development organization in which they are applied. 
The table is not intended to be exhaustive, but to broadly hint 
at the main differences between the two classes of models. 
As an example, one consideration is the type of business 
environment the organization and system will operate in. 
Organizations working in regulated environments and/or 
dealing with safety critical systems will generally need more 
planning, documentation, and traceability of requirements. 
Plan-driven models address these concerns directly. 
However, this does not mean agile models cannot be used in 
these environments. For example, Hanssen et al. [16] propose 
a variation of Scrum, called SafeScrum, demonstrating agile 
principles in the development of safety-critical systems such 
as avionics despite the strong belief that agile is inconsistent 
with the need to comply with stringent safety regulations.
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Table 2. Comparison Plan-driven and Agile Models

Contingent Factors Plan-Driven Models Agile Models

Business 
Environment

Stability of market and 
certainty of requirements

Better for stable and 
unchanging requirements

Better in dynamic 
environments with 

changing requirements

Clarity and certainty 
of requirements

Better when requirements 
are clear and known

Better able to deal 
with ambiguous and 
unclear requirements

Regulatory or safety 
critical environment

Better for complying with 
strict regulations and 

policies; ensure traceability 
with documentation and plan

--

System

Part of a system of system 
with lots of Interconnections 

with other systems

Better for planning and 
controlling those interfaces

--

Long lead-time items 
or must plan for scarce 

resources (e.g., test range)

Better for planning the 
acquisition of such items 

and aligning budget, 
schedule, and resources.

Greater risk of not having 
such items on hand when 
needed or available due to 

limited up-front planning

Many needed quality 
attributes (-ilities such as 
reliability, maintainability, 

cybersecurity, etc.)

Plan-based models 
identify and define these 

requirements early on, which 
is useful because the quality 

attributes are often met 
through multiple aspects of 
the overall system design

If quality attributes are 
identified during sprints 
(especially later sprints), 

then risk of rework to have 
the system comply with 

those requirements because 
multiple aspects of system 

might have to change

Technological risk present
Attempt to develop plan to 
mature the technology prior 

to insertion in the system

Rapid learning and risk 
reduction through iterations

Organization
Highly geographically 
and organizationally 

distributed team

The planning and discipline 
of these models are 

able to accommodate 
these scenarios well

Some agile models are 
less able to handle such 
organizational structures 

without significant 
modification to principles 
(e.g., difficulty of face-to-

face communication). Better 
for smaller co-located teams
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5. TAILORING DEVELOPMENT 
MODELS
It is convenient to keep in mind that there is 
not an ideal or default preferred model for a 
system development. We view the best system 
development model as one that best fits:

	• the organization, its people, and its culture; 

	• the system to be developed, its complexity, 
its connectedness to other systems, and the 
extent of new technologies that it uses; and 

	• the business environment in which it is 
developed, the dynamism of the business, 
and the degree of uncertainty surrounding the 
development.  

For this reason, tailoring of the development models 
should be often called for. Tailoring can take the form 
of establishing a canonical development model and 
adapting it to the particulars of the project, it may 
involve a hybrid approach blending aspects from 
multiple different development models, or it may be 
approached by using different development models 
for different parts of the system (e.g., adopting 
a Vee model for the hardware components and 
an agile model for the software). Tailoring relies 
upon the systems engineering team having deep 
knowledge of the advantages and drawbacks of 
each development model and understanding the 
factors affecting the development, as mentioned 
earlier (e.g., business environment, system, and 
organization).  

The agile approaches have been demonstrated 
as being very successful in the software industry, 
yet there are limitations as aforementioned in 
applying them to hardware. For this reason, there 
is interest in hybrid approaches that blend agile 
and traditional plan-driven development models to 
strike a balance between flexibility and the need for 
rigorous development processes. When tailoring, it 
is essential to address two questions [33]: 

1)	 To what degree is agility demanded by the 
market, technology, and other environmental 
factors?. 

2)	 To what degree can the organization be agile?.  

In essence, it is important to coordinate the demands or needs 
that the system must satisfy with the ability and/or feasibility of the 
organization to adopt a particular development model [5]. Tailoring, 
in this sense, should not be seen as something to be done when 
ideal models cannot be used. Instead, tailoring should be conceived 
as a required step when devising what type of model to adopt. 
Furthermore, ideal models should serve as paradigms. In reality, a 
development model will generally need to be tailored.

Figure 6 refines Table 2 by showing plan-driven models and agile 
models not as a dichotomy, but as continua of adequacy between 
the two for different variables. 

Figure 6. Factors for deciding between plan-driven and agile models 
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One means to combine plan-driven models 
with agile principles is to adopt and adapt 
important agile concepts at multiple levels 
of development. A hybrid method can 
iteratively and incrementally evolve the 
system according to agile principles while 
maintaining some of the predictability 
available from plan-based models. 

As an example, consider hardware-based 
or hardware-intensive systems. This type 
of system requires some planning because 
hardware often requires parts with long 
lead-times, it cannot be refactored, and 
customers want to know when the system 
will be first deployed. Additionally, larger 
systems often have many interfaces 
and interactions with other systems that 
must be planned for and controlled. 
Interactions in this context also include 
performance dependencies between 
the different components. These issues 
are addressed by macro-planning of 
the overall development process and 
by using a top-down approach starting 
with an initial system architecture. Figure 
8 shows a high-level view of the system 
development activities and Figure 8 shows 
the more detailed planning prior to the 
next milestone. Both figures show there is 
extensive parallelism of the activities, but 
they do not depict how the intensity of effort 
changes with each activity. For instance, 
the problem analysis activity might occur 
through to the concept review milestone, 
but the amount of manpower and effort will 
be greater earlier in the project compared 
to just before that milestone.

Figure 7 shows verification and validation 
(e.g., testing) occurs continuously 
throughout the process. The frequent testing 
enables permanent design maturation and 
risk reduction. Within each phase, there 
are iterations of understanding, designing, 
building, and testing ideas through the use 
of models. Additionally, there are feedback 
loops and iterations between phases. For 
instance, as capabilities are analyzed 
and defined, the team might rethink how 
they framed the problem and revise their 
associated analysis. As a result, this 
process progressively analyzes, designs, 
and evaluates the stakeholder needs, 
requirements, and mission to build the 
architectural products.

Figure 7. High level plan

Figure 8. Milestone plan and backlog
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6. MERGING DEVELOPMENT AND 
OPERATIONS WITH DEVSECOPS 
System development models have been traditionally 
designed to end when the system transitions to the utilization 
phase of its life cycle. While systems may certainly cycle 
back to development from utilization, development models 
tend to assume that, in such a case, a new project would 
be specified. The sharp boundary between development and 
utilization (also referred to as operations) is being challenged 
by a novel development model called DevOps.

DevOps emerged from the software engineering community 
and aims to break down the barriers often found between 
system developers (Dev) and the system operators (Ops) 
[22]. DevOps implements a continuous cycle of developing 
software, testing it, and pushing the software out to operations 
who use the software, monitor its performance, and provide 
feedback to development. DevOps is based on having 
open and close communication between developers and 
operators, continuous feedback, continuous integration, and 
steady operational flow.

DevOps has been and continues to be almost exclusively 
applied to software-intensive systems. The challenges to 
adopting DevOps to hardware are evident.  Unlike software, 
new features or functions cannot be pushed out over a network, 
and moreover, changes to a hardware’s performance usually 
entails changing the hardware itself. DevOps has been 
challenging to implement even with software for embedded 
systems [27]. Only recently, do we see DevOps being applied 
in system domains involving both hardware and software, but 
with the continuous integration and verification occurring only 
with the software components [40].

In military systems, the need for security is paramount, and 
DevOps has morphed to include security considerations, 
creating a new model concept known as DevSecOps [28].  
This approach involves integrating security practices into 
every stage of the software development process, from 
design and coding to testing and deployment, to ensure that 
security is built into the system from the outset. By adopting 
a DevSecOps approach, military organizations can help to 
mitigate the risks of cyberattacks, protect sensitive data and 
systems, and ensure that military operations are not disrupted 
by software vulnerabilities or failures. Overall, the DevSecOps 
methodology has emerged as a key approach for developing 
secure, reliable, and scalable software systems, and its 
importance is likely to continue growing in military and other 
high-stakes environments.
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7. CONCLUSIONS
The chapter has reviewed the need for, and role system development models fulfill in systems engineering. The life cycle of 
systems has been described as consisting of six stages of concept, development, production, utilization, support, and retirement. 
The systems development process covers primarily the stages of concept, development, and production – although recent 
approaches seek greater integration between development and utilization (or operation).  Development models can be broadly 
categorized as either plan-driven or agile.  The plan-driven models are the more traditional systems engineering approaches and 
include the Waterfall and Vee models.

The Waterfall and Vee models predominantly move through the system development activities in a sequential fashion.  Projects 
following these models start with planning and generally understanding all the system requirements prior to moving onto design 
activities. However, it has been long recognized that actual implementation of these models involves extensive iterations and 
recursion of activities. 

Agile models have emerged primarily from the software engineering community.  Software and its development differ in several 
important ways from hardware, which helps explain why agile methods become popular there first.  Among these differences is 
that software is intangible and can be deployed over a network.  Consequently, software is easy and relatively inexpensive to 
modify, even after the software is deployed to users.  Moreover, the market for software is highly dynamic with changing needs 
and frequently introducing new technologies. The agile methods exploit the characteristics of software making it easy to change 
in order to thrive in such a dynamic business environment. Agile models are founded on principles of iterative and incremental 
development, continuous verification and validation, self-organized teams, continuous integration, and close interaction with 
users.  The Spiral model was one of several other models that started to more formally and explicitly describe the systems 
development process as being iterative and incremental. Other novel agile development models emerged later, such as Scrum, 
SAFe, and DAD, which implement these principles.  

The chapter has also provided a comparison between plan-driven and agile models along different dimensions to highlight their 
strengths and weaknesses. In general, plan-driven approaches are suitable for development projects where requirements are 
knowable, technology is mostly mature, and the environment is stable. They are also useful when audit trails and documentation 
are necessary such as for safety-critical systems or many defense systems. Agile models, on the contrary, are suitable in 
environments where there is high uncertainty and dynamism.  The chapter observes that many projects might have characteristics 
suitable for plan-driven and other characteristics for agile models.  In such cases, the chapter suggests a hybrid plan-driven and 
agile model attempting to combine the strengths of each process model. Such tailoring of process models is very important in 
systems engineering because there is no single model suitable for every project. Instead, informed and knowledgeable systems 
engineers should tailor or customize the system development models to fit the needs of the organization and the development 
project.

The chapter described emerging development trends affecting most system development projects such as DevOps.  The DevOps 
concept interleaves development with operations using continuous feedback for the evolution of the system throughout its service 
life.  DevOps as well as other emerging development trends can be incorporated into any of the system development models, and 
indeed the development models may need to be modified to better exploit these new capabilities.
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“All models are wrong, some are useful.”
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Abstract

This chapter presents Model-Based Systems Engineering (MBSE) as an evolution of the discipline that 
leverages the power of computer models. It identifies the main elements that MBSE should address to 
be successful and demystifies some common misconceptions that lead to weak and/or poor practices 
in organizations. After presenting some unprecedented capabilities by adopting MBSE approaches, 
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1. INTRODUCTION
Model-Based Systems Engineering (MBSE), Model-Based 
Engineering (MBE), Digital Thread and Digital Twin (DT), 
Digital Engineering (DE), and Digital Transformation (yet 
another DT). There is an explosion of concepts and the 
corresponding acronym soup as the power of digital is 
applied to systems engineering and the greater engineering 
lifecycle. This chapter will try to clarify the differences 
between the various concepts and how they interrelate. It will 
move beyond the marketing, myth, and misconception to a 
practical understanding of what digital transformation means 
for systems engineering, the fundamentals needed to be 
known, and the expected value to be achieved.

Before diving into discussions about what MBSE is, let us 
look at the environmental context from which it has emerged. 
In recent decades, the development and capability of 
products have evolved. First, base products built on electro-
mechanical technologies have largely moved to smart 
products leveraging electronics and software to bring 
new capabilities and an enhanced user experience. Next, 
sensors and networks have been introduced to create smart, 
connected products with capabilities such as knowing 
exactly when the next train will arrive and how many seats 
remain available. After, these products needed to be more 
and more connected until becoming a product system, with 
all the elements coordinated. Today, traditional and intelligent 
systems are collaborating as systems of systems (SoS) to 
meet the needs of society (e.g., airport operations in which 
the flight information system, the transportation system, the 
operational safety system, and all the other systems involved 
collaborate in a coordinated and connected manner).

In the days of electro-mechanical products, the interactions 
between parts, components, and systems were somewhat 
limited. Given this low coupling between components 
and between the design teams creating them, documents 
represented an appropriate solution for capturing architecture 
and design data. In a document-based world, data is 
dispersed throughout a multitude of documents. However, 
as new technologies are introduced and systems become 
larger and more complicated, the number and complexity of 
interfaces increases dramatically. Data dispersed between 
artifacts could generate inconsistencies between them. Plus, 
keeping hundreds of documents updated for a complex 
system can be an arduous task. Design inconsistencies may 
occur due to interpretation discrepancies of the information 
from use of approaches, language, or diagrams without 
common semantics between stakeholders. Discovering 

inconsistencies in the design (and therefore significant 
rework) can lead to potential delays and extra costs in 
development, and undiscovered inconsistencies can result 
in system failure [1].

Looking at the rapidly evolving technological progress in the 
world, it is fair to say that the needs from engineering design 
processes have exceeded what the capabilities of traditional 
systems engineering can provide. In fact, in 2014 INCOSE 
published the “System Engineering Vision 2025” [2], with a 
statement of where the industry had to move to in order to 
solve society needs. The publication highlighted a number of 
challenges, including: 

	• Mission complexity is growing faster than our ability to 
manage it.

	• System design emerges from pieces, rather than from 
architecture.

	• Knowledge and investment are lost at project life cycle 
phase boundaries.

	• Knowledge and investment are lost between projects.

What worked for electromechanical systems in the 1950s, 
1960s, and 1970s is not sufficient to address today’s needs 
and technologies. Systems engineers started to make the 
leap to model-based approaches to respond with agility and 
efficiency to the complex and changing world.

In 2021, INCOSE published the “System Engineering Vision 
2035” [3]. One of the headlines of this publication is “The 
future of systems engineering is predominantly Model-
Based.” By 2035, it is expected that a family of unified, 
integrated MBSE-Systems Modeling and Simulation (SMS) 
frameworks will exist. 

But what is MBSE? The challenge is the meaning of MBSE 
is very muddy, which traces to the breadth and ambiguity of 
what constitutes a model. One technical definition of model is 
“A physical, mathematical, or otherwise logical representation 
of a system, entity, phenomenon, or process” [4]. A broader 
definition of model is “a graphical, mathematical (symbolic), 
physical, or verbal representation or simplified version of a 
concept, phenomenon, relationship, structure, system, or an 
aspect of the real world” . A computational fluid dynamics 
representation of air flowing over a wing satisfies these 
definitions, but so does a drawing of a process flow and a 
traditional interface control document. Because of the breadth 
of what constitutes a model, different practitioners will have 
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very different interpretations of what MBSE is. Most people 
will cite INCOSE’s definition of MBSE, which is “the formalized 
application of modeling to support the activities of systems 
requirements, design, analysis, verification and validation 
starting in the design phase conceptual and continuing in the 
development stage and subsequent stages of the life cycle,”  
but the ambiguity around “model” and “modeling” remains.

Simply put, MBSE represents a new way of performing 
systems engineering; one that uses model-based techniques 
to perform systems engineering tasks instead of traditional 
document-based ones [5]. It is about moving from capturing 
data in natural language documents to richer representations 
that reflect and communicate the phenomenology, 
architecture, and design of systems, ideally in a machine-
readable form. The central aspect is the system model, 
from which all other artifacts are derived. It serves as the 
connective tissue that binds together the greater digital 
enterprise that enables engineering. If MBSE were to emerge 
today, it would have been most likely referred to it as digital 
systems engineering. 

MBSE should make system descriptive and analytical 
models explicit, coherent, consistent, and actionable by 
both humans and computers. It should reflect an evolution 
from low-fidelity representations in documents to higher-
fidelity, richer representations that machines can read and 
interpret. It should improve granularity of knowledge capture 
for knowledge management, analysis, and learning. It should 
enable one descriptive architectural model connecting 
multiple analytical models, which together represent design 
with the requisite degree of rigor for the problem and solution 
at hand.

MBSE should also leverage models for communication 
and analysis, represent “authoritative data” for system 
design and specifications, ensure consistent design and 
specifications, and provide an explicit system model to 
engineering teams. In short, MBSE should be an evolution, 
not a revolution, in thinking and approach leveraging modern 
technologies and capabilities to better represent data, 
information, and knowledge. While evolutionary, this change 
offers transformative results. MBSE is expected to improve 
system quality, reduce costs, shorten development times, 
integrate new technologies and give digital continuity with 
manufacturing and operations.

2. NECESSARY (AND IDEAL) ELEMENTS 
OF MBSE
There is a fundamental difference between models in systems 
engineering and model-based systems engineering. Engineers 
have always used models to understand and reason. The output 
of engineering has always been some type of model that helps 
analyze and advance the understanding of a problem and 
solution. MBSE leverages modern techniques to capture and 
represent the fundamental information required to engineer a 
system. It has traditionally been more on the descriptive and 
architectural side, although not inherently limited to them, 
extending from a first expression of need through the whole 
system life cycle. These models help elicit, capture, and 
represent a system so that those computational techniques 
(analytical models, modeling & simulation, etc.) traditionally 
applied can continue to be used.

In the world of engineering design, architectural models connect 
the idea behind a design solution with its implementation as a 
real system. They are the way in which the current working team 
is aligned, communicate with a higher awareness to minimize 
misunderstandings, and capture knowledge over time. These 
models attempt to represent the entities of the engineering 
problem and their relationship to each other and connect them 
to the proposed solution or existing mechanism that addresses 
the problem. If one can properly characterize functionally (i.e., 
what the system does) and physically each part of the system 
and its interfaces, as well as the interactions and exchanges 
between them, then it becomes possible, at the right degree of 
fidelity and precision, to pass a detailed component description 
down to a subject matter expert to finish out the design in 
parallel. The model used in this way is the centerpiece of MBSE.

Four elements are critical to a model [6]:

	• Language: The modeling language enables the clear 
expression and representation of the model, so that 
understanding and insight can arise. The language must be 
clear and unambiguous to depict the model accurately and 
understandably.

	• Structure: Structure allows the model to capture system 
behavior by clearly describing the relationship between 
system’s entities.

	• Argumentation: A model must be capable of making the 
critical “argument” that the system fulfills the stakeholder’s 
needs. The model must represent the system design in such 
a way that the design team can demonstrate that the system 
accomplishes the purposes for which it is designed.
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	• Presentation: A model must include some mechanism 
to present the argument in a way that can be seen and 
understood by the users, which may include engineers, 
customers, and other stakeholders.

These elements can be defined by using metamodels, 
semantics, and ontologies. Metamodels, semantics, and 
ontologies build the underlying formalities that make so many 
of the key benefits of MBSE possible (e.g., collaboration, 
modeling sharing, reuse, reduction of ambiguity, etc.). A 
metamodel defines the syntax, constraints, and patterns that 
make up the modeling language that is used when creating a 
model. An ontology can be thought of as a type of metamodel 
that defines a common set of terminology, relationships, and 
context for a given domain, incorporating precise semantics 
to the terms and relationships. 

Figure 1 shows an example of part of a metamodel for 
systems engineering. It captures (and constrains) the different 
concepts that the systems engineer may use to support 

their work, aligning the understanding and interpretability 
that every member of the team has. For example, an 
engineer could not distinguish between a requirement and 
a specification, as the metamodel does not offer different 
concepts for those two terms. At the same time, the 
metamodel does not allow components to directly exchange 
inputs and outputs but forces the engineer to think about the 
functions that the component performs to think about inputs 
and outputs. The impact of this is not only one of fostering 
understanding and guaranteeing certain good practices 
when reasoning about systems engineering information, 
but it also allows to construct machine-readable models to 
enable better accessing and processing such information. 
In this metamodel example, one could see how an engineer 
could query the underlying model to identify all verification 
requirements related to a function (through a relational path 
through requirements, components, and finally functions), 
or enforce rules to guarantee that every component must 
execute a function, or every function must have at least one 
input and one output to be consistent with systems theory.

Figure 1. Example of a systems engineering metamodel
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Adding precise semantics to a metamodel enables the use 
of axioms, which afford reasoning capabilities. Whereas a 
regular metamodel can only guarantee syntactic correctness, 
an engineer can leverage the semantics of a model to infer 
aspects of the model that stem from the meaning embedded 
in the model. For example, whereas a regular metamodel can 
only check that every Component executes a Function, an 
ontology affords the possibility of checking that a specific 
instance of a Function actually represents a function. Imagine 
that an engineer defines snake as a Component and fly as a 
function, and creates the relationship that the snake performs 
the fly function. This is syntactically correct, and a regular 
metamodel would consider it valid. However, an ontology 
could identify that the model is not sensible because snakes 
cannot fly.

There is no unique design for metamodels or ontologies; 
different organizations may prefer different ones to better 
accommodate their specific context and needs. However, 
the metamodel and/or ontology should not be arbitrary. 
Concepts, relationships, semantics, and axioms must be 
meaningful, internally consistent, and ideally consistent with 
systems engineering theory and principles, if one would 
want to benefit from its structure and machine-readability (if 
implemented as such). 

George Box famously said “All models are wrong, but some 
are useful. The question is how wrong a model can be and still 
be useful.” Whenever engineers deal with models, they must 
be deliberate about defining and understanding the purpose 
behind that model so that the model is fit for purpose in its 
type, scope, and level of fidelity. MBSE can be valid at any 
point along the system life cycle, as long as the investment of 
effort into the model is aligned with the appropriate purpose. 
For example, if the model is being used in the front end of the 
lifecycle, then a high-fidelity representation is highly unlikely 
to be necessary. In place of precision, it may be better to 
seek elicitation: a better understanding and alignment with 
the stakeholders to elicit the real needs at the architectural 
phase. Whether it is fresh design or reengineering, early life 
cycle, or late life cycle, if the purpose is identified and kept 
in the forefront, then MBSE can deliver value. If it is not, it is 
easy to fall into the trap of modeling for the sake of modeling, 
which defeats the purpose of MBSE. The usefulness of a 
model is clearly tied to understanding its intended purpose.

The implementation of MBSE requires two pillars in addition 
to the modeling language, the tool that enables the creation 
and visualization of the models and the method with which 
MBSE is implemented [5].

Figure 2. Examples of system models created in different modeling languages



82

The Systems Modeling Language (SysML) is the dominant 
language associated with MBSE, but it is important to 
note that SysML does not equal MBSE. In fact, SysML is 
not the only language, nor is it always the right language. 
SysML was developed as a profile of the Unified Modeling 
Language (UML) developed by the software engineering 
community to help close the communication gap between 
system and software engineers during the rise of software-
intensive systems. In this sense, SysML is a general-purpose 
graphical language that is intended to model systems, not 
necessarily to model all aspects of systems engineering, 
despite being abused in this sense by the practicing 
community. Other modeling languages include the Lifecycle 
Modeling Language (LML), the Object-Process Methodology 
(OPM), and various languages tied to specific tools such as 
Capella/Arcadia and Vitech Corporation’s Systems Definition 
Language (SDL). Some graphical representations are shown 
as examples in Figure 2.

Modeling tools are a special class of tools that are designed 
and implemented to comply with the rules of one or more 
modeling languages and enable users to build well-formed 
models in these languages. Good MBSE tools are far more 
than diagramming tools. The diagrams are not the model 
itself; they are merely views of the underlying model which 
contains a set of elements and relationships that are 
shown in the diagrams. Much as a computer-aided design 
(CAD) tool can present top, front, and side views of the 
geometric model of a part, MBSE tools produce a variety 
of visualizations of the underlying system model. Some 
examples of MBSE tools include Cameo Systems ModelerTM 
(Dassault Systemes), CapellaTM (Eclipse open source), 
Enterprise ArchitectTM (Sparx Systems), GENESYSTM 
(Vitech Corporation), InnoslateTM (SPEC Innovations), and 
RhapsodyTM (IBM). Examples of some of their user interfaces 
are shown in Figure 3.

Figure 3. Examples of the user interfaces of different MBSE tools
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Modeling methods and/or methodologies can be seen 
as a roadmap with a set of tasks that ensures the 
entire team builds the model consistently and works 
towards a common purpose. A method helps to define 
the scope; how deep and broad the approach should 
be towards the model (also based on the opinion of 
the development teams and the time available). Some 
general methodologies include INCOSE Object-
Oriented Systems Engineering Method (OOSEM), 
Systems Modeling Toolbox (SYSMOD), Object-
Process Methodology (OPM), and the Integrated 
Systems Engineering and Pipelines of Processes 
in Object-Oriented Architectures (ISE&PPOOA). It 
should be noted that these methodologies, while 
developed with some level of generality in mind, 
may not fit the needs of every organization. In fact, 
the adoption of a particular MBSE methodology 
requires adopting a specific approach to systems 
engineering. Therefore, ad-hoc methodologies can 
however be implemented by an organization to 
better align their implementation of MBSE with their 
working processes and specific adoption of systems 
engineering practices. Furthermore, because of this 
strong connection between MBSE methodologies 
and systems engineering practices, consistency with 
systems engineering standards may constraint the 
implementation of MBSE or vice versa. The adoption of 
a specific MBSE methodology may require the change 
and/or tailoring of existing standards. 

Finally, people are central to implementing MBSE. 
When putting together a team to perform MBSE, the 
team must collectively exhibit expertise in systems 
engineering, the modeling languages of choice, and 
the modeling tools of choice, besides any other specific 
expertise required to complete the project at hand 
(e.g., different analytical methods, application domain, 
etc.). Some teams opt to split the expertise between 
different team members, while some other teams opt to 
guarantee that all team members have expertise in the 
three areas. There are advantages and disadvantages 
to each approach (e.g., splitting expertise accelerates 
the learning curve but is fragile and less scalable), but 
explaining them is outside of the scope of this chapter. 
It is not known where practitioners and professionals 
will be 15 years from now, but the state of practice 
and the evolution of MBSE is very fluid and volatile at 
the moment. Therefore, it seems fair to suggest right 
now looking for a team that has the characteristics fit 
for purpose given the business need and context of 
application.

3. MODELS ARE MORE THAN JUST 
DRAWINGS
When someone unfamiliar with MBSE looks at an MBSE tool, they 
will see a collection of drawings and wonder how this is different 
from using something like Microsoft PowerPoint or Microsoft 
Visio. The power behind MBSE comes from the underlying data 
structures, syntax, languages, etc. that make up the actual 
model (ref. Figure 4). What a diagram shows is considered a 
representation or view of the system model, as explained earlier. 
The diagraming capability of MBSE is a great tool to communicate 
with different stakeholders, but what makes it actually model-
based is the connectivity between different components that 
are unambiguously represented due to the defined syntax and 
semantics of the modeling language.

Figure 4. Iceberg model of what a user sees in a diagram 
versus the information contained in the model
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A classic systems engineer will often state that a whiteboard 
is one of their greatest tools. They can go to the whiteboard, 
begin a sketch, draw bubbles and clouds and arrows, and 
label the components. This is useful at a high level and is 
very good for human-to-human alignment. But then, as the 
development progresses towards a more detailed design, 
that flexibility in language and symbology becomes a 
hindrance because greater precision is needed. An agreed 
upon meaning of symbols and terminology is necessary to 
avoid miscommunications and misalignments. There needs 
to be rigor in the language to ensure effective communication 
and reasoning by both humans and computers. Flexibility 
may be useful to understand concepts in the problem space, 
but if reusing components is desired, and eventually get 
to connecting models with other tools, there needs to be 
precision and rigor.

Discussing the precision and consistency of defined 
terminologies requires coming back to ontologies. 
Establishing an ontology is fundamentally saying that words, 
the interrelationships between the words, the concepts that 
they embody, and the context within which they are valid 
are defined. The ontology is the underlying knowledge 
architecture that enables capturing individual pieces of data 
unambiguously and reflect the interrelationships to represent 
information and knowledge. However, not all language 

models are built upon ontologies and/or the modeling 
language may hide meaning in its constructs that is unknown 
to the team members. An example from a research study 
that explored this differentiation between drawing and model 
follows.

A number of SysML experts were asked to evaluate the 
behavior of a system (specifically a car) given a system 
model and a starting condition [7]. The behavioral model 
was represented as a SysML state machine diagram, which 
is shown in Figure 4. Participants were asked to describe 
the behavior of the car when it was in the Braking state 
and the conditions releaseBrake and speed = 0 occurred 
simultaneously. They were offered multiple choices to 
answer: the car will not experience those two conditions 
simultaneously when in that state, the situation is outside of 
the scope of the model, the system automatically defaults to 
one of the transitions, or this is a non-nominal situation that 
is not captured by the model. The responses were uniformly 
distributed; in other words, there was no agreement between 
the experts. The study showed that, while the experts could 
read the same diagram, their understanding of what the 
model conveyed was different, and this was due to a lack of 
understanding of what the modeling constructs embedded 
in the model beyond the graphical representation of some of 
its aspects.

Figure 5. Behavioral model of the car system using a SysML 
state machine diagram [reproduced from [7]]
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One of the challenges of ontologies is that there are 
multiple ontologies in play at the highest level of the system 
encapsulation. When the focus is on how systems engineering 
is performed and characterizing the resulting system of 
interest, there is a rather small core ontology (a general 
systems ontology) that enables to capture, communicate, 
and reason about concepts such as requirements, functions, 
exchanges, components, interfaces, and interrelationships 
between those concepts (e.g., satisfying a requirement with 
a function or allocating a function to a component). As the 
analytical and the phenomenology necessary to develop the 
system of interest are brought in, the scope of the required 
ontology explodes. The phenomenology for an aircraft, 
for an insulin pump, or for an IT system are very different, 
therefore, the language around them (the domain specific 
ontology) is different. The path to success in MBSE may lie in 
picking a base systems ontology that addresses the scope 
and language of the team, then specializing it to include 
key engineering concepts and concepts that align with the 
organization’s methods.

A basic understanding of ontologies better justifies why 
models are more than just drawings. Returning to the analogy 
of CAD, the underlying ontology of geometry is points and 
vectors. If the canopy of a plane is shifted back by 50 
centimeters, this implies that the underlying points and vectors 
in the data model are also being changed. The top and front 
views presented by CAD would then adjust to show the new 
position of the canopy. Similarly, in MBSE, if a component is 
added to the compositional diagram of a system, this is more 
than adding a box on a drawing. It is being specified that 
that system has a new subcomponent. Any representation of 
the system’s physical architecture would then reflect this new 
subcomponent.

4. MBSE IS NOT A SILVER BULLET; 
GOOD SYSTEMS ENGINEERING IS A 
PRE-REQUISITE FOR GOOD MBSE
Despite its inclusion in the name, MBSE should not be about 
modeling. MBSE should be about doing systems engineering 
while properly leveraging models and a model-based 
approach. Without a proper understanding of the fundamental 
principles, processes, and methods for systems engineering, 
it is possible to spend a great amount of time and money 
modeling, but it will not be value added. Unfortunately, this is 
a common mistake that organizations make when adopting 
MBSE: purchasing several tool licenses and offering their 

engineers short training courses on the tool and/or modeling 
language, without guaranteeing a strong underlying expertise 
in systems engineering. This is exacerbated by a growth in 
professional modelers (expertise in modeling is relatively 
easy to build) at the expense of poor systems engineering 
practices (gaining expertise in systems engineering is hard).

The key to embracing MBSE is to focus on systems 
engineering and recognize that “model-based” is largely 
using computer-aided techniques to better execute what was 
previously done in a document-based environment. MBSE is 
not a point of departure for systems engineering, but rather 
an evolution to keep pace with and leverage the rapidly 
changing technological landscape. In fact, technology will 
continue to evolve, enabling engineers to better represent, 
communicate, and analyze data tomorrow than they can 
today. What is being today called MBSE is the beginning of a 
continuing evolutionary journey for systems engineering.

It is also important to recognize that technology is not always 
a blessing. A common trap of MBSE is that it may entice 
an engineer to be prematurely precise, particularly when 
heavily relying on professional modelers with little systems 
engineering expertise, which comes in at the cost of too 
much effort and over constraining the design envelope early 
in the design journey. Good SE practices and engineering 
judgement must be front of mind when progressing through 
the system lifecycle moving from higher levels of abstraction 
to more detailed understanding. The level of accuracy to be 
achieved should be driven by the purpose of the modeling 
effort. The same applies to precision. Determining the level 
of accuracy and precision that is necessary comes back to 
sound SE principles, engineering judgement, and knowing 
the purpose behind the modeling effort.

5. NOVEL CAPABILITIES ENABLED BY 
MBSE
There are numerous claims of benefits MBSE provides across 
literature sources and from observations made by practitioners. 
Some of these benefits include better communication, 
improved consistency, reduced cost, reduced time, reduced 
errors, and improved system understanding [8]. A key 
strength of MBSE lies in the ability to clarify communication 
and shared understanding across the team. It is the ability to 
better capture information over time and free it from so called 
drift. Recollections and understanding change, so formally 
capturing the system provides a more accurate, more precise 
representation over time. A clarified representation highlights 
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where there are gaps in thinking or inconsistent understanding 
across the team. A higher fidelity descriptive architectural 
representation helps align the team – clarifying understanding, 
exposing assumptions, and reflecting the design journey 
behind the current solution. At some point in implementation 
there will be a question about a design decision, or a new 
technology, or a requirements change, so capturing the design 
journey is as critical as the resulting design.

Many of the benefits cited above stem from MBSE establishing 
an Authoritative Source of Truth (ASOT) for systems [9]. 
Essentially, this is formalizing that “connective tissue” 
discussed earlier. In the early days of MBSE, there was a vision 
of MBSE being established as the single source of truth; a 
central element that guaranteed all data used in a project were 
consistent. In essence, data lived in one location and other 
models would point to that location. In this sense, MBSE helped 
propagate data changes throughout all models that relied on 
such data. However, a single source of truth is just one solution 
to the consistency and relevance issue, and comes with some 
drawbacks, particularly in terms of vulnerability and efficiency. 
Lately, the concept has morphed into the more general ASOT 
and authoritative data, where the key is not on the uniqueness 
of the location but on the certification of the data being used 
and/or sourced. MBSE in this sense enables the identification 
and tagging of data used across the modeling environment.

This idea of an ASOT is the enabler for Digital Engineering, 
Digital Thread, Digital Twin, and all related digital transformation 

artifacts. If the systems engineering team is the technical 
connective tissue that binds together the project team, MBSE 
is the digital connective tissue that enables Digital Engineering, 
which enables creating a Digital Thread, which allows for 
development of a Digital Twin. Particularly, one could conceive 
MBSE as the subset of DE that allows all the disparate domains 
involved in the engineering process to work collectively with 
that authoritative source of data [8].

Beyond these benefits, MBSE done well enables novel 
capabilities that accelerate and advance the greater systems 
lifecycle. At the heart of each of these is representing data 
and knowledge in a structure and manner that is computable 
by both human and machine. Freeing knowledge from 
documents and artifacts, MBSE enables better alignment 
across the enterprise providing the right data to the right place 
at the right time at the right level of abstraction in full context 
presented properly for the consumer to better understand, 
analyze, and decide. Contrast this with traditional methods that 
represent one set of data (likely both missing information and 
including superfluous data for the decision at hand) in a single 
presentation and lacking context. This dynamic query and 
presentation of information on demand ensures consistency 
with the underlying model [10-12]. Properly coupled with 
strong visualizations including documents, diagrams, tables, 
and modern options such as dynamic animations and 
Unreal gaming engines, MBSE unlocks the power of multiple 
perspectives from engineer to operator to subject matter 
expert throughout the lifecycle (ref. Figure 6).

Figure 6. Example of querying a model
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Done well, MBSE reflects not only the individual bits of data 
but also the relationships and dependencies between them 
helping to move from data to information to knowledge 
representation. This knowledge map enables classic 
traceability analysis, such as checking that all requirements 
are satisfied in the solution and that all functions are allocated 
to the physical architecture (ref. Figure 7). Moreover, it 
supports the rapid evaluation of change enabling the 

engineering team to trace the impact of a proposed 
change (be that a new requirement or a new component), 
identify the affected aspects of the solution architecture, 
and evaluate the change in the context of previous design 
decisions (ref. Figure 8). While humans are still responsible 
for the engineering and analysis, the scoping and context 
provided by the knowledge map improves the quality and 
accelerates the analysis.

Figure 7. Examples of traceability analysis visualization

Figure 8. Example of a change propagation analysis visualization. 
(The diagram is automatically generated when requirement 

R1 is flagged because of change. It identifies all elements in 
the model that are associated with such a requirement.)

Figure 9. Example of completeness metrics visualization
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This knowledge map generated through MBSE can 
be analyzed through computing techniques to identify 
completeness and design integrity issues. For example, 
traditional completeness checks such as ensuring 
requirements trace to solution elements, requirements are 
verified, and functions are allocated can be performed 
consistently and rapidly generating metrics to reflect the 
maturity of the design (ref. Figure 9). More sophisticated 
checks can identify design integrity issues such as 
accounting for all inputs, outputs, and interfaces during 
decomposition or ensuring interfaces of the right type 
transfer exchanges between components (ref. Figure 10). 
Moving beyond traditional computing techniques, machine 
learning algorithms could be applied to identify patterns 
and suggest design alternatives.

Best of all, the system model represents a virtual system 
prototype from day one, albeit at a high level of abstraction 
early in the project. The model can be dynamically simulated 
to identify issues and confirm system performance. As the 
system model is refined and analytic models are coupled 
with the descriptive architectural model, the level of detail 
and precision increases. This enables continuous evaluation 
and verification of the design, accelerating defect detection 
and enabling the engineering team to rapidly conduct trade 
studies. 

These examples are not exhaustive, but they should give a 
glimpse of the state of the possible when systems engineering 
is moved into a modeling environment.

Figure 10. Example of automated design integrity check visualization (Note: Parentheses next to a signal on the sides of the diagram mean that such a signal is 
missing at the higher level of encapsulation; Parentheses on a signal next to a box indicate that such a signal is not allocated on the lower level of encapsulation.)

Digital Engineering: an integrated digital approach that uses authoritative sources of systems’ 
data and models as a continuum across disciplines to support lifecycle activities from concept 
to disposal.

Digital Thread: the communication framework that allows connected data flow and integrated 
view of an asset’s data throughout its life cycle across traditionally siloed functional perspective.

Digital Twin: a computational model of a particular physical system with bidirectional 
communication with its physical counterpart. A digital twin coevolves with the physical system 
and reflects the state, status, and history of the system. 
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6. ADOPTING MBSE
At the time of writing this chapter, there is a growing number 
of organizations adopting and implementing MBSE around 
the world. However, organizations hold differing views of 
what MBSE is [13]. In some organizations, MBSE is defined 
in terms of the tools. Others define MBSE in terms of the 
models, model artifacts, methods, or processes they use. 
Some organizations even gloss over the ‘SE’ part of MBSE. 
Having the correct expectation of what MBSE is and what 
it can provide for an organization is critical for setting up an 
adoption effort to be successful in an organization [14]. 

As has been discussed throughout this chapter, it is critical to 
know that MBSE is just a different way of performing systems 
engineering. Therefore, when adopting MBSE, it is important 
to start from processes and practices and not from the tool to 
be used. The organization must focus on selecting where in 
their organization MBSE would be the most beneficial with the 
identification of business value, not simply technical benefit. 

Figure 11. MBSE adoption causal model [from [15]]

Lessons learned indicate that it is easier to adopt MBSE if the 
scope is limited at the beginning, as an early demonstration 
of benefits can be shown. In fact, improved organizational 
outcomes is central to adoption (ref. Figure 11). This comes 
down to a common element of change management: people 
want to know that something is going to help them before 
they commit to learning, applying, and supporting it. 

Managers often sidestep this issue when adopting 
MBSE because it is difficult to show quantitative benefits 
[8]. However, it is still possible to rely on the anecdotal 
observations of others that have attempted to implement 
MBSE and learn from their shared experiences. Successful 
implementation and adoption seems to require a holistic 
approach, intentionally targeting the different aspects listed in 
Table 1 [13]. For example, organizational units that exhibited 
higher degrees of interconnectedness, standardization, and 
flexibility reported improved outcomes for MBSE adoption 
and implementation with respect to exhibited lesser degrees 
[16].
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While this type of research on MBSE adoption 
is helpful, it is important to know that there is 
no “one size fits all” approach to successfully 
adopt MBSE. As discussed with standards 
and methodologies, an organization’s purpose 
behind using MBSE can vary widely. An 
adoption strategy needs to be in-line with that 
purpose, along with several other organizational 
factors (e.g. leadership buy-in, financial support, 
subject matter expertise of employees, etc.). 

There are three main groups within an 
organization to consider when defining an 
adoption strategy [17]:

1.	 The initiators and drivers of MBSE. It is 
necessary to have some level of knowledge 
and expertise in the workforce to really drive 
the effective use of MBSE in projects. There 
are many modeling pitfalls that are easy to 
fall into, which could result in the creation of 
models that do not actually add value to the 
organization. This is a surefire way to make 
adoption of MBSE even more difficult. It is 
important (especially early on) to show the 
benefits of modelling, so it is key to have 
the right people on the team supporting the 
effort.

2.	 The organizational units that should work 
model-based. Building models is great, 
but if the models are not being used for 
anything then what is the point? For MBSE 
to fulfill its intended purpose, it needs to 
fit in an organization’s process. In some 
cases, this could take adjusting workflows, 
job descriptions/responsibilities, or even 
the structure of the organization. It is more 
than simply translating document-centric 
approaches into a model-based world; it is a 
digital transformation. An organizational unit 
adopting MBSE needs to conscientiously 
plan out where in its process it makes sense 
to use MBSE to create the most value.

3.	 The organization units responsible for the 
time and budget of the engineering projects. 
MBSE represents a significant investment in 
money and time for an organization. This fact 
needs to be considered and used to manage 
expectations for leadership and others. The 
organizational unit that is adopting MBSE 
needs to be given the space and resources 
to do it successfully.

Organizational 
design

Organizational 
enablers/barriers

Organizational 
change 

management

Workforce 
knowledge/ skills

Leadership/
management 

support/
commitment

Application of 
MBSE methods/
processes and 

modeling practices

Integration Training
Adoption/

implementation 
strategy and design

Demonstrated 
benefits/ results

Resources for 
implementation

Culture change 
management

Organizational 
structure

Tool infrastructure
Willingness to use 

tools (employee and 
stakeholder buy-in)

Table 1. Aspects necessary for successful MBSE 
implementation and adoption [adapted from [13]]

Interconnectedness: people within the organization interact often and 
are willing to assist others with problems.

Standardization: the use of MBSE tools and methods are standardized 
across the organizational unit.

Flexibility: organizations can adapt easily to change, new technologies, 
and processes.

These factors describe some ways an organization can set itself up 
for success when adopting MBSE. It is important to have some type of 
network established for people who are learning MBSE. This can take 
many forms: mentors, coaches, defined experts someone can turn to, or 
a network of experienced peers. It is also beneficial to have what tools 
and methods are used standardized across the organizational unit. This 
can make it easier for informal/formal networks of people to help everyone 
else who is learning. For example, if the same tool is used across the 
team, it is more likely that people will be able to help if a problem related 
to the tool arises. The connection with flexibility highlights the importance 
of change management. While this factor is more challenging to enact 
in a short period, there are steps can be taken to make sure people in 
the organization are prepared to adopt MBSE. Making sure the purpose 
of MBSE is clear and explaining how it can be beneficial to someone’s 
daily work goes a long way towards having a workforce ready to accept 
MBSE.



91

Preparing the workforce, setting up the infrastructure for 
adoption, and defining an adoption strategy are critical 
enablers for MBSE adoption. But once an organization gets 
to that point, they need to do the actual adopting. A key 
factor here is training. Many people find MBSE challenging 
to learn. This could be because they are actually learning 
multiple things at once: a tool, a modeling language, a 
method, and system engineering. According to practitioners, 
all stakeholders need some level of training, but the amount 
and what they need to learn varies [13]. 

Table 2 shows four categories of roles and their common 
MBSE training needs. Different roles may require only a 
subset of the components of MBSE (i.e., tool, language, 
method, SE concepts) that they need to be familiar with. 
For example, someone serving as a ‘model reviewer’ likely 
does not need training related to the specific tool or method. 
But they do need to be able to understand and interpret 
MBSE artifacts. In this case, some training in the modeling 
language may be all that is required. Two aspects are 
worth noting. First, the roles are not necessarily mutually 
exclusive, but a given individual may fulfill more than one 
role in different capacities at once. Second, whereas some 
teams may decide to split the role of a modeler and a regular 
systems engineer, some other teams may assign each 
systems engineer (or engineer in general) modeling tasks 
without depending on a dedicated team for modeling tasks.

Integration of work is another critical factor to the successful 
adoption of MBSE enterprise-wide [15]. Systems engineering in 
general involves different functional teams/disciplines to come 
together, and this is still the case with MBSE. Coordination 
between these two groups is key. A team can create a great 
model, but if it does not accurately represent the system then 
it is of little use. Additionally, system models are often broken 
up into a collection of smaller system models. In other words, 
multiple teams are responsible for modeling a component of 
the system that is ultimately integrated together. In these cases, 
having some level of standardization/consistency across those 
groups is critical since those disparate models will need to 
ultimately integrate. There are many different ways to correctly 
model the same thing, so having some guidelines for groups 
to follow relative to some of those decisions will help the final 
product be more cohesive and reduce integration effort.

Adoption of MBSE is difficult because there are many moving 
parts. But ultimately, there are many ways in which MBSE can 
provide value to the team. An organization just needs to find 
what that is and use that purpose to navigate through all the 
different decisions and components that need to be made. 

Categories of roles who need training

Model reviewers

Leaders, stakeholders, or 
customers who need to 

know how to use the models 
to make decisions

Developers 
(Modelers)

People who are building and 
maintaining the models in the 

tools, so they will need detailed 
knowledge of how the tool works

Other engineers

People who will be working in 
the model to some capacity. 

These people are often senior 
engineers or people from other 

disciplines who are helping 
with the content of the model

Administrators
People who work in IT or software 
who will be managing the relevant 

accounts, licenses, tools, etc.

Table 2. Categories of roles requiring MBSE training
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7. CONCLUSIONS
Given the speed at which the world keeps accelerating, 
transitioning to model-based/digital approaches to engineering 
is inevitable. Traditional practices simply cannot keep up with 
the demand for rapid development and production of ideas 
into reality. Systems engineering itself is not changing; just the 
way it is done is. The key to embracing MBSE is to focus on 
good systems engineering and recognize that model-based 
is largely using computer-aided techniques to better execute 
what systems engineers have always done.

MBSE is gaining a foothold in industry and government as 
more and more people are starting to see the benefits of 
using it. At its core, MBSE is about capturing data in a better 
way using modern techniques enabling teams to better 
understand, communicate, reason, and retain knowledge. The 
cost of adoption in terms of time and money is high, but it is 
argued that the cost of not adopting it will be even higher in 
the long run.
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“Is the universe really so loosely coupled? Or is this small dimensionality due to the 
fact that the humans who developed the equations controlled their experiments in 

accordance with their cognitive limitations?” 
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Abstract

This chapter presents the novel capabilities enabled by digital models and high computational power 
of current workstations, cloud, and grid computing to support systems development, integration, 
and qualification. It introduces the concept of digital transformation and explains how it builds on the 
processes of digitization and digitalization. The key technologies that enable digital transformation 
are presented and discussed. These include formal languages and semantic web technologies. The 
chapter then looks at some examples of how digital transformation can lead to improved outcomes 
with regards to systems engineering practice. Examples include enhanced traceability, the automated 
generation and evaluation of architectures, set-based design, and the integration of physics-based 
models into systems engineering models.
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1. INTRODUCTION
Interest in digital transformation has seen rapid growth in the 
last decade. In this chapter, we present an overview of this 
rapidly evolving field and discuss some of those relevant, 
emerging technologies that digital transformation aims to 
leverage and provide examples of how they are being applied 
to Systems Engineering (SE). First, to understand what we 
mean by Digital Transformation, there is a crucial distinction 
that needs to be made between two commonly used terms: 
digitization and digitalization.

Digitization refers simply to the change that occurs when an 
analog artifact, whatever it may be, is transformed into a digital 
artifact. If we take a physical document, such as a report or 
a photograph, and convert it into a digital format through 
scanning or simply by typing text in a word processor, we have 
performed digitization. This kind of process has been taking 
place for decades, and probably everyone understands the 
benefits of working with digital artifacts instead of with tons of 
paper. For example, digitization of information enabled vast 
quantities of information to be transmitted digitally and without 
loss. This process of digitization was enabled by advances 
in computer miniaturization and networking infrastructure, 
and it revolutionized the ways in which information can be 
managed and communicated, known as the Information Age 
or the Third Industrial Revolution.

Digital transformation, however, goes beyond digitization. 
In digitalization, engineers work with models and data that 
are digitally linked. Any information consumption is just a 
visualization of the underlying models and data. In other 
words, the information and its visualization are decoupled. 

Because of this, digitalization often involves rethinking 
traditional processes to take full advantage of the capabilities 
that have been made possible by connecting data and 
models in a machine-readable manner. Clearly, digitalization 
involves some deep thinking about how modern technologies 
can be effectively leveraged, particularly when applied 
within a business context. When it is to be applied within the 
boundary of an organization, digitalization requires careful 
consideration of the necessary cultural and organizational 
changes, relevant talent acquisition and development, data 
governance and security within and across organizational 
boundaries, as well as multiple other aspects. Together, 
this process of digitization and digitalization to improve 
processes within a business context is known as the Digital 
Transformation [1].

Before we look at some of the technologies that enable digital 
transformation, let us consider what an ideal ‘digitalized’ SE 
process might look like. In other words, to understand what is 
required to support our digital transformation, we must have 
a vision of what our digitally transformed enterprise should 
be capable of. In a nutshell, the information generated from 
all stages of the system lifecycle is in digital form, is linked 
through a data-driven architecture of shared resources, feeds 
descriptive and quantitative models, and can be used for 
real-time and long-term decision-making” [2] (ref. Figure 1). 
Practically speaking, this means that data can be seamlessly 
exchanged between the different tools that support modeling 
in each of system lifecycle phases. Not only does this provide 
the necessary traceability between design decisions, tests, 
requirements, and so on; it enables decision support analyses 
that were previously infeasible.

Figure 1. The Digital Thread related to Systems Engineering [adapted from [2]]
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Furthermore, this capability extends beyond the processes 
of any single organization – an ideal digital thread enables 
collaboration and seamless data exchange across 
organizational boundaries to support critical aspects such as 
supply chain integration. Within the confines of appropriate 
security and privacy protocols, data may be rapidly accessible 
across the digital thread to support decision-making at the 
enterprise level. Appropriate change propagation pipelines 
ensure that downstream effects of a change to the data are 
identified and acknowledged.

2. ENABLERS OF DIGITAL TRANSFORMATION

2.1. Computer languages unleash the power of 
applied mathematics

It is the thrust of increasingly sophisticated systems coupled 
with the critical impacts of quality and cost that drive the 
need for systems engineering practices that are quantifiable 
and analyzable. Achieving this need often requires the 
development of an executable representation of the system. 
This intersection of need and the availability of a particular 
kind of system – the modern computational environment –
is a rather poetic result: it is now possible to use a human-
developed system to enter a recursive development cycle 

whereby improvements in the discipline of SE can deliver 
improvements in how we practice the discipline. 

The core of this concept is rooted in the ability to mathematically 
model the world around us. In Computer Science, the essence 
of this innovation is the weaving together of computational 
instruction with what is arguably the most significant invention 
in human history – language. 

Since its inception, systems engineering has focused on the 
specification of the systematic behavior of an element known 
as a ‘System’. This element can take many forms as long 
as the central concept defining its existence is systematic 
behavior. Traditional SE focused on informal descriptions, 
human thought experiments, and heuristics to tackle the 
increasingly complex problems that SE was expected to deal 
with [3]. This approach often relied on expensive testing on 
real-world builds and rigid inflexible constraints on changes 
to meet unforeseen challenges.  

The widespread development, deployment, and adoption 
of suitable modeling languages to support SE has been 
described as ‘The Systems Engineering Challenge’ [3]. 
In recent decades, increased computational power and 
the development of a multitude of declarative modeling 
languages have contributed to the advancement of SE. Some 
of these are displayed in Figure 2. 

Figure 2. Examples of declarative modeling languages to support systems engineering and 
some of the standards bodies and open source software foundations that sustain them
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Graphical languages such as SysML version 1 and CSDL 
provide the capability to visually model specifications of 
concepts and relationships. Text/code-based languages 
such as Julia and Robot expand the power across the lifecycle 
to capture detailed execution, analysis, and systems testing 
capability. The new generation of hybrid languages such 
as AADL, SysML version 2, or Modelica point to a powerful 
capability to specify, visualize, code, and analyze systems 
across the lifecycle. Information modeling languages such 
as OWL/SparQL and OpenAPI/Swagger also play a crucial 
role in modern systems modeling and Digital Engineering 
(DE). They provide a foundation for supporting the web-
based interoperability required for model integration and 
interchange.

The languages presented in Figure 2 can all be considered 
‘Declarative Languages’. Declarative languages focus on 
semantics capable of being solved in a variety of ways besides 
traditional execution. Often, they can be solved using analytic 
techniques as opposed to procedural semantics which 
execute statements in the order they are read. Declarative 
models tend to have mathematical statements that can be 
solved in more than one way. It is worth noting as well that while 
languages such as MATLAB, Python, or Julia are not strictly 
declarative, they build libraries and capabilities used heavily 
in engineering that perform analysis on declarative models 
such as algebra solvers and other equation-based analysis. 
Examples include First-Order Logic (FOL) and Finite State 
Machine (FSM). FOL in particular has received significant 
attention, and not just in engineering, due to its ability to 
precisely capture knowledge and infer new knowledge based 
on a set of rules [5]. FSMs are a good example of this type 
of language. They declare states, behavior, and events. The 
a-causal nature of an FSM can be interpreted differently while 
still retaining the mathematical formality of the FSM. The most 
direct way to solve an FSM is to define a trajectory of events 
and test the FSM to see the output. A less obvious example 
would be to use a solver to analyze the entire FSM to find out 
if the event trajectory is valid. A third example would be to 
analyze the FSM to determine if there are any states defined 
such that they can never be reached. 

While declarative languages tend to enable formal methods 
in DE, there is still value in informal descriptive and 
qualitative representations such as narrative text, graphics, 
diagrams, and pseudo code. They are an important part of 
the development cycle. As models are developed against 
informal material they undergo a process called the Model-
Hardening Process. This process captures the relationships 
between the qualitative representations and the quantitative 
representations as the design matures.

With all the right ingredients, SE can produce precise, 
accurate, and complete digital representations of systems 
and the processes that will realize them. The ‘right ingredients’ 
are those that leverage the power of computation and the 
precision of formal languages to manage the huge amount 
of data that is associated with an SE project, automate SE 
processes through inference and reasoning, and preserve 
rigor within the system lifecycle. One area we can look to 
for inspiration in this regard is an area that has witnessed 
huge progress in the last 30 years in terms of information 
management and retrieval: the evolution of the World Wide 
Web.

2.2. Semantic web technologies

The Semantic Web is an extension of the World Wide Web 
that intends to make data machine-readable and provide a 
standard structure for data representation and reasoning [6]. 
At the core of this evolution is the transition from a web that 
“consists largely of documents for humans to read to one that 
includes data and information for computers to manipulate” 
[7]. An obvious first example might be the evolution of the 
search engine. Far from being a simple keyword-match 
web-crawler algorithm, modern search engines exploit this 
hyper-connectivity between data to understand the meaning 
behind your search query, employ complex algorithms 
utilizing machine-learning to understand user intent, and 
often generate a natural-language personalized response. 

Semantic web technologies are the technologies that enable 
these capabilities. They provide standardized ways to represent 
data in triples of subject-predicate-object format that allows 
to describe knowledge such as ‘Curiosity is a Mars Rover’ 
or ‘Curiosity executes Analyze Soil’. In this way, it is possible 
to build up complex networks of interconnected data that are 
entirely built on this simple triple pattern. By using an ontology, 
these networks can be leveraged to check data validity, as well 
as to infer new information that we have not explicitly declared. 
For example, consider the ontology in Figure 2. In this ontology, 
three classes are defined: System, Function, and Mars Rover. It 
has also been stated that Mars Rover is a subclass of System. 
An object property (a relation between two classes) called 
‘executes’ specifies that the domain can only be a System, 
and the range can only be a Function. This ontology can be 
used to validate the dataset presented earlier (i.e., ‘Curiosity is 
a Mars Rover’ and ‘Curiosity executes function “Analyze Soil’’’), 
and to infer new information that that was not previously stated. 
Because Curiosity is a Mars Rover, and the ontology specifies 
that Mars Rover is a subclass of System, it is possible to infer that 
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Curiosity is also a System. Also, because Curiosity (a System) 
executes ‘Analyze Soil’, it can be inferred that ‘Analyze Soil’ is 
a Function. The validity of the dataset is confirmed because no 
rules in the ontology have been broken. If we had stated that 
‘Analyze Soil’ executed ‘Curiosity’, our dataset would have been 
declared inconsistent, as the range of the relation ‘executes’ can 
only ever be a Function.

3.1. Traceability of system design artifacts

Traceability refers to the ability to establish explicit 
relationships between elements of the system design (e.g., 
a quantity value, a design decision) across the system 
lifecycle. In systems engineering, design traceability is a 
common example, whereby all system elements, design 
decisions, and test cases can be traced back to a particular 
requirement (or set of requirements). The purpose of this is 
to be able to ensure that the results of the design can be 
explained and checked for review and audit.

DE, and particularly the digital thread, enables unprecedented 
traceability across the system lifecycle. One of the main 
benefits of this approach is that data can be defined once in 
an Authoritative Source of Truth (ASOT), and then distributed 
across the digital thread to other models and artifacts 
that require access to the data. An ASOT is the source of 
a baselined version of data and should be accessible to 
authorized applications that intend to use the data in some 
analysis or decision, for example. In this way, engineers can 
be confident that applications across the entire digital thread 
(thus representing the entire system lifecycle) are using a 
valid set of data. The establishment of ASOTs within a digital 
thread is an effective way to avoid inconsistencies.

Similarly, traceability within a digital thread enables the 
identification of change propagation paths. If we consider 
a change to a system requirement, for example, traceability 
across the digital thread enables engineers to identify the 
system elements and tests that will be affected, among 
others. 

To achieve this degree of traceability, there are two aspects to 
consider: data interoperability and technical interoperability 
[9]. Data interoperability ensures that there is a consistent 
understanding of the relevant terminology, and a standard 
data structure to which data can be mapped. Technical 
interoperability solves the problem of getting data from 
multiple sources into the same database in the first place – or 
at least provides point-to-point connections between relevant 
tools. Technical interoperability can be streamlined by using 
established integration protocols such as REST API. The Open 
Services for Lifecycle Collaboration (OSLC) is a community 
that develops and releases open-course standards aimed at 
improving integration through REST APIs [10].

The Dragon Architecture, under development by NASA 
JPL, is a DE environment that comprises multiple systems 
and software engineering applications and implements the 
digital thread by connecting the tools together in a graph-

Figure 3. Example Knowledge Graph [Legend: rdf: Resource 
Description Framework; rdfs: Resource Description 

Framework Schema; sys: System Ontology]

As an example, Figure 4 shows a partial representation of the 
ontology to support the modeling of the harness design for a 
spacecraft.

Figure 4. Partial Representation of Harness Design Ontology, from [8]

3. MODEL-BASED LIFECYCLE MANAGEMENT 
AND QUALIFICATION

In this section, we focus on how modern approaches to DE 
can support lifecycle management and qualification, e.g. 
verification and validation and certification. We present 
examples from the literature regarding traceability across 
design artifacts, early Verification and Validation (V&V), and 
model-based reviews.
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oriented structure, emphasizing explicit relationships to 
form an integrated heterogeneous model [11] (ref. Figure 
5). The use of ASOTs and technical interoperability are core 
aspects of the Dragon Architecture. It enables the user to 
define inter-tool relations, thus providing connectivity that 
integrates requirements, architecture, detailed HW and SW 
design, test cases, and so on. The Dragon Architecture 
achieves this through the application of Internet and World 
Wide Web based interoperability technology and standards. 
Interoperability through these technologies and standards is 
a fundamental principle of the Dragon Architecture. 

Although not always necessary, ontologies can help with 
data interoperability. Interoperability in Dragon, however, 
does require the expression of semantics in order to integrate 
and inter operate especially focusing relationships. It is often 
the case that Ontology is associated with the Semantic Web 
and the Web Ontology Language. While this is certainly a 
valid means of modeling an Ontology, it is not the only way 

an Ontology can be specified. The application of ontologies 
to SE aims to “enable more automated sharing of information 
directly between models to ensure model consistency, 
improve the rigor of engineering process, and ultimately, 
reduce the effort needed to get a clear answer to engineering 
questions” [8]. The Digital Engineering Factory (DEF), for 
example, is a DE environment under development at the 
University of Arizona that enables users to integrate data 
from multiple tools and structures this data in accordance 
with the University of Arizona Ontology Stack (UAOS) [9]. An 
ontology stack is a structured hierarchy of ontologies, based 
on the same Top-Level Ontology (TLO), to support data 
interoperability between domains. The DEF uses a hub-and-
spoke architecture to integrate data from multiple tools into a 
central database (hosted in the Violet tool). This enables users 
to define inter-tool connections, thus supporting traceability 
between requirements, system architecture, detailed HW and 
SW design, verification activities, and project management 
(ref. Figure 6).

Figure 5. Dragon Architecture Functional View. This is an illustration intended to communicate the general flow of work and conceptual dependencies. 
It is not intended to describe a process or gates. All functions are realizable with off-the-shelf technology except for model checking
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3.2. Early verification and validation

The potential connectivity offered by the digital thread and its 
enabling technologies also makes it possible to move V&V 
earlier in the lifecycle [16]. For example, modeling the system 
architecture in the early stages of design with an executable 
modeling language enables the execution of simulations 
and resulting quantitative analyses to assess compliance 
to requirements [15]. This is valuable because “finding 
problems early is a key enabler to DE providing full potential 
value” [13]. Several modeling languages, but not all, provide 
these executable capabilities. For example, in SysML, the 
behavior captured in activity and state machine diagrams 
can be simulated. 

In addition to the use of formal methods to execute and 
simulate models, which involve a complete, mathematically 
grounded representation of a system, lightweight formal 
methods can also contribute to early V&V. Lightweight formal 
methods involve the mathematical representation of some 
part of the system specification. In this way, lightweight formal 
methods provide some of the benefits of formal methods, 
such as the ability to detect errors in the early stages of 
system development, but without the need to redefine the 
entire system specification [20].

“One of the strengths of using DE approaches to concept 
design is that the various models, tools, and ASOTs are 
all connected via a digital thread. They share the same 
consistent, authoritative data. During concept design, one 
useful application of this digital thread is to connect simulation 
models with system definition models…and unambiguously 
share requirements, requirements traceability, and system 
behaviors” [21].

3.3. Model-based reviews and digital signoffs

The digitalization of SE processes also extends to the major 
gates of the system lifecycle: technical reviews. Traditional 
document-based review processes have been used by 
systems engineers for many years to determine whether 
system development programs can progress to the next 
stages in their development. However, this traditional 
approach to technical reviews often leads to “lengthy 
evaluations of static, contractually obligated documents” 
that “represent snapshots of the systems as seen through 
the prism of the entrance criteria [to the next phase of the 
lifecycle], and do not represent a view of the system in its 
totality” [22]. Not only is this process inefficient, but it also 
often lacks the ability to holistically represent the necessary 
system-related information to stakeholders.

Figure 6. The Digital Engineering Factory (DEF), adapted from [12]
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Model-based reviews have the potential to offer improvements 
in this regard (e.g., [24, 25]). First, reviewers can approve 
subsets of data/information instead of having to review and 
approve monolithic aggregations of information in disparate 
and often overlapping documents. This has been coined 
as digital signoffs, where even required signoffs can be 
assigned to different pieces of data for them to be considered 
baselined, accepted, and/or approved [24]. Second, 
reviewers can interact with the interoperable ontology stack 
to find the information that they consider relevant for the 
review, as opposed to having to dig and hunt for treasure 
in static documentation. For example, a reviewer might 
query the DE repository to identify all verification evidence 
related (i.e., traced) with a requirement, identify all functions 
that participate in a capability related to a specific need of 
a stakeholder, or identify the remaining integration and test 
activities for a specific component. In both cases, it is easy 
to realize how the use of DE to support technical reviews 
can result in an accelerated and more fluid process, while 
potentially improving its efficiency and reducing the likelihood 
of review gaps.

It should be noted though that model-based reviews come 
with challenges as well. Among others, models need to be 
comprehensive, not just limited to traditional 3D drawings; 
there is a significant learning curve, as the people involved 
do not only need to learn the new modeling languages and 
tools but also the new processes to operate in a model-based 
review and rely on the ability of the reviewers to identify the 
necessary information in the digital repository [23]. Adopting 
DE can help to mitigate some of these challenges. Data and 
technical interoperability provide engineers with a common 
data structure and database from which project information 
can be retrieved. Semantic web technologies can be 
leveraged to automatically validate this dataset and queries 
to retrieve, and conveniently present, key information can 
be standardized and automated (e.g., in an autogenerated 
document or dashboard). 

4. BEYOND TRACEABILITY AND LIFECYCLE 
MANAGEMENT

So far, we have discussed how DE can be used to enhance 
traceability, enable early V&V, and support the model-based 
review process. However, DE is not only about traceability 
and management. In this section, we provide examples of 
how DE can support a set of unprecedented analysis that 
have been infeasible in document-based practices. They 
include tradespace exploration, set-based design, multi-

disciplinary optimization, the integration of physics models 
within system models, and human-system integration.

4.1. The Tradespace Exploration paradigm

When developing a new system, it is crucial to focus efforts 
during the early stages of the life cycle on finding a preferred 
design solution. Since evaluating the entire set of possible 
solutions requires a significant investment, this analysis is not 
usually extensive due to the unavailability of the necessary 
resources. As a result, hasty and generally unjustified 
decisions are made to reduce the design options and only 
a few alternatives are evaluated. Consequently, alternatives 
that could be more valuable than the chosen ones are 
frequently overlooked.

Tradespace Exploration is a method that leverages digital 
models and the high computational power of current 
computers to enable a rapid and comprehensive in-
depth analysis of the solution space [26]. Through this 
strategy, multiple design options are explored as candidate 
architectures and analyzed to determine the most suitable 
one. In essence, instead of focusing on finding specific 
design options, the engineer defines a generic model of 
the system that can be automatically instantiated as the 
enumeration of different components and values that their 
main variables can take. Each resulting solution is evaluated 
against a set of decision criteria. Among them, a Pareto Front, 
formed by those solutions that dominate the solution space 
(that is, there is no solution that performs better in all criteria) 
can be identified for choosing the desired solution within the 
set. 

For illustrative purposes, consider the design of a new tank 
with the following desired needs: high transport, high tank 
protection, and fair mobility. The generic architecture of the 
tank includes Armor, Weapon System, and Propulsion as 
its main systems, with each having different design options 
(Armor: Conventional steel, Ceramics, or Composite; 
Weapon System: 120 mm cannon or Guided missile launcher; 
Propulsion: Hybrid electric motor or Internal Combustion 
Engine). Furthermore, each instantiation can have different 
performance values, such as having different masses. 
Considering mass as a surrogate for the overall performance 
of the different variants of the different technologies (in this 
case, a total of 71 lower level components), it is possible 
to enumerate all possible instantiated architectures (e.g., 
Conventional Steel – Performance 1/120 mm Cannon 
Performance 1/Hybrid Electric Motor Performance 1, 
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Conventional Steel – Performance 1/120 mm Cannon 
Performance 1/Hybrid Electric Motor Performance 2, 
Conventional Steel – Performance 1/120 mm Cannon 
Performance 1/Hybrid Electric Motor Performance 3, … for a 
total of 3,408 architectures) and plot them according to their 
cost (the higher the cost the less preferred the alternative is) 
and value provided in operations (the higher the value the 
more preferred the alternative is; note that both have been 
calculated using notional models), identifying then the Pareto 
Front (ref. Figure 7, where each apparent line is actually the 
effect of many points close together).

(ref. Figure 8). This reduces the risk of erroneous theories and 
assumptions of decisions early in the design process, which 
is delayed for critical decisions until sufficient information and 
knowledge is available to gain flexibility. Furthermore, as a 
byproduct of working with sets of solutions instead of with 
single solutions, SBD provides greater flexibility to adapt to 
unforeseen circumstances. The use of powerful computers 
with high computing capacity, and object-oriented modeling, 
play a significant role in simultaneously developing and 
evaluating various design concepts at a relatively low cost.

Figure 7. Solution Space for Tank Example relating 
Cost and Value (Pareto front highlighted)

4.2. The Set-Based Design paradigm

Traditionally, the Point Design Method (PDM) has been 
employed for system design. It begins with an analysis of 
alternatives, resulting in the selection of a single concept, 
which is refined as the development progresses. When a 
problem is encountered during development, the solution 
is modified as necessary, generally resulting in higher costs 
and delays the later the modification is accomplished.

In contrast to this rigid approach, the Set-Based Design (SBD) 
paradigm encourages maintaining multiple options open and 
evaluating the trade-offs and advantages of each design 
rather than quickly converging on a single design [30–32]. 
It facilitates thorough exploration of the design space and 
promotes innovation by deferring commitment to a single 
concept. The solution space progressively narrows as more 
knowledge and information about the system are acquired 

Figure 8. Set-based Design Maturation Process

An SBD essential process consists of three main effects (ref. 
Figure 9):

1.	 Definition of the design space, identifying a set of viable 
alternatives to be progressively developed independently, 
even by different engineering groups, thereby generating 
concepts from diverse perspectives. It is crucial to 
consider a large number of alternatives for evaluation.

2.	 Discover intersections among different sets of 
independent solutions to define the core of the new 
design progressively.

3.	 Gradually eliminate concepts that prove incompatible or 
contribute limited value.
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Figure 9. Discovering Intersections in Set-Based 
Design process [adapted from [33]]

4.3. The MDO paradigm

Traditionally, system decomposition is performed by manually 
fixing characteristics of the components that form the system 
and iterating between them until their integration leads to a 
satisficing system solution. This is due to the coupling that 
generally exists between the different components of a 
system. For example, a team designing a satellite may start 
by estimating the electrical power consumption of each 
component. They would then aggregate the power dissipated 
in the different structural panels of the satellite and use that 
to inform the design of the thermal system (for dissipation). 
Sizing of the thermal system may feedback into the sizing 
of the structural panels, and so forth. This iterative process 
is generally performed manually: propagating the different 
modifications until something seems promising to work. 

Instead, in Multidisciplinary Design Optimization (MDO) 
the goal is to find an optimal combination of components 
by managing conflicting objectives not just a satisficing 
one [34]. MDO leverages computer models to execute 
optimization algorithms. Particularly, the method consists 
of integrating mathematical models of the components and 
executing a global optimization function at the system level. 
In this way, the design of the components would not lead to 
just a satisficing solution but to an optimal system. The work 
of the engineering team moves from iterating their coupled 

characteristics to developing accurate models of their 
components (and their integration), so that the computer can 
handle the iterations on its own.

MDO does not only identifies a solution that is optimal, but it 
does so more efficiently than human iteration and guarantees 
alignment between the decisions at component level and 
the objectives of the project at the system level. However, 
one should note that robustness of the solution becomes 
important, as the accuracy of the underlying models to 
perform the optimization is likely coarse at the stage when 
MDO is employed.

4.4. Connecting system models with physics-
based models

The connection of system models with physics-based models 
is a common capability leveraged within a digital thread. 
In essence, behavioral and structural models of a system 
architecture can be connected to their design instantiations 
in physics-based models, propagating constraints (in one 
direction) and results (in the other direction) between the 
different models automatically, guaranteeing data consistency 
and trustworthiness [11]. 

For example, Figure 10 shows the use of the Dragon 
Architecture to support the architecture and design of a 
Rover. Adopting the application of computer languages 
allows the flow to occur from informal, qualitative descriptions 
to executable mathematically accurate representations in 
physics. In this case, the system architecture is modeled 
using SysML, which is connected to its physics-based model, 
which is established in Modelica. SysML can effectively 
represent the functional behavior and interfaces of the rover, 
and Modelica does the same for the physical behavior and 
interfaces in an executable manner, which is not possible 
when using natural language or informal diagrams or 
graphical representations. Collectively, both can be used to 
represent how signals can be passed to execute the physical 
response of the Rover based on the behavior in the systems 
model. This illustrates the explicit ability to unambiguously 
compare the verify and validate the Power and Drive 
Behavioral Specifications against a Physical representation 
of the product.
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Figure 10. Iterative Phases of the Model-Based Development Process including 

Multi-Physics Simulation. Enabled by the Dragon Architecture, from [11]
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4.5. Cognitive assistants

The developments in artificial intelligence and the computing 
power available today are enabling the development of 
cognitive assistants for systems engineering tasks. A cognitive 
assistant is a machine that acts as a virtual engineer, a senior 
companion with whom the human engineer works, and that 
performs engineering tasks that humans are not capable of 
carrying out effectively or efficiently.

With a cognitive assistant acting as a virtual engineer, the 
computer moves from being a tool in which we input data, 
create models, and run simulations, to a highly experienced 
work companion with whom we co-design, to whom we 
assign some of our tasks, on whom we rely to better 
understand what engineering decisions we should make, 
and who ensures that the knowledge generated in our project 
is stored within the organization so that other colleagues, and 

ourselves, can benefit from it in future projects [28]. Instead 
of evaluating design options for a system, we will ask our 
virtual companion, What do you think of this design?, Are 
we missing a key requirement?, What risk do you think we 
assume if we do not conduct this test?, or Would it cost us 
much to replace this interface with just a single command?.

Cognitive assistants allow for the extraction and analysis of 
large amounts of data from various sources almost instantly 
and can provide the human engineer with the answers they 
need directly in natural language. Cognitive assistants can 
also initiate conversations unilaterally when they believe 
they can be useful to the human engineer, such as providing 
suggestions to improve an architecture that is currently being 
worked on. An example user interface is shown in Figure 11. 
By interpreting system models and relying on ontologies, 
cognitive assistants can improve their recommendations and 
performance when executing these functions.

Figure 11. Daphne’s user interface, a cognitive assistant to support the architecture of space systems [29]
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5. CONCLUSIONS
This chapter has described how advances in computation and digital technologies provide organizations with the opportunity to 
digitalize (not just digitize) their processes in what is known as the ‘Digital Transformation’. DE is about creating interoperable, 
rapidly accessible datasets that can be efficiently integrated across the systems lifecycle in what is known as the ‘Digital Thread.’ 
Declarative languages and Internet based interoperability provide the foundations to manage the data interoperability aspects, 
and open standards support the technical interoperability. Semantic web technologies can be leveraged to provide the framework 
for its implementation.

Throughout the chapter, multiple examples have been presented. The digital thread can provide unprecedented traceability across 
the lifecycle, is an enabler of early V&V, and supports model-based design review. Furthermore, DE gives raise to unprecedented 
systems engineering capabilities such as tradespace exploration, SBD, MDO, the integration of physics-based models early 
during system architecture, and even the adoption of cognitive assistants thanks to advances in AI. These all contribute to 
increasing the effectiveness and efficiency of system development.
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Abstract

This chapter presents the novel capabilities enabled by Model-Based Systems Engineering (MBSE) 
and digital engineering to support system deployment, operations, sustainment, and retirement.  
Topics include advancements in the application of digital twin and digital thread technologies to 
support sustainment of systems through the life cycle and considerations for pursuing digital 
transformation and the adoption of advanced model-based technology.  The chapter discusses the 
importance of planning for the use of these technologies early in the system life cycle to establish a 
foundation and strategy conducive to the application of model-based methodologies, automation, 
virtual reality, artificial intelligence, and other advanced technologies.
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1. INTRODUCTION
Chapter 5 covered the use of digital engineering technology 
during the system development phase of the system life 
cycle.  This chapter will dive into how a system’s digital origin 
and foundation, and investments made in digital engineering 
technology enabling digital twin and digital thread, may be 
used through the later phases of the system’s life cycle.  The 
chapter also discusses considerations while pursuing this 
technology, addressing opportunities and risks through the 
deployment, operations and sustainment, and retirement of the 
system, including supporting logistics.

Interest in digital engineering technology, particularly those 
enabling digital twins and digital thread, has increased in recent 
years across various industries, specially manufacturing and 
defense. Three main concepts lay at the core of this interest: 
digital engineering, digital twin, and digital thread.

Digital engineering is a discipline that leverages advanced 
technologies, such as Computer-Aided Design (CAD), 
simulation, and data analytics, to support the design, 
development, and management of complex systems and 
products throughout their entire life cycle. It involves creating 
and integrating digital models, simulations, and data-
driven decision-making to optimize design, manufacturing, 
deployment, operation, sustainment, and retirement processes, 
including logistics.

A digital twin is essentially a virtual representation of a 
physical object, system, or process (its physical twin) that 
enables real-time monitoring, analysis, and simulation. The 
concept of a digital twin allows organizations to have a deeper 
understanding of their assets, operations, and performance 
by connecting the physical and digital worlds through digital 
thread.

The term digital twin has been significantly abused though. 
While every digital twin will be a digital model, not every 
digital model necessarily constitutes a digital twin. Ideally, 
you could substitute a digital twin by its physical twin and 
vice versa, without noticing the change. This duality becomes 
very valuable because (1) you can experiment with the digital 
twin both in development phase and operational testing fairly 
inexpensively without risking its physical twin (the actual 
system) and (2) a digital model allows for accelerating 
discovery of system properties, that is, software simulation 
often runs faster than physical testing.

Figure 1 illustrates that there are many types of digital twins 
(virtual product twin, virtual process twin, digital factory twin 
and digital twin), depending on the phase of the product life 
cycle.

The digital thread refers to the means used for connecting the 
flow of data and information throughout the entire life cycle of 
a system or product. It enables effective communication and 
collaboration among various stakeholders across aspects and 
stages of the engineering life cycle, to ensure consistency and 
traceability across activities.

Figure 1. Digital Twins along the life cycle.
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A more formal definition of digital thread, provided by the 

Defense Acquisition University (DAU), is as follows1:

“An extensible and configurable analytical framework 
that seamlessly expedites the controlled interplay of 
technical data, software, information, and knowledge in the 
digital engineering ecosystem, based on the established 
requirements, architectures, formats, and rules for building 
digital models. It is used to inform decision makers throughout 
a system’s life cycle by providing the capability to access, 
integrate, and transform data into actionable information.”

Each organization’s digital transformation journey is unique and 
may support greater innovation, cost savings, and reliability 
in their products and systems.  However, the technology and 
applications described in this chapter may not be appropriate 
or necessary for all organizations or systems of interest (SoI). 
In addition, many of the expected outcomes may not be 
achievable if the organization is not prepared to leverage the 
technology in certain contexts, or if the data models are not 
accessible to the system operating organization. Furthermore, 
it should be noted that similar to the application of systems 
engineering in physical systems, direct involvement of users, 
operators, maintainers, and other active stakeholders is 
necessary for the development of the digital twins. However, 
although the needs of the system designers and developers 
for the digital twin and digital thread may differ from the needs 
of the operator during the service phase, the use cases for 
later stages of the life cycle should be considered early in the 
system development life cycle.

2. APPLICATION OF DIGITAL TWIN, 
VIRTUAL ENVIRONMENTS, AND DIGITAL 
THREAD TECHNOLOGIES IN LATER 
SYSTEM LIFE CYCLE PHASES

2.1. Digitally transforming system deployment

Overall, digital engineering technology has expedited 
system deployments, reduced costs, increased agility, and 
improved the overall quality of deployed systems [1]. Below 
is a description and examples of some capabilities enabled 
by digital engineering and its applications during the entry 
into service.

1. Find this definition through the following link: https://www.dau.edu/glossary/digital-thread 
(last accessed on 23/04/2024).

2.1.1. Streamlined deployments with automation, 
virtualization, and hardware-in-the-loop testing

The use of virtualization technology allows for increased 
predictability in system deployments. Virtualization involves 
creating virtual versions of hardware, software, storage, or 
network resources, which may leverage emulation to mimic 
their behavior. In this way, systems can be deployed first in 
a virtual environment, reducing the need for excess physical 
infrastructure. This allows for faster and more efficient 
validation and deployment, as virtual systems can be quickly 
replicated and scaled as required [2].

Later, as the actual system is deployed, digital technologies 
enable the automation of deployment tasks, such as software 
installation, configuration, and testing. Automation decreases 
the chances of human error and allows for consistent and 
repeatable deployments. Furthermore, by facilitating the 
adoption of DevOps2 practices (including continuous 
integration and deployment), some system changes can 
be automatically built, tested, and deployed to production 
environments, ensuring a faster and more reliable deployment 
process.

2.1.2. Quality control

Digital twins and virtual environments embed detailed 
geometric information that, coupled with associated 
metadata, helps ensure compliance with design 
specifications and standards, enabling better quality control 
during manufacturing and assembly. Detailed geometric 
information provides the foundation for the development 
of accurate simulations, analyses, and visualizations. It 
enables a comprehensive understanding of the physical 
entity’s shape, structure, and spatial relationships within the 
virtual environment, including additional information such as 
three-dimensional representation, dimensional accuracy, or 
material properties and textures, among others. Metadata 
associated with digital twins and virtual environments can 
be leveraged to enhance their understanding, management, 
and utilization, as it consists of descriptive information and 
properties that characterize and provide context to the digital 
representation of a physical object or system, such as life 
cycle information and accurate item identification (e.g., for 
configuration control).

2. DevOps is a software development methodology used as a set of practices and tools 
that integrates and automates the work of software development (Dev) and information 
technologies operations (Ops) as a means of improving and shortening the systems 
development life cycle.
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2.1.3. System training and familiarization

Digital environments generated through Augmented 
Reality (AR) or Virtual Reality (VR) yield immersive learning 
experiences that can greatly enhance system training and 
familiarization, enabling personnel to better understand and 
manage complex systems in a lifelike environment with less 
reliance on being in proximity of the physical asset (e.g., see 
Figure 2). When successful, these virtual systems can provide 
technicians and operators with real-time, on-site maintenance 
assistance utilizing AR overlays to communicate visual 
instructions and reference manuals directly on the physical 
system, resulting in heightened efficiency and accuracy 
during maintenance activities.

An example of such a method is product model visualization 
in a digital mock-up, which proves valuable when linking 
design and logistics supportability information to the 
geometric information embedded in digital twins. This 
connection, established by integrating technical and 
logistics data, creates a spatially aware context that 
improves comprehension of maintenance tasks [3]. Product 
model visualization is a concept that involves creating and 
presenting visual representations of physical objects or 

systems, typically in a digital format. The primary goal is to 
convey information about the design, structure, and behavior 
of a product through graphical and interactive means. In the 
context of defense systems training and familiarization, for 
example, product model visualization plays a crucial role in 
providing an immersive and effective learning experience 
in a virtual environment. As an example, when coupled with 
the real system, an aviation maintainer can rely on digital 
artifacts directly projected and superimposed to the physical 
environment instead of relying on memorizing 2D diagrams 
and navigating dark, confined areas to locate specific parts 
[4]. Digital assets used in this way do not only improve training 
effectiveness and efficiency, but also actual task outcomes.

Despite their potential, challenges to adoption of these 
technologies remain, including but not limited to, ergonomic 
considerations and readily available and affordable VR/AR 
solutions [5]. As an intermediate alternative, digital artifacts 
can be provided to the operator or maintainer in the form of 
Interactive Electronic Technical Publications (IETP) or Manuals 
(IETM). These are digital formats of technical documents 
that provide comprehensive information, instructions, 
and guidance for the operation, maintenance, repair, and 
troubleshooting of complex systems or equipment [6]. These 

Figure 2. Example of a Digital Twin (link: https://youtu.be/G26mx4TnKyM?si=gR-fqlhmZw0B21-y).
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publications are designed to replace or supplement 
traditional paper-based manuals with electronic versions 
that offer various interactive and multimedia elements to 
enhance user experience and facilitate efficient learning 
and comprehension. Compared to printed manuals, 
IETMs are becoming more and more widespread because 
they are interactive and easy to use and maintain, as well 
as provide insight into the system that would otherwise be 
difficult to infer.

2.2. Digitally transforming operations and 
sustainment

2.2.1. Model Based Product Support and 
configuration management

Model Based Product Support (MBPS) consists of applying 
the principles and concepts of digital engineering to 
Integrated Life Cycle Support (ILS). In that sense, it refers 
to the modelling of any aspect related to ILS, including 
its supportability, reliability, and safety characteristics, 
both in terms of design and life cycle processes. MBPS 
leverages digital models, simulations, the interoperability 
of information systems and data to enhance the efficiency 
and effectiveness of supporting systems to improve 
operational readiness and to optimize sustainment and life 
cycle management throughout their useful life. Particularly, 
system models generated during system development are 
used during the operation and servicing phase to help 
understand the system functionality and its external and 
internal interfaces. 

Data continuity, which is essential to support a coherent 
transition between the models generated and/or used 
in system development and those generated and/
or used in MBPS, is enabled by the digital thread. On 
the other hand, maintaining an accurate configuration 
baseline of an asset or system remains critical in order 
to ensure it can be logistically supported. Applying 
MBPS by using authoritative sources of truth, it becomes 
no longer necessary to manually maintain two different 
configurations, one for design and one for logistics, 
throughout the life cycle, by incorporating all relevant 
logistics information directly onto the configured design 
elements themselves.

2.2.2. Proactive maintenance strategies enabled by 
digital twins and digital thread

Traditionally, both corrective and preventive maintenance 
have been the most widely used strategies of maintenance. 
In corrective maintenance, repairs are carried out after 
the problem has occurred. On the contrary, preventive 
maintenance focuses on preventing potential failures before 
they occur by executing scheduled maintenance actions, 
such as inspections, routine servicing, and component 
replacements (generally based on use patterns: running 
hours, cycles, number of starts, etc.). However, advancements 
in sensors and monitoring technologies and the resulting 
development of digital twins and the digital thread enable a 
turn towards data-driven maintenance approaches. These 
approaches rely on the use of algorithms to make predictions 
and recommendations to optimize system’s reliability and the 
operational efficiency of the assets.

By moving from reactive to data-driven maintenance, 
organizations can minimize asset downtime and reduce 
maintenance costs, since potential failures modes can be 
detected and addressed before they occur, preventing 
operation interruptions and emergency repairs. Three main 
proactive maintenance strategies can be distinguished:

	• Condition Based Maintenance (CBM). CBM focuses on 
monitoring the real-time condition of equipment by using 
various sensors and data collection tools to assess the 
current state of the equipment. CBM uses thresholds, or set 
conditions, to trigger alarms or maintenance actions when 
deviations from normal operating conditions are detected.  
 
CBM typically focuses on a specific set of parameters 
relevant to the equipment being monitored, and continuous 
monitoring of a few critical factors that directly impact 
immediate performance or reliability. The primary objective 
of CBM is to monitor the current condition of equipment and 
take timely actions to prevent imminent failures or issues.  
 
CBM is used in a broad variety of applications, including 
manufacturing, defense, industrial control systems, 
healthcare, to diagnose impending failure modes, 
thereby reducing maintenance costs, improving reliability, 
availability, and safety, extending time between overhauls 
(compared with traditional preventive maintenance), 
and reducing unnecessary downtime. With the ability to 
continuously monitor the asset’s health and performance 
metrics, system data can be collected to develop models 
enabling proactive detection of failure modes.
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	• Predictive Maintenance (PdM). PdM also involves 
monitoring equipment condition, but it primarily focuses 
on using real time data analytics and historical data 
to predict when maintenance action is needed. PdM 
analyzes patterns and trends in data to forecast potential.

Although CBM and PdM share similarities and often 
use similar technologies, there are some distinctions in 
them: CBM initiates maintenance actions based on the 
real-time condition of the equipment and focused on a 
specific set of parameters, while PdM aims to schedule 
maintenance activities just before the equipment is likely 
to fail, optimizing maintenance timing to prevent failures 
and minimize downtime.

PdM often involves more comprehensive data analysis 
than CBM, using a broader range of data points and 
indicators to predict failures. It may incorporate advanced 
analytics, Artificial Intelligence algorithms, like machine 
learning, and other sophisticated algorithms to forecast 
failures, while CBM uses them less intensively.

	• Prescriptive Maintenance (RxM). Prescriptive 
maintenance goes beyond PdM. It does not only 
predict potential equipment failures but also prescribes 
specific actions to prevent those failures or mitigate 
their impact. This approach integrates predictive 
analytics with automated decision-making systems to 
provide precise recommendations or prescriptions for 
maintenance actions. These recommendations can 
include detailed instructions on maintenance tasks, 
repairs, adjustments, or operational changes. RxM 
utilizes sophisticated algorithms of artificial intelligence 
and Big Data techniques to analyze extensive sets of 
data. It examines historical and real-time data to predict 
potential failures and determines the best course of 
action to avoid or address these issues. In the context 
of RxM, prognosis plays a significant role in determining 
the appropriate actions to be recommended. Prognosis 
refers to the estimation or prediction of future conditions 
or events based on the analysis of current and historical 
data. In RxM, prognosis involves forecasting potential 
failures, estimating the Remaining Useful Life (RUL), and 
predicting the future health and performance of assets 
or equipment [6].

Digital twins become central across maintenance approaches 
thanks to their capabilities to enable data-driven applications: 
real-time monitoring and analysis, predictive and prescriptive 
analytics, simulating “what-if” scenarios, health monitoring 
and prognosis, and optimization analysis. In predictive 
maintenance, digital twins continuously collect real-time data 
from sensors embedded in the physical assets and utilize 

historical data to analyze trends, patterns, and anomalies. By 
leveraging this information, digital twins facilitate predictive 
analytics and forecasting of potential failures or performance 
degradation. In prescriptive maintenance, digital twins play 
a crucial role, by providing not only predictive insights, but 
also actionable recommendations. By simulating different 
scenarios and analyzing data, digital twins can suggest 
specific maintenance actions or strategies to prevent failures 
or optimize asset performance. They also aid in prescribing 
the most effective actions to be taken based on predictive 
analytics and simulations.

Finally, it should be noted that digital twins can also be of value 
to support preventive maintenance, since they can assist 
in establishing asset’s baseline conditions, continuously 
monitoring asset conditions, and identifying deviations from 
normal operating parameters by tracking equipment health. 

2.2.3. Modernizing Maintenance, Repair and 
Overhaul (MRO)

As assets age, there may be a need for component 
replacements, upgrades, or redesigns. The geometric 
information embedded in digital twins, along with metadata 
on materials and manufacturing tolerances, aids in identifying 
compatible replacement parts and planning seamless 
upgrades. This can help in anticipating the integrability of new 
components with the existing system, avoiding compatibility 
issues and potential disruptions.

Integrating CAD enables effective collaboration among 
stakeholders, seamlessly incorporating modifications from 
an asset’s life cycle into the CAD model for future reference. 
CAD models created during the design phase become the 
basis to provide a visual representation for the physical asset 
in the digital twin. This digital representation, with precise 
geometric data, later allows maintenance teams to visualize 
and understand the asset’s components and assemblies, 
aiding in troubleshooting and planning maintenance 
activities, and additionally supporting communication of 
possible configuration changes to the deployed asset. 

Alongside the geometric representation, digital twins 
incorporate essential metadata, such as material properties, 
manufacturing tolerances, and part numbers. These 
metadata provide crucial information for manufacturing, 
assembly, and future maintenance activities. Particularly, it 
aids maintenance personnel in quickly identifying the right 
components, accessing relevant information, and performing 
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repairs more efficiently, reducing system downtime. For 
example, maintenance personnel can access the virtual 
twin to identify the exact components, understand their 
dimensions, and review historical maintenance records. This 
enables more efficient and targeted maintenance activities, 
minimizing downtime and extending the asset’s useful 
life. Similarly, they can utilize the virtual twin to understand 
the system’s physical layout, access metadata for part 
identification, and troubleshoot issues without direct access 
to the physical asset.

2.2.4. Obsolescence management

Obsolescence management is critical for ensuring the 
continuous operational readiness, sustainability, and 
effectiveness of certain systems over their extended service 
lives, which can often span several decades. Effective 
obsolescence management requires a proactive and holistic 
approach, integrating various strategies throughout the 
system’s life cycle to ensure operational readiness, reduce 
risks, and manage costs associated with maintaining and 
supporting these systems over time. The use of digital models 
combined with some emergent manufacturing technologies, 
provides new tools for obsolescence management.

Geometric information embedded in digital twins makes 
it easier to reverse engineer certain parts and manage 
obsolescence, as they are exact replicas of their physical 
twins, enabling their manufacturing. Integrating CAD and 
Computer-Aided Manufacturing (CAM) systems streamlines 
product design and manufacturing processes, which 
is especially helpful for modernization and dealing with 
obsolete parts. This link can be further reinforced by novel 
manufacturing processes, such as additive manufacturing 
(also known as 3D printing), as the link between design and 
manufacturing can be entirely established as a digital thread.

2.3. Digitally transforming system retirement

Relative to other life cycle phases, system retirement is the 
least developed with respect to digital transformation. For 
some situations, it may be advantageous to preserve end 
use data from retired systems and components that have 
reached end of life, such as performance data, as the same 
component in the retiring system may continue to be used 
in other similar applications.  As an example, if you retire a 
single aircraft, a certain actuator may still have usable life for 
use in other aircraft.  Performance data may also be used for 

future simulations to influence future redesigns. The digital 
thread can also help in better identifying and dealing with 
components with special considerations for disposal, such 
as hazardous materials or classified hardware and software. 

Furthermore, the retirement stage of a given system for 
one organization could be, simultaneously, the start of an 
acquisition program for another organization (e.g., when an 
organization acquires a second-hand aircraft from another 
organization). In this case, leveraging or even accepting 
the digital twin and digital thread developed with the system 
can be challenging for the organization who is receiving the 
assets, given that their digital transformation process may not 
be mature enough. 

By leveraging digital twins and digital threads in the retirement 
stage, organizations can enhance sustainability, compliance, 
and efficiency in the decommissioning process. These 
technologies contribute to responsible and environmentally 
friendly practices while providing valuable insights for 
ongoing improvement in the development and life cycle 
management processes.

2.4. Examples of novel capabilities digitally 
transforming the system life cycle

2.4.1. Cloud-enable collaborative model development

Collaborative modelling tools facilitate cross-functional 
collaboration, which may be integrated with Product Life 
cycle Management (PLM) CAD suites to allow engineers, 
designers, and other stakeholders to work together 
seamlessly. Changes made in one tool can be communicated 
to the other, promoting communication and alignment 
between different teams.  

The use of collaborative model development technology 
supports formalizing model planning, development, 
integration, curation, and using models for engineering 
activities and decision-making across the life cycle.  As 
opposed to formal document-based approaches in legacy 
systems engineering practices, model-centric organizations 
leverage collaborative environments where teams can define 
and plan the creation of models to support engineering 
activities, ensuring a structured and auditable approach.  
This technology facilitates the formal development of models 
by providing tools incorporating various techniques and 
algorithms, integrating data from different sources, and 
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curating models by refining and optimizing them over time. 
Significant productivity gains can be made with emphasis 
on the model-based definition and evolution from the legacy 
document-based approaches.

2.4.2. Data aggregation and integrated information 
systems

For most organizations, there is a significant labor burden 
associated with manual processes and disparate systems 
used to collect and use data.  The modern information system 
enabled by digital threads may connect various disciplines 
and stages of the asset life cycle.  Virtual product and process 
models, represented by digital twins and the digital thread, 
can enable analysis, performance optimization, decision-
making, operations, by integrating data and information for 
downstream users.

Digital twin technology allows real-time (or near-real time) virtual 
representations of the current asset state, in which databases, 
repositories, and system models from multiple disciplines may 
be integrated.  A well-architected digital thread can provide 
seamless integration and accessibility of relevant data across 
the asset’s entire life cycle, from design to operation and 
sustainment to enable functionality in the digital twin.

2.4.3. Sensors and IoT

The emergence of novel capabilities in sensor technology 
and the implementation of the Internet of Things (IoT) have 
revolutionized the way in which digital twins are developed, 
offering a seamless integration of the physical and digital 
domains. In parallel, advances in microfabrication and 
nanotechnology have led to the creation of highly sensitive, 
compact, and energy-efficient sensors capable of detecting 
a wide array of physical phenomena, necessary to develop 
more realistic digital twins. 

Concurrently, innovations in IoT technology, including 
enhanced connectivity options, robust data processing, and 
cloud computing, facilitate the reliable transmission and 
analysis of vast amounts of data collected from these sensors. 
This IoT infrastructure enables the real-time synchronization 
of physical assets with their digital counterparts, creating 
dynamic, virtual models that accurately reflect the physical 
world. 

2.4.4. Cloud computing

The emergence of cloud computing has revolutionized system 
deployments. Cloud platforms provide on-demand access 
to resources, enabling organizations to easily scale their 
systems and deploy them globally. Cloud-based deployment 
models, such as Infrastructure as a Service (IaaS) and 
Platform as a Service (PaaS), simplify the deployment process 
for organizations by abstracting underlying infrastructure 
concerns. Specifically, they reduce the need to heavily invest 
in physical servers and data centers.

Infrastructure as a Service (IaaS) is a category of cloud 
computing services that provides virtualized computing 
resources over the internet. In an IaaS model, users can rent 
or lease various infrastructure components, such as virtual 
machines, storage, and networking, instead of investing in and 
maintaining their own physical hardware.

Platform as a Service (PaaS) is a cloud computing service 
model that provides a platform allowing customers to develop, 
run, and manage software applications without the complexity 
of building and maintaining the underlying infrastructure. In a 
PaaS model, the cloud provider delivers a comprehensive and 
integrated platform that includes development tools, runtime 
environments, and other services necessary for building, 
deploying, and scaling applications.

3. CONSIDERATIONS FOR PURSUING 
DIGITAL TRANSFORMATION ACROSS 
THE LIFE CYCLE

3.1. Overview

Digital transformation across the life cycle demands a 
comprehensive approach to technical data management 
strategy. This strategy should guide the acquisition, 
management, and maintenance of the technical data and 
software necessary to support a system from inception to 
retirement. Considerations such as safeguarding intellectual 
property and fostering competition should be central to 
the strategy. By securing the required data and rights, 
organizations can enhance system design understanding, 
optimize operations across varied environments, and unlock 
potential cost efficiencies in acquisition and sustainment.

The effectiveness of digital models and digital twin technology 
is deeply linked to their accessibility and usability by 
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operational users. These stakeholders depend on intuitive 
tools that allow for the realistic simulation of digital twins, 
alongside seamless access to comprehensive logistics and 
technical data. This data should be open, interoperable, 
adaptable, and accessible across cloud and edge 
computing environments, necessitating a collaborative effort 
that integrates the insights of both technical teams and 
operational users right from the design phase.

Ideally, a single digital twin would suffice for all life cycle 
phases of a system, incorporating all necessary information, 
models, and behaviors. However, embedding operational 
and sustainment capabilities effectively in the digital twin 
requires attention during the concept, development, and 
production stages. The transition towards a unified digital twin 
demands a gradual integration of operational and product 
support models. Until such comprehensive integration is 
achieved, distinctions among design, operational, and 
sustainment digital twins remain essential. Without careful 
implementation, there is a risk of creating a digital twin 
that serves well for design and production but falls short in 
operations and sustainment due to an inability to replicate its 
physical twin’s behaviors accurately. Thus, a true digital twin 
must effectively embody both design and operational and 
support functionalities.

The development of a holistic digital twin, equipped with the 
necessary capabilities and functionality to support desired 
use cases, can be regarded as a standalone software 
development project. This project should proceed in tandem 
with the development of the System of Interest, highlighting 
the need for a multidisciplinary approach. Achieving the 
goals of digital transformation necessitates a holistic view 
that encompasses people, processes, technology, data, 
and strategic objectives, all while maintaining a focus on 
establishing a durable digital thread that interconnects all 
elements of the life cycle.

Some guidance to implement and/or adopt digital engineering 
for later phases of the system life cycle is provided in the 
following sections.

3.2. When in doubt, start with a pilot

There is significant upfront work required in preparation for 
downstream use of digital twin and digital thread, including 
in the system concept and development phases.  It can be 
overwhelming to figure out where to start, which use cases 
to prioritize, and what resources will be needed to mature 
the capability.

For many organizations, digital transformation efforts begin with 
a pilot project, followed by what is typically a slow, challenging 
transition from successful pilot projects to scaled operations [8].  
Successful transformation at scale requires thoughtful planning 
and coordination to holistically implement the new technology 
within the context of the organization. The transformation should 
be aligned to strategic goals and commitment to from leadership 
to critically evaluate legacy processes, frameworks, and 
architectures and make appropriate investments in driving digital 
transformation objectives. It also involves leadership commitment 
to empowering innovative teams, and fostering a culture that is 
open to experimentation and capable of learning from failure.

3.3. Be cognizant of technical data rights

Organizations must plan in advance for the technical data rights 
needed to be acquired if the system is designed by an external 
entity. If this work is not done upfront, many digital transformation 
opportunities may not be achievable due to proprietary or 
incompatible formats, inaccessible data, or cost of rework for 
the system to produce desired data. In all projects, sponsors 
should anticipate technical data required for life cycle activities 
and establish rights or options to purchase data in contracts 
and service level agreements [9], as well as consult with experts 
regarding the appropriate data and technology standards to 
invoke in contract specifications. 

3.4. Leverage standardization.

It is essential to adopt semantically rich, open, and accessible 
data standards, which facilitate interoperability, data linkage, 
and contextualization that all stakeholders can use and build 
upon for their needs.  Emphasis on open data standards 
cannot be overstated.  In order to have comprehensive data 
integration and offer a holistic view of the asset’s history, current 
state, and simulate future states, the digital thread must support 
integration of data from different sources, such as design 
data, manufacturing data, sensor data, maintenance logs, and 
operational data.

Various standards development organizations (SDOs) have 
developed specifications to address interoperability in digital 
twins [10]. Some examples are provided in Table 1. Furthermore, 
the domain of digital twins has witnessed a growing expansion 
of open-source activities, particularly in the development of 
digital twin platforms and data management. These open-
source initiatives contribute to collaboration, innovation, and the 
wider adoption of digital twins.
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Standards 
Development 

Organization (SDO)
Scope

ISO/TC 184

Establishes industrial data standards 
across different domains, including 

manufacturing, industrial automation, 
and information systems to ensure the 

compatibility and interoperability of 
digital twins in the smart factory field.

IEEE P3144 Digital 
Twin Working Group

The Standard for Digital Twin Maturity 
Model and Assessment Methodology in 
Industry defines a digital twin maturity 

model for industry, including digital twin 
capability domains and corresponding 

subdomains. This standard also defines 
assessment methodologies, including 

assessment content, assessment processes, 
and assessment maturity levels.

The 3rd Generation 
Partnership 

Project (3GPP)

Focused on developing standards 
for 5G networks, which offer the high-

speed and reliable communication 
capabilities required for digital twins.

The Open Geospatial 
Consortium (OGC)

Manages geospatial information standards, 
which are crucial for digital twins in 

smart cities and other domains.

IEC TC65

Focuses on interoperability standards, 
specifically in the smart factory 

context. Its efforts help to harmonize 
communication and data exchange 

between various components of digital 
twins within the manufacturing domain.

oneM2M

A global initiative that standardizes service 
layer IoT platforms, providing common 
service functions that are essential for 
the effective operation of digital twins.

Table 1. Standardization in digital twin technology.

3.5. Connect traceability and configuration 
management across the life cycle

Organizations must plan for traceability to 
ensure data is properly managed and easy 
to find, and that data flows and interfaces are 
maintained in operations and sustainment for the 
delivered systems. This may be difficult to invoke 
contractually even in a highly regulated industry, 
particularly in complex systems designed with 
disparate development processes. Furthermore, 
technical and logistics information of a system may 
reside and be maintained in disparate systems. 
Linking the Logistics Supportability Analysis 
Record (LSAR) databases and underlying data 
sets requires a blueprint for establishing and 
maintaining these connections, especially in 
distributed and disconnected environments. 

3.6. Intentionally enable automation and 
analytics

An organization undergoing digital transformation 
may seek sensor technology and monitoring 
datasets to generate operational profiles or 
support development of behavior models.  
Monitoring technology may already be present 
in the system, displaying the condition of the 
asset or its behavior. Modelling and simulation 
of the remote asset or fleet is made possible 
by combining real-time data with historical and 
contextual information. In practice, this requires 
significant data capture and data usability, 
including careful planning to maintain linkages 
between authoritative data sources and robust 
methods to maintain links between authoritative 
data and automated methods to ingest multiple 
sources and formats in secure environments. 
However, lack of a pre-existing process foundation 
and the need to streamline or transform existing 
processes are significant barriers for organizations 
to adopt automation [11].  
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3.7. Actively manage knowledge to support 
operations & sustainment

When introducing new technology in a production system, 
the workforce usually undergoes training for a smooth system 
deployment. This generally requires unifying relationships, 
processes, and data across the production system 
operations, many of which cross organizational boundaries. 
Digital threads can facilitate the transfer of knowledge and 
lessons learned as an organization integrates and transitions 
from one asset to another. Historical data, maintenance 
actions, and failure analysis from similar assets can be shared 
and used to improve predictive maintenance strategies. 
Furthermore, digital threads can also enable collaboration 
and knowledge sharing.  Authorized personnel, such as 
operators, engineers, or subject matter experts, can access 
the digital thread to share insights and knowledge, exchange 
information, maintain data libraries, or provide support. 
This collaborative environment enhances problem-solving 
capabilities and facilitates decision-making processes.

3.8. Implementation impacts on life cycle

Developing digital twins for complex systems presents 
multifaceted challenges, requiring a strategic approach from the 
outset. The development of digital twins generally begins with a 
focus on design and production, but this approach must evolve 
so that the digital twin can used throughout the entire system life 
cycle, from deployment through operations, maintenance, and 
eventual retirement.

The inherent value of digital twins lies in their ability to enhance 
the availability, accessibility, and accuracy of information. This 
is particularly true when data can be contextualized within the 
operational environment of users. Such capabilities, conceived 
at early life cycle stages, are instrumental in reaping long-term 
benefits. They facilitate not just a smoother integration of new 
technologies but also support the workforce as it navigates 
shifting paradigms. Adjusting traditional program and project 
management practices and making upfront investments in a 
robust digital infrastructure are essential steps in this direction.

A critical phase in this progression involves augmenting the 
digital twin traditionally employed for design and production 
with functionalities that are necessary to sustain the system 
once it has transitioned into operations. In line with systems 
engineering principles, engaging end-users, operators, and 
maintainers from the beginning in drafting operational concepts, 
defining scenarios, and setting requirements is key to success. 

4. CONCLUSIONS
Digital engineering, underpinned by Product Life 
Cycle Management (PLM) and Model-Based Systems 
Engineering (MBSE) frameworks, plays a crucial role 
in the deployment, operations and sustainment, and 
retirement phases of system life cycle management. 
These methodologies facilitate the creation of digital 
twins and digital threads, which serve as dynamic virtual 
models mirroring real-world assets throughout their 
service life. Such digital foundations enable continuous 
evolution and improvement of systems by providing 
detailed blueprints for sustainment activities, such as 
maintenance. This comprehensive approach ensures 
that systems not only meet initial requirements but also 
adapt to future needs, thereby extending their utility and 
enhancing overall performance.

The implementation of digital engineering principles 
faces challenges, including organizational resistance 
to change, outdated infrastructure, and skill gaps. 
Overcoming these obstacles requires a focused 
strategy that highlights the transformation’s unique 
benefits, such as improved efficiency and streamlined 
operations. Additionally, the rapid pace of technological 
advancement necessitates a flexible and collaborative 
digital transformation strategy, allowing organizations 
to explore innovative solutions and adapt to new 
challenges. Successful digital transformation also 
involves treating data as a strategic asset, establishing 
strong data governance, and ensuring data quality and 
security. By prioritizing these elements, organizations 
can maximize the benefits of digital engineering, leading 
to more reliable, cost-effective, and high-performing 
systems throughout their life cycle.
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systems engineering skill in a short course or workshop! […] It is impossible to 

learn systems engineering from a systems engineering tool.” 

A.W. Wymore
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The previous six chapters are evidence of the profound transformation that the 
landscape of systems engineering is facing. Over the past three decades, we 
have witnessed a remarkable journey of growth, innovation, and maturation of the 
field. We have seen a considerable expansion of knowledge, the embracing of 
new methodologies, and the breaking of traditional boundaries that once confined 
our understanding and application of systems engineering principles. The field 
has changed in ways that were unimaginable at the time of Isdefe’s “blue books’” 
publication.

The conclusion of this first monograph on modern systems engineering marks a new 
chapter in the dissemination of the discipline in Spain. This monograph marks the 
beginning of the new “blue books” series. It is both a testament to the progress 
made and a compass for the future. It encapsulates some key topics of the current 
state of practice in systems engineering, highlighting nascent areas and innovative 
practices that are shaping the future of the field. The diversity of topics covered—
from the application of model-based systems engineering (MBSE) to the integration 
of artificial intelligence and digital twins in system lifecycle management—illustrates 
the multifaceted nature of systems engineering and its significance in a rapidly 
changing world. In the future, we intend to release additional monographs in the 
series to dive deeper into each of these topics. We also conceive the dissemination 
of these advances as opportunities for Isdefe engineers to succeed in the challenges 
they face, in the technically advanced programs of our society, particularly in these 
times of growing insecurity and uncertainty.

It is with a sense of pride and optimism that we release this monograph into the 
world. Our aim is for it to serve as a starting point for practitioners, guiding them 
through the complexities of modern engineering challenges and inspiring them to 
push the boundaries of what is possible in systems engineering. We extend our 
deepest gratitude to all who have contributed to this work, and to the readers, who 
have the challenging task of adopting and evolving the modern systems engineering 
practices we have presented here.

Let this epilogue not signify the end, but rather the commencement of a journey 
towards new frontiers in systems engineering and its wider adoption. May the 
insights contained within these pages inspire you, driving forward the development of 
engineered systems that are not only fit for purpose but also resilient and sustainable 
in the face of future challenges. Together, we stand on the threshold of a new era, 
ready to explore, innovate, and shape the future of systems engineering for the 
betterment of society and the world at large.

Dr. Alejandro Salado
The University of Arizona 
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