
SYSTEMS ENGINEERING
Applied to SoS

SYSTEMS ENGINEERING SERIES
Cuadernos de Isdefe

2

Systems Engineering Applied to SoS
Volume 2

Systems Engineering SeriesSystems Engineering Series
Cuadernos de IsdefeCuadernos de Isdefe

AUTHORS

Dra. Judith Dahmann / David Sánchez García

Dr. Michael Yokell / Dr. Alejandro Salado / Adolfo Sánchez

Domínguez

Dr. James Moreland Jr / LtCol. Víctor M. Sobrino García

Matthew Gagliardi / Matthew C. Hause / Dr. James N. Martin

Dr. Polinpapilinho F. Katina / Dr. Charles B. Keating / César Heras

Menor de Gaspar / Víctor Ramos del Pozo

Dr. Michael Sievers / Pablo Marticorena San José

Mark Phillips / Dr. Keith Joiner / Aurelio Fernández Sáez / Manuel

Fernández Astaburuaga

Tom McDermott / Miguel Ángel Coll

José Luis de Rosario / Dr. Paul Grogan / Dr. Alessandro Golkar /

Dr. Amro Farid / Dr. Young-Jun Son / Dr. Nil Egin / Dr. John Little

Original Title: Systems Engineering Applied to SoS

© Isdefe

C/ Beatriz de Bobadilla, 3 -28040 Madrid

www.isdefe.es

First printing: September 2025

ISBN: 978-84-09-74840-2

No comercial

Legal deposit: M-14809-2024

Publisher: Ingeniería de Sistemas para la Defensa de España SA SME MP

Coordinator: Juan Manuel García Montaño

Technical coordinator: Dr. Alejandro Salado

Editor: Dr. Alejandro Salado

Editing and style review team: Juan Manuel García Montaño, Dr. Alejandro Salado

Book design and layout: Iliana Aguilar Jiménez

Video recording and production: Favorit Comunicación

Printing by Byprint Madrid

Printed in Spain - Impreso en España

The opinions contained in this book are the sole responsibility of the undersigned authors. They are not intended to reflect the
opinions or point of view of Isdefe as a company.
The editing team has made every effort to obtain the appropriate permissions for all material reproduced in this book. If there is
an omission, we ask that you send us a written request to correct the error.

All rights reserved. Reproduction in whole or in part without the permission of the publisher is prohibited ©.

We would like to express our gratitude to the following individuals and organizations for making this edition of the
second Systems Engineering in the 21st Century notebook possible:

To MG (R) Jesús Gómez Pardo prologue writer of the work.
To our technical coordinator Dr. Alejandro Salado for his constant direction and ability to solve the challenges faced.
To Rocío Manjón Pérez, collaborator and promoter of these notebooks.
Essential and permanent support to the staff of the Corporate Development and Strategy Department (especially, Lluis
Vinagre, Ildefonso Vera, Natalia Garcillán and Carmen Ekame).

"The greatest danger in times of turbulence is not the turbulence; it is to act with yesterday’s logic."

Peter Drucker

We live in a convulsive world. The global instability
and uncertainty of our living environment,
since the fall of the Berlin Wall, are catalyzed by
the technological revolution in which we are
immersed. Emerging technologies are bringing
about profound changes in the way we think and
act and are accelerating the transition of our
society towards the digital age.

We are facing unknown futures, enormous
security and technological challenges, that we
can only overcome by creating agile structures,
in permanent adaptation to the rapid evolution of
the environment, and developing more flexible
and resilient organizations, which allow us to
survive and operate in an increasingly volatile and
complex environment. Our Armed Forces, which are an integral part of society,
are immersed in a process of digital transformation that is changing the art of
war. A digitized, hyper-connected battlefield, in which operations are carried out
in a network by well-equipped combatants who serve as nodes in the warfighting
network with a widespread use of unmanned vehicles, autonomous systems,
drones, armed robots -acting individually or collaboratively- are already a reality
that is substantially modifying current operational concepts.FO

RE
W

OR
D

A clear example is the conflict in Ukraine1. Russia’s illegal invasion
of Ukraine seems to have brought us to a high-intensity conventional
conflict although with certain exceptions: both parties are making
extensive use of specific emerging and disruptive technologies
(EDT), characteristic of modern conflicts; there is also a clear
confrontation in the grey zone between Russia and the West; and,
all this, against the backdrop of the nuclear threat. Operations are
being carried out in the multi-domain which integrates both the
physical -land, sea and air, including outer space- and the non-
physical -cyberspace and cognitive space-, domains established by
the Spanish doctrine. On the other hand, some fundamental changes
in battle, associated with digitalization, have been identified, with the
massive use of drones standing out.

From this terrible and highly attritional conflict, and focusing on
military capabilities, we can draw the following lessons learned: that
intelligence, surveillance, reconnaissance and target acquisition
capabilities are key to superiority in operations; that it is critical to
have on the battlefield precise and long-range fires to hit targets
minimizing collateral damage; that heavy firepower is needed to
saturate the adversary; that the battlefield is becoming digital; that
it is now evident that in order for network operations to be possible,
we need to ensure the interconnection of sensors and combat
systems with management centers and fire -or effects- producing
elements; and, finally, that in order to ensure this interconnection, it
is essential to have robust, redundant and highly mobile command
and control systems, as well as electronic warfare capabilities
to operate in the electromagnetic spectrum with the necessary
superiority, to guarantee operability in degraded environments and
freedom of action in the five operational domains.

Ukraine has also highlighted how a combat situation spurs ingenuity
and the ability to innovate and how the threat changes and evolves
at a dizzying pace. That is why it is important that, in order to provide
our Armed Forces with these new military capabilities, the defense
industry is able to manufacture, in a short time, the appropriate
weapons systems to face the changing threats. To this end, it will
have to implement agile development methodologies, using the
possibilities of digitalization, in the development and maturation of the
EDT that are bursting onto the battlefield.

In this sense, our Armed Forces must have powerful electronic
warfare systems prepared for navigation warfare (NAVWAR) so
that the superiority of the PNT (position, navigation and timing)
information can be ensured, protecting our own navigation systems
and degrading the adversary’s PNT information. The development
of anti-drone technologies has become an absolute priority. To
guarantee the safety of any operation, a wide range of technologies
must be available for the location, identification and monitoring of
the threat, as well as for its neutralization, either with soft kill means
1. “Conclusiones iniciales de la guerra en Ucrania”. Centro Conjunto de Desarrollo de Conceptos. Estado
Mayor Conjunto, marzo 2023.

(jamming or spoofing) or with hard kill means – destruction kinetic
effectors (projectiles, rockets, or active protection systems), nets,
electromagnetic pulse, laser weapons, etc. Likewise, technological
development in the fields of robotics and autonomous vehicles
is essential to automate legacy systems (drive-by-wire), to develop
advanced driver-vehicle interfaces and technologies for UGV-UA
interaction, etc. Other fundamental technologies to be developed and
made available will be those associated with industry 4.0 (AI, cyber-
physical systems, machine learning, digital twins, cloud systems,
Big Data, etc.) that will allow to complete the transformation of the
logistics structures of the armies, evolving from reactive-preventive
logistics to predictive logistics. Finally, the use of AI and Big
Data will be a priority for the predictive maintenance of platforms,
the automatic and intelligent analysis of large volumes of data from
weapons system sensors and the intelligent analysis of information
sources in support of decision-making. Thus, AI will be essential,
among others, for the complete simulation of the battle environment,
C-UAS comprehensive combat management systems, sensor fusion,
precise positioning in complex environments, autonomous navigation
in unstructured environments; automation algorithms development;
planning of itineraries, etc.

With regard to the financing of these EDT, we can say that geopolitical
uncertainty and instability, together with the weakening of the
transatlantic link, are forcing the growth of defense investments in order
to achieve European strategic autonomy and meet NATO commitments.
In this regard, the Spanish government has recently published the
Industrial and Technological Plan for Security and Defense2
with the aim of guaranteeing Spain’s security and consolidating
Spain as a central and reliable member of the European Union and
NATO. The plan also aims to promote a new wave of innovation and
reindustrialization of companies around dual-use technologies.
Industrial investments will focus on developing, manufacturing and
acquiring new telecommunications and cybersecurity capabilities, as
well as on the manufacture and purchase of new defense equipment.

It is clear that we are aware of the security challenges and the
military capabilities needed to meet them, that we are aware of the
technological challenges and industrial capabilities essential to the
development of key EDT, and that we have the economic and financial
tools to obtain the most technically advanced weapons systems
that provide a clear operational advantage to our combatants. And
it is in this procurement process that systems engineering plays a
fundamental role.

Traditional systems engineering (SE) had been applied in defense
since the early 1990s. In 1992, the Systems Sub-Directorate was
created within the Army Logistics Support Command. Colonel Torrón
introduced the SE’s vocabulary into the military field, evidencing the
lack of culture that we had, at the time, regarding the important role
2. https://www.lamoncloa.gob.es/consejodeministros/resumenes/Documents/2025/230425-plan-industrial-
y-tecnologico-para-la-seguridad-y-la-defensa.pdf

that SE plays in the life cycle of weapons systems. Isdefe responded
to the challenge of filling this gap by producing Isdefe’s first series
of systems engineering publications, initiated in 1995, the famous
blue books written by great specialists in the field (Blanchard, Sarabia,
Aracil, ...) In 2002, with a certain level of awareness, MALE began
to work on the PRISMA Program (MALE Systems Reengineering
Program), with Colonel Orts as program head. In 2003, it was officially
launched with the contracting of technical assistance to Isdefe for the
period 2003-2005. During this period, an incredible effort was made,
both by the company and by the MALE, to achieve its implementation
in 2005. PRISMA was born with a double objective:

a)	 To adopt the NATO methodology for the systems life cycle and

b)	 to provide a common working methodology, to all sections of
the MALE regarding the weapons systems acquisition and
maintenance process.

With a unique, well-defined vocabulary, PRISMA served as a guide
to the program managers and technical directors in their relations
with the awarded companies and with the official quality services. In
turn, it served to “educate” companies in SE. In short, it was a set of
guidelines for the proper management of weapons systems’ life cycle.

However, when we analyze the current reality of the battlefield and its
evolution – network operations, combat cloud, cyber defense, anti-
drone systems, collaborative autonomous systems, AI, predictive
logistics, quantum and photonic communications, etc. – we see that
the traditional concept of a weapon system is changing. Modern
systems are very complex. They are made up of independent systems
interconnected with each other (radars, satellites, unmanned vehicles,
communications systems, etc.) and integrated into a coordinated
architecture that acts more efficiently in the fulfilment of the mission.
These complex systems, characterized by a distributed governance,
are called systems of systems (SoS), also known, depending on the
application domain, as supersystems.

In the first monograph of this group of notebooks “Introduction to
systems engineering in the 21st century”, the new types of systems -
cyber-physical systems, systems based on learning or systems with
distributed governance (system of systems) - were already described
in detail, for which traditional methods of systems engineering may
be ineffective which is why the need to evolve and adapt traditional
systems engineering methodologies to SoS was also analyzed.
Therefore, we move from systems engineering to systems of systems
engineering, case which is discussed in this notebook and whose
content is presented in the preface.

From what has been said so far, we see that current operations in
multi-domain are inconceivable without SoS. From a military point of
view, SoS are relevant to:

a)	 ensure interoperability, allowing different systems -operating in
different domains- to work together sharing real-time information
and coordinating actions;

b)	 improve strategic decision-making, integrating multiple sources
of information that provide a global view of the field of operations
and greater situational awareness;

c)	 ensure the resilience and adaptability, since, if one system fails,
another can replace its function, keeping the operation running;

d)	 promote scalability and technological evolution through the
incorporation of new technologies, without having to redesign
the entire system from scratch, which is essential in a constantly
changing technological and security (threat) environment; and

e)	 facilitate multinational coordination, allowing the integration
of systems from different countries, with different protocols and
technologies, in joint operations with other allies.

Given the complexity of SoS and the fact that SoS Engineering
methodologies are still in the development phase, it is essential
to have the right talent. Thus, the personnel of the Army Corp of
Engineers, within the Secretary of State for Defense and the Logistics
Support Commands, must be trained, on an ongoing basis, in this
discipline. The monograph, that the reader has in their hands,
contributes to alleviating this need. Its excellent content, prepared
by true international and Isdefe experts in the field, constitutes a
magnificent reference for all those with responsibilities in the life cycle
of SoS and for the community of systems engineers in general.

To conclude, I would like to thank Isdefe, the coordinator of the series,
Lieutenant General García Montaño, and the head of the Innovation
Area, Ms. Belinda Misiego, for the opportunity they have given me
to prologue this monograph. It is an honor and a privilege to have
participated in the writing of this second installment of the series
“Systems Engineering Notebooks. Cuadernos de Isdefe”.

Jesús Carlos Gómez Pardo.
General de División (R).

Dr. Ingeniero de Armamento.

This monograph presents a comprehensive and
structured overview of the engineering of Systems
of Systems (SoS), offering a snapshot of current
practices and emergent disciplines in this complex and
increasingly critical domain. It is the second monograph
in the “blue” series on systems engineering published
by Isdefe, continuing our effort to provide technically
sound and accessible resources for practitioners in
government and industry.

The monograph has been conceived with a specific
audience in mind: professionals in the Spanish and
European defense, security, space, energy, and
transport sectors who are involved in the acquisition,
development, integration, or operation of SoS. Whether
acting as suppliers or customers, these professionals
face the multifaceted challenges of working with systems that are independently
managed, distributed, evolving, and often only loosely coordinated. The content of
this monograph aims to support their understanding and decision-making with a firm
grounding in current practice.

Each chapter has been authored through a unique collaboration between international
experts and practitioners from Isdefe, ensuring both technical rigor and practical
relevance. While the chapters can be read individually, the book has been designed as
a cohesive volume, with each contribution forming part of a broader narrative on SoS
engineering. Every chapter serves as an introduction to a key concept or activity within
SoS engineering, providing a launching point for further exploration in the technical
literature.PR

EF
AC

E

The book begins with an introduction to SoS (Chapter 1),
followed by a discussion of how traditional systems engineering
must evolve to address SoS challenges (Chapter 2), using ISO
21840 as a guiding standard. Chapter 3 introduces mission
engineering as a discipline that prioritizes mission outcomes over
platform capabilities. Chapter 4 presents a concrete example
of a mission thread, offering readers a practical application of
concepts discussed earlier.

Governance, integration, and test and evaluation, core
processes that require a different mindset when applied to SoS,
are discussed in Chapters 5 through 7. Chapter 8 challenges the
traditional notion of system lifecycle by proposing a perspective
of continuous SoS evolution. The final chapter (Chapter 9)
presents advanced modeling, simulation, and analysis methods,
including agent-based modeling, federated approaches, and
heterofunctional graph theory, among others, to address the
complex interdependencies of SoS.

Throughout, we have taken care to avoid speculative visions
of the future, subjective opinions about the state of the field,
or promotional content unsupported by practice. The result is
a monograph that is deliberately sober, grounded in current
capabilities and real-world experience. Yet, it does not ignore
progress: where promising developments are emerging, they
are presented in a measured, factual manner.

We recognize that the maturity of organizations in SoS engineering
varies widely. Some may still be developing capabilities in
areas long established in traditional systems engineering. This
monograph should not be read as an unreachable ideal but as
evidence that structured, methodical progress is possible and
already underway in some places.

We hope this monograph serves as both a reference and a source
of inspiration for those working to advance SoS capabilities in
their own contexts.

On behalf of the authors, the project management team, and
Isdefe, I hope that you find the reading educative, enjoyable,
and useful.

Dr. Alejandro Salado
The University of Arizona

TABLE OF CONTENTS

SYSTEMS ENGINEERING APPLIED TO SOS

FOREWORD

PREFACE

1.	 SYSTEMS OF SYSTEMS – AN INTRODUCTION

1.1.	 A history of Systems of Systems to today
1.2.	 Systems of Systems characteristics
1.3.	 Impact of advanced technologies on Systems of Systems
1.4.	 Conclusions

2.	 FROM SYSTEMS ENGINEERING TO SYSTEMS OF SYSTEMS ENGINEERING: AN OVERVIEW

2.1.	 Introduction
2.2.	 Key considerations of SoSE
2.3.	 Agreement processes
2.4.	 Organizational project-enabling processes
2.5.	 Technical management processes
2.6.	 Technical processes
2.7.	 Conclusions

3.	 MISSION ENGINEERING

3.1.	 Introduction
3.2.	 Why ME as a new approach and discipline
3.3.	 Value proposition
3.4.	 Essential aspects of Mission Engineering
3.5.	 Conclusions

4.	 MISSION ARCHITECTURE MODELING

4.1.	 Introduction
4.2.	 Mission exemplar
4.3.	 Developing an operational architecture
4.4.	 Developing a resources architecture
4.5.	 Other considerations
4.6.	 Conclusions

5.	 DESIGN AND IMPLEMENTATION OF SOS GOVERNANCE

5.1.	 Introduction
5.2.	 Governance in the context of System of Systems
5.3.	 SoS governance
5.4.	 Application for design and implementation of SoS governance
5.5.	 Guiding practices
5.6.	 Conclusions

9

15

21

22
25
28
30

37

38
39
40
41
42
44
48

57

58
60
63
63
68

73

74
75
82
89
91
92

97

98
99

100
105
109
111

TA
BL

E
OF

 C
ON

TE
NT

S

119

120
120
124
125
128

133

134
134
135
136
138
141
144

153

154
154
161
163
170
173

179

180
180
183
187
191
193
197
205

6.	 SYSTEM OF SYSTEMS PLANNING AND INTEGRATION

6.1.	 Introduction
6.2.	 SoS planning consideration
6.3.	 Planning for interoperability
6.4.	 Architecture and integration planning
6.5.	 Conclusions

7.	 SYSTEM OF SYSTEMS TEST AND EVALUATION

7.1.	 Introduction
7.2.	 Concepts that affect system SoS test
7.3.	 Risk management in SoS testing
7.4.	 Considerations to support SoS T&T
7.5.	 Test methodologies
7.6.	 Guiding principles in SoS T&E
7.7.	 Conclusions

8.	 FROM SYSTEM LIFE CYCLE TO SOS EVOLUTION

8.1.	 Introduction
8.2.	 Characteristics of evolution in SoS
8.3.	 Challenges to leading evolution in SoS
8.4.	 Methods to guide evolution in SoS
8.5.	 Leadership competencies for SoS management
8.6.	 Conclusions

9.	 NOVEL ANALYSIS, MODELING, AND SIMULATION METHODS FOR SOS

9.1.	 Introduction
9.2.	 Coordination of systems
9.3.	 Federation of systems
9.4.	 A conceptual introduction to hetero-functional graph theory
9.5.	 Federated modeling and simulation
9.6.	 Agent based modeling for System of Systems
9.7.	 An SoS approach to modelling
9.8.	 Conclusions

CH
AP

TE
R

1
Systems of Systems:

An introduction

Dr. Judith Dahmann, The MITRE Corporation (jdahmann@mitre.org)
David Sánchez García, Isdefe (dsanchez@isdefe.es)

Abstract

Systems of systems (SoS) are becoming more and more prevalent, and their fundamental characteristics
pose challenges for the application of systems engineering. This chapter introduces systems of systems
(SoS) – their history, their distinctive features, examples, the impact of advanced technology on SoS
and the future of SoS – as context for the following chapters which address SoS engineering.

Keywords

Systems of Systems, Systems Engineering

22

1. A HISTORY OF SYSTEMS OF SYSTEMS TO
TODAY
The concept of systems of systems (SoS) has been around long
before the acceptance of the systems of systems terminology. Gorod
et al [1] provides a detailed walkthrough of the SoS literature, as
shown in Figure 1, which has been annotated to reflect key features
of the history of SoS.

The earliest references to SoS [1, 2] include Boulding’s paper on
general theoretical constructs [3], where he described the concept
of SoS as “the arrangement of theoretical systems and constructs in
a hierarchy of complexity”, viewing the SoS is an “open system” that
can be affected by external events, noting, however, this definition
is not distinct from how traditional systems have been defined [4].
Early on, others characterized urban city planning, systems science
structures, and biological systems as SoS [5-7].

Despite the growing attention to SoS, as late as 2015, there was
controversy over the definition of SoS [2]:

As might be expected in an emerging field, there is yet no precise
and widely accepted definition of SoS to which the bulk of the
literature conforms, making it difficult to bound the field precisely.
The literature is diverse, and there are many attempts to define and
characterize SoS. Several reviews have sought to achieve some
convergence [8-13].

Mark Maier in the late nineties provided a seminal perspective that
has grounded SoS thinking to today [14]. This is discussed in the
next section

The earliest examples of SoS from an engineering
viewpoint come from United States (US) Department
of Defense (DoD) with the US Strategic Defense
Initiative starting a process of viewing defense
capabilities as SoS. Admiral W.A. Owens, US
Navy, introduced SoS to the military domain in “The
Emerging U.S. System-of-Systems” [15]:

The things which give military forces their fighting
capability are changing, and these changes point
toward a qualitative jump in our ability to use military
force effectively.

Probably relating to the way we plan, program
and budget for these things, we are more adept at
seeing the individual trees than that vast forest of
military capability (the system-of-systems) which
the individual systems are building for our fighting
forces.

The system-of-systems depends ultimately on well-
orchestrated contributions of all the military services.
This assumes a common appreciation of and
adherence to what we are building. Most importantly,
it requires joint strategic and operational doctrine
by which to organize, plan and carry out military
operations.

The US Air Force [16] and Army [17] began to take
account of this perspectives, and the publication of
the US DoD Guide to SoS Engineering [18], took a
defense-wide engineering perspective on SoS.

In the early 2000s, institutions began to recognize
systems of systems. The first annual SoS Engineering
conference was held in Los Angeles in 2006, and
these conferences continue through today. The
International Council on Systems Engineering
(INCOSE) formed a Systems of Systems working
group in 2011, which provided leadership through
webinars and publications including the SoS Pain
Points (2013) [19], SoSE Primer (2018) [20] and
Guide to SoS Standards (2020) [21]. SoS was
included as a knowledge area in the SE Body of
Knowledge in the first release in 2012.

Traditionally, SoS have been viewed as applying
primarily to defense, largely centered on the United
States. However, a meta-analysis of 168 IEEE papers
published between 2020 and 2023 on SoS indicates
that this is no longer the case [22]. As is shown in
Table 1, SoS applications in these papers address
a wide range of domains and less than a fifth of the

Figure 1: Modern History of Systems of Systems and
Systems of Systems Engineering [1] with overlay.

23

papers address defense applications. Furthermore, the meta-
analysis found that the papers were authored by authors of
29 countries, showing geographically widespread interest in
SoS.

on the development of strategic research and engineering
roadmaps in Systems of Systems Engineering and related
case studies. These projects seeded interest in SoS across
European universities and industry.

These actions have shaped the direction and growth of SoS.
In one of the earliest documents to address engineering
applied to systems of systems, an “SoS is defined as a set
or arrangement of systems that results when independent
and useful systems are integrated into a larger system that
delivers unique capabilities” [24]. This document notes that
individual systems and SoS conform to the accepted definition
of a system in that each consists of parts, relationships, and
a whole that is greater than the sum of the parts; however,
although an SoS is a system, not all systems are SoS. It
also makes clear that simply having multiple systems does
not make a SoS; a SoS includes the fact that these multiple
systems result in a new capability not originally anticipated
and/or intended by the systems alone.

In 2019, the International Standards Organization (ISO)
adopted the first standards for SoS [25]. An ISO SoS Standards
study group [26] recognized the increased attention to SoS
and the value to standards to the maturation of SoSE. These
include a definition [27] of SoS and constituent systems:

	• System of Systems (SoS) - Set of systems or system
elements that interact to provide a unique capability that
none of the constituent systems can accomplish on its
own.

	• Constituent Systems - Constituent systems can be part
of one or more SoS. Each constituent is a useful system
by itself, having its own development, management goals
and resources, but interacts within the SoS to provide the
unique capability of the SoS.

This established the first widely accepted SoS definition
and provided grounding for today’s SoS community. Note
that the definition of system in ISO is essential to interpret
the definition of SoS. This is because a system (which form
SoS) must be useful by itself and decides to interact within
the SoS. For example, a battery powering an engine in a car
would not be considered a constituent system in this context,
but an element of the car.

Application Areas # %

Defense 31 18.5%

Transportation 22 13.1%

Health 10 6.0%

IOT/CPS 8 4.8%

Energy 7 4.2%

Emergency/Crisis Mgt 6 3.6%

Space 4 2.4%

Search and Rescue 4 2.4%

Education 3 1.8%

Environment 3 1.8%

Remainder (< 3) 70 41.7%

Table 1: Domain application areas addressed by papers.

In Europe, the European Commission initiated an SoS
research initiative in 2011 [23]:

“(ICT-2011.3.3) with an objective to increase the
competitiveness of European industry and enable Europe to
master and shape future developments in ICT (Information
and Communication Technologies) so that the future demands
of its society and economy will be met. Competitiveness
means, in this context, that Europe will be global leaders in
SoSE, which will lead to greater Return on Investment (ROI)
for European industry, greater innovation within the technical
systems community in government, industry, and academia,
and long-term economic sustainability of, and through,
engineering of large complex systems.”

There were four major projects in this initiative: T-AREA-SoS
(Trans-Atlantic Research and Education Agenda in Systems
of Systems), with the objective to develop and deliver to
the European Commission a Strategic Research Agenda
in Systems of Systems Engineering (SoSE); Designing for
Adaptability and evolutioN in System of systems Engineering
(DANSE), focused on the development of new approaches
to the design and management of the operation of SoS;
Comprehensive Modelling for Advanced Systems of Systems
(COMPASS), which developed new modelling technology
for advanced software; and ROAD2SoS, which focused

24

Transportation

Multiple transportation
assets and services work

together to provide integrated
transportation capabilities.

Air Traffic Management: SES: Single European Sky, SESAR activities and the road to Digital European Sky
[28], SkyNex iTEC [29], next generation Air Traffic Control System.

Rail network: Single European Rail Area, European Rail Traffic Management System (ERTMS) and other
TEN-T [30] projects.

Energy

Smart grid, smart houses,
and integrated production/

consumption provide energy
management services.

European Network of Transmission System Operators for Electricity (ENTSO-E) vision on European Power
System [31].

Health Care
Regional facilities management,

emergency services, and
personal health management.

E-health initiative: connecting health systems in Europe [32].

Defense
Military missions such as missile

defense, networked sensors,
command and control.

Joint or Cooperating ISR systems composed of Land, Air, Space, Naval ISR Systems collaborating for
Joint ISR at national or international level [33].

AFSC: Alliance Future Surveillance and Control [34].

NGWS/FCAS: New Generation Weapon System / Future Combat Air System [35]. Europe’s FCAS will see
next-generation manned jets flying alongside unmanned remotely piloted carriers of varying sizes. These
assets will be part of a fully networked ‘system of systems’.

FMN [36]: Federated Mission Networking is a capability aiming to support command and control and
decision-making in future operations through improved information-sharing.

Telecommunications
Telecommunications systems
provide telecommunications
services to multiple domains.

GNSS/Galileo [37]: Galileo is Europe’s Global Navigation Satellite System (GNSS) provides positioning
and timing information used in smartphones, and in applications such as railways, aviation, agriculture,
maritime and more.

Smart Cities [38] with initiatives like ICC [39]: The Intelligent Cities Challenge (ICC) is one of the European
Commission’s largest initiatives supporting European cities in their green and digital transitions.

The IRIS2 [40] Satellite Constellation is the European Union’s third flagship, addressing long-term
challenges of EU’s security, safety and resilience by offering enhanced connectivity services to
governmental users.

Natural Resource

Management

Global environment, regional
water resources, forestry, and

recreational resources.

Copernicus [41] Copernicus is the Earth observation component of the European Union’s Space
programme, looking at our planet and its environment to benefit all European citizens. It offers information
services that draw from satellite Earth Observation and in-situ (non-space) data.

Security and

Disaster Response

Responses to disaster events
including forest fires, floods,

terrorist attacks, border control.

European Civil Protection Mechanism and the Emergency Response Coordination Center (ERCC) [42].

European Crisis Management Mechanism [43]. The EU might be exposed to a variety of crises and
disasters (such as those caused by climate change, health threats, terrorist and cyber-attacks, political
instability and violent conflict, failures in critical infrastructure) and should be capable to respond fast
and appropriately.

EuroSur/FRONTEX [44] the European Border Surveillance system (EUROSUR) is a framework for
information exchange and cooperation between Member States and Frontex to improve situational
awareness and increase reaction capability at the external borders.

Science
Astronomy, computing

centres, research centers.

Astronomy: Distributed telescopes like LOFAR [45] (Low Frequency Array), European VLBI network [46],
BOOTES [47], the first worldwide network of robotic telescopes.

CERN. The accelerator complex at CERN [48] is a succession of machines with increasingly higher
energies.

EuroHPC JU [49], is a joint initiative between the EU, European countries and private partners to develop
a World Class Supercomputing Ecosystem in Europe.

Table 2: Examples of systems that could be potentially
considered Systems of Systems.

25

2. SYSTEMS OF SYSTEMS CHARACTERISTICS

2.1. Distinguishing Systems of Systems

As noted above, Maier’s characterization of SoS is foundational
to our understanding of SoS. Maier [14] presented five SoS
characteristics that can be observed in most SoS, although not all
of them are necessary conditions for something to be considered
an SoS:

	• Operational independence of constituent systems,

	• Managerial independence of constituent systems,

	• Geographical distribution,

	• Emergent behavior, and

	• Evolutionary development processes.

Of these, Maier identified operational independence and
managerial independence as the two principal distinguishing
characteristics for applying the term ‘systems of systems.’
He argues that a system without at least one of these two
characteristics is not considered an SoS regardless of the
complexity or geographic distribution of its components.

In terms of emergent behavior, “the concept of emergence
refers to phenomena that occur on a system level without being
present at the level of elements in the system” [50]. For systems
of systems this means that there may be results or behavior not
predicted by the individual constituent systems. As is discussed
in the Systems Engineering Body of Knowledge [51]:

In the Maier characterization, emergence is noted as a common
characteristic of SoS particularly in SoS composed of multiple
large existing systems, based on the challenge (in time and
resources) of subjecting all possible logical threads across the
myriad functions, capabilities, and data of the systems in an SoS...
[So] there are risks associated with unexpected or unintended
behavior resulting from combining systems that have individually
complex behavior. These become serious in cases which safety,
for example, is threatened through unintended interactions
among the functions provided by multiple constituent systems
in a SoS.

Finally, in terms of geographical distribution, this is just something
that most of the existing SoS share but it is more a consequence
of how most systems of systems are deployed than a requirement
for being a SoS.

These pain points are briefly described in Table 3.
They are presented in the INCOSE SE Handbook [52],
with particular attention to the impact they have on the
application of systems engineering to SoS.

Figure 2: System of Systems Pain Points [40].

2.2. Systems of Systems Pain Points

The characteristics presented in the previous section are
important because they provide the keys to the particular
challenges systems engineers face when applying
systems engineering to SoS. These challenges are
reflected in the SoS Pain Points (Figure 2), which were
identified by the INCOSE SoS working group and which
have been particularly useful in understanding SoS.

26

2.3. Systems of Systems taxonomy

The defining characterization of SoS as lacking a top-
level authority is central to the challenges posed by SoS.
It is this characteristic that provides the driver for the most
widely accepted taxonomy for SoS. This taxonomy has been
adopted in ISO/IEC/IEEE 21841. As described in the SoS
knowledge area of the SE Body of Knowledge [51], in those
situations where the SoS is recognized and treated as a
system in its right, an SoS can be described as one of four
types [14,53,54]:

	• Directed: The SoS is created and managed to fulfill
specific purposes, and the constituent systems are
subordinated to the SoS. The constituent systems
maintain an ability to operate independently; however,
their normal operational mode is subordinated to the
central managed purpose.

	• Acknowledged: The SoS has recognized objectives,
a designated manager, and resources for the SoS;
however, the constituent systems retain their independent
ownership, objectives, funding, and development and
sustainment approaches. Changes in the systems are
based on cooperative agreements between the SoS and
the system.

	• Collaborative: The component systems interact more or
less voluntarily to fulfill agreed upon central purposes.
The central players collectively decide how to provide or
deny service, thereby providing some means of enforcing
and maintaining standards.

	• Virtual: The SoS lacks a central management authority
and a centrally agreed upon purpose for the SoS. Large-
scale behavior emerges —and may be desirable—
but this type of SoS must rely on relatively invisible
mechanisms to maintain it.

Figure 3 illustrates these four types.

In reality, most actual SoS are a combination of these types.

SoS Authorities

In an SoS, each constituent system
has an ‘owner’, stakeholders,

users, business processes, and
development approach, departing from
traditional top-down authority over the

development and operation of the SoS.

Leadership

The lack of common authority
across an SoS means that decisions

for the SoS rely less on traditional
command and control and more on

influence and persuasion, which can
be accomplished in several ways,

one of them being leadership.

Constituent

Systems’

Perspectives

Most SoS are composed of pre-existing
constituent systems , each bringing

with them their own perspective, which
may or may not align with perspectives

of the other constituent of the SoS.

Capabilities and

Requirements

Traditionally a system has a coherent set
of user capabilities. SoS are comprised
of multiple independent systems each

with their own capabilities, which
when combined may or may not

provide coherent SoS capabilities.

Autonomy,

Interdependencies

and Emergence

The independence of constituent
systems means that a constituent

system may change independently of
the SoS, and even leave the SoS, and
impact other constituent and the SoS
in unexpected or unpredictable ways.

Testing,

Validation, and

Learning

Since SoS are composed of
independent constituent systems,

this poses challenges in conducting
end-to-end SoS testing as is
typically done with systems.

SoS Principles

Work is needed to identify and
articulate the cross-cutting principles
that apply to SoS in general and to

developing working examples of the
application of these principles.

Table 3. SoS Pain Points.

27

Figure 3: SoS Types [55].

Figure 4: Scale and scope of SoS [57].

2.4. SoS scale, scope and complexity

SoS can range in scale and scope, as shown in Figure 4,
which draws examples from the 2011 European Commission
SoS research initiative discussed above.

On the one hand, SoS may be composed of purely technical
systems with the integration of heterogeneous systems
developed independently into a composite capability.
The figure illustrates the integration of independently
developed audiovisual capabilities into an audiovisual home
entertainment system of systems.

There are broader socio-technical SoS in areas such as
disaster response, which include interactions among various
elements in responding to a disaster including fire, public
safety, volunteer organizations and others.

Finally, SoS may address enterprise-wide issues such
as counterfeiting in US defense [56], which incorporate
systems, organizations, policies, and competing efforts.

In each case, there are independent elements –some
technical, some organizational– which compose the SoS.

28

As SoS increase in scope and scale and increasingly
incorporate non-technical elements, as noted in
Maier characteristic of SoS emergence, SoS are
particularly susceptible to complexity [58], which is
defined according to the SEBOK [59] as:

Opportunities to apply artificial intelligence (AI) and machine
learning (ML) are growing rapidly particularly with the advent of
access to large language models. For SoS, these technologies
provide opportunities to automate complex tasks, to optimize system
performance, and to make predictive analyses. With AI and ML, SoS
can learn and evolve over time, and they enable SoS characteristics
of evolutionary development and operational independence. These
potential advantages come with the challenges of the need for
high computational power and specialized knowledge and added
unpredictability. In terms of SoS pain points, AI/ML address SoS
authority challenges with opportunities for intelligent decision
making and new capability to address capability and requirements
challenges by providing a means to learn and adapt to changes.
On the other hand, the opaque nature of some AI/ML models,
often referred to as the “black box” problem can make it difficult to
understand and predict system behavior.

Big data analytics offer the opportunity to handle and analyze large
volumes of data from different systems, providing insights for SoS
design and operation and enabling data-driven decision making and
opportunities for overall efficiency and performance. These potential
opportunities come with the challenges of handling the large volume,
velocity, and variety of data including data management, storage,
and analysis and data quality and integrity. From the perspective
of SoS pain points, big data analytics can provide insights into
behavior and performance of systems and opportunities for better
integration and management of constituent systems. But the lack
of cross cutting SoS authority can pose data ownership and privacy
issues and given the diversity of constituent system perspectives the
need to integrate and manage large volumes of data from different
systems.

“A measure of how difficult it is to understand
how a system will behave or to predict the
consequences of changing it. It occurs when
there is no simple relationship between what
an individual element does and what the
system as a whole will do, and when the
system includes some element of adaptation
or problem solving to achieve its goals in
different situations. It can be affected by
objective attributes of a system such as
by the number, types of and diversity of
system elements and relationships, or by the
subjective perceptions of system observers
due to their experience, knowledge, training,

or other sociopolitical considerations.”

Using work on complexity by INCOSE as the frame
of reference [60], SoS by their very nature can be
shown to exhibit many dimensions of complexity,
and the guiding principles to complexity thinking
[61] can be applied to address complexity in SoS.

3. IMPACT OF ADVANCED
TECHNOLOGIES ON SYSTEMS OF
SYSTEMS1

It is recognized that current technological advances
are impacting systems in a variety of ways. The
question addressed here is how technological
advances are affecting SoS. Figure 5 shows the
set of technologies that are having an impact on
systems of systems.

1. Material in this section is based on a panel presentation at the IEEE SoS
Conference INCOSE Panel presentation in June 2024 in Tacoma, Washington
(USA) using MChat, the Microsoft Azure OpenAI GPT-4 32K LLM model
available at MITRE.

Figure 5. Technologies affecting systems of systems.

29

5G technology provides high-speed, reliable, and low latency
communications, which are crucial in many system of systems,
and as a result can enable enhanced communication and data
sharing and real-time data sharing and collaboration. This comes
with the challenge of significant investment in infrastructure and
new challenges of security and privacy of data. In terms of the
autonomy, interdependencies and emergence SoS pain point,
the advantage of high-speed connectivity/low latency real-
time data sharing and communication among systems comes
with the challenge of increased complexity and potential for
interference between systems.

Cybersecurity technologies can help protect systems of
systems from potential threats and attacks, ensure the security
and integrity of data, and protect the SoS from potential threats
and attacks. Yet, SoS continue to face security challenges of
each constituent system and their impact on the overall system
of systems. Given the lack of SoS authority, SoS face the
challenges of ensuring the security and integrity of data across
systems and building trust among different systems and their
authorities including the need for coordination and compliance
with different security protocols and standards across systems.

Blockchain can ensure transparency and security in
transactions and provide the opportunity to create secure and
transparent systems, enhance trust among different systems
and stakeholders, and ensure data integrity and security.
However, this requires a deep understanding of the technology.

Virtual and augmented reality technologies allow for the
simulation of real-world scenarios. This addresses the testing,
validation, and learning SoS pain point. It employs immersive
and interactive platforms for testing and validating systems,
creating the opportunity to establish secure and transparent
systems and enhance trust among different systems and
stakeholders. However, these technologies can be technically
challenging, requiring specialized knowledge, and areprone to
unrealistic expectations.

Cloud computing allows for the integration of various
systems on a common platform that enables interaction and
collaboration, operational independence, and geographical
distribution. This enables enhanced integration and
interoperability of systems and provides a scalable and flexible
platform that can accommodate the evolving needs of the SoS.
The challenges of data security and privacy concerns and of
managing and integrating diverse systems remain, as data
control becomes distributed across different cloud services
and issues with data sovereignty, as well as compliance, given
the lack of a centralized SoS authority.

Internet of Things (IoT) technologies provide
interconnectivity between different systems, allowing them
to communicate and share data. These technologies
enable geographic distribution, real-time data collection
and communication, efficient system design and operation,
and improved adaptability to changing conditions. At
the same time, they face challenges of data overload,
management and analysis of distributed data, and security
of IoT devices, given the complexity resulting from the
sheer number of devices and systems to be managed and
coordinated, which introduce new security vulnerabilities.

30

4. CONCLUSIONS
It is safe to say that systems of systems are here to stay and if anything, are becoming recognized as a class of systems warranting
special consideration. With the advent of modularity in systems design, what may have been considered single technical systems,
now exhibit many of the SoS characteristics, as fewer systems are developed completely from the ground up. System components
developed by independent organizations are integrated as independent constituent systems of new systems, bringing with them
the benefits of reuse along with some of the challenges of SoS. As systems engineering continues to apply to larger socio-
technical enterprises, these organizational systems of systems are part and parcel of the future systems landscape and part of
the remit of systems engineering.

This section has laid the groundwork for the SoS engineering topics addressed in the remainder of this monograph. The history of
SoS has been reviewed along with the critical characteristics that distinguish this class of system and how these characteristics
drive SoS complexity. The chapter has shown how SoS are found across a wide range of domains and are the topic of research
globally. Advanced technologies are key drivers for SoS which are going to be increasingly important in the future. These provide
important context for understanding the challenges and approaches to systems of systems engineering.

RE
FE

RE
NC

ES

32

16.	 United States Air Force Scientific Advisory Board. Report
on System-of-Systems Engineering for Air Force Capability
Development Executive Summary and Annotated Brief. SAB-
TR-05-04. July 2005.

17.	 Department of Defense. 2001. Army software blocking policy:
Version 11.4E.

18.	 DoD. 2009. System of systems, systems engineering guide:
Considerations for systems engineering in system of systems
environment. U. S. Department of Defense.

19.	 J. Dahmann. 2014. Systems of systems pain points. In INCOSE
International Symposium on Systems Engineering 2014.

20.	 INCOSE. 2018. Systems of Systems Primer. INCOSE-
TP-2018-003-01.0.

21.	 INCOSE. 2018. Guide to SoS Standards

22.	 Dahmann, Judith. Current Landscape of Systems of Systems
Engineering, IEEE SoSE Conference, Tacoma, WA, June 2024.

23.	 Henson, S.A, M.J.D. Henshaw, V. Barot, C.E. Siemieniuch,
M.A. Sinclair M. Jamshidi H. Dogan, S.L. Lim, C. Ncube D.
DeLaurentis, Towards a Systems of Systems Engineering EU
Strategic Research Agenda. Proc. of the 2013 8th International
Conference on System of Systems Engineering, Maui, Hawaii,
USA - June 2-6, 2013

24.	 DAU, “Defense acquisition guidebook,” 2004.

25.	 ISO/IEC/IEEE 21839 (ISO, 2019)

26.	 ISO SoS Standards study group report (ISO, 2016)

27.	 Quick Reference Guide to SoS Standards, INCOSE, 2020.

28.	 https://www.sesarju.eu/MasterPlan2025 Accessed March 2025

29.	 https://www.itecskynex.com/ Accessed March 2025

30.	 https://transport.ec.europa.eu/transport-themes/infrastructure-
and-investment/trans-european-transport-network-ten-t_en
Accessed March 2025

31.	 https://vision2030.entsoe.eu/ Accessed March 2025 Accessed
March 2025

32.	 https://health.ec.europa.eu/document/download/3dc615dc-
e94c-4691-b655-a2877a6aa57c_en?f i lename=2016_
ehealthleaflet_vertical_en.pdf Accessed March 2025

33.	 h t tps : / /www.na to . i n t / cps / f r / na tohq / t op ics_111830 .
htm?selectedLocale=en Accessed March 2025

34.	 https://www.nato.int/nato_static_fl2014/assets/pdf/2020/7/
pdf/200701-Factsheet_Alliance_Future_Surveil-1.pdf Accessed
March 2025

1.	 Gorod, Alex, Brian Sauser, and John Boardman. System-of-
Systems Engineering Management: A Review of Modern History
and a Path Forward. 2015 IEEE SYSTEMS JOURNAL, VOL. 2,
NO. 4, DECEMBER 2008

2.	 Neilsen, Claus Ballegaard, Peter Gorm Larsen, John Fitzgerald,
Jim Woodcock, and Jan Peleska. 2015. Systems of systems
engineering: Basic concepts, model-based techniques, and
research directions. ACM Comput. Surv. 48, 2, Article 18
(September 2015)

3.	 Boulding, Kenneth. 1956. General systems theory—The skeleton
of science. Management Science 2, 3 (April 1956).

4.	 Von Bertalanffy, Ludwig. 1969. General Systems Theory. New
York: George Braziller.

5.	 Berry, Brian J. L.. 1964. Cites as systems within system of cites.
Papers and Proceedings of the Regional Science Association 13,
1 (Jan. 1964), 149–163.

6.	 Ackoff, Russell L.. 1971. Towards a system of systems concept.
Management Science 17, 11 (July 1971), 661–671.

7.	 Jacob Francois. 1974. The Logic of Living Systems: A History of
Heredity. Allen Lane.

8.	 Keating, C., R. Rogers, R. Unal, et al. 2003. Systems of systems
engineering. Eng. Management J. 15-3: 36–45.

9.	 Jamshidi, M. 2005. System of systems engineering – A definition.
Piscataway, NJ: IEEE SMC.

10.	 Abeer Sharawi, Serge N. Sala-Diakanda, Sergio Quijada, Nabeel
Yousef, Luis Rabelo, and Jose Sepulveda. 2006. A distributed
simulation approach for modeling and analyzing system of
systems. In 2006 Winter Simulation Conference.

11.	 Lane, J. A. and R. Valerdi, “Synthesizing SoS concepts for use in
cost estimation,” presented at the IEEE Conf. Syst., Man, Cybern.
Waikoloa, HI, 2005.

12.	 Gorod, A., B. Sauser, and J. Boardman. 2008. System-
of-Systems Engineering Management: A Review of
Modern History and a Path Forward. IEEE Systems
Journal, 2-4: 484-99. http://ieeexplore.ieee.org/xpl/login.
jsp?tp=&arnumber=4682611&url=http%3A%2F%2Fieeexplore.
ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4682611.

13.	 Ed. Jamshidi, M. 2008. System of System Engineering –
Innovations for the 21st Century. Hoboken, NJ: Wiley.

14.	 Maier, M. 1998. Architecting principles of systems-of-systems.
6th Ann. Int. Symp. Int. Council Syst. Eng. Boston, MA.

15.	 Owens, William A.. “The Emerging US Systems-of-Systems” in
Strategic Forum, Institute for National Strategic Studies, The
National Defense University, Number 63, February 1996.

33

53.	 Dahmann, Judith and Kristen Baldwin. 2008. Understanding
the current state of US defense systems of systems and
the implications for systems engineering. In IEEE Systems
Conference. IEEE.

54.	 ISO 21841, Taxonomy of systems of systems, 2019.

55.	 Henshaw, Michael. Emerging Strategic Research and Education
Agenda in SoS: Trans-Atlantic Research and Education Agenda
in Systems of Systems. NDIA presentation, April, 2013.

56.	 Bodner, Douglas. Mitigating Counterfeit Part Intrusions with
Enterprise Simulation. Procedia Computer Science 61 (2015)
233 – 239

57.	 Dahmann, Judith. Systems of Systems Characterization and
Types. NATO Publication Ref NBR EN-SCI-276-01.2015.

58.	 Dahmann, Judith and Dan DeLaurentis, Unique Challenges in
System of Systems Analysis, Architecting, and Engineering. In
Systems Engineering for the Digital Age. Wiley. 2024.

59.	 SEBOK: Emerging Topics: SoS and Complexity. https://
sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_
of_Knowledge_(SEBoK) Accessed March 2025

60.	 Watson et al. “Appreciative Methods Applied to the Assessment
of Complex Systems”, 29th INCOSE international Symposium,
Orlando, Florida, July 20-25, 2019

61.	 INCOSE Complexity Primer; INCOSE, 2016

35.	 https://www.airbus.com/en/newsroom/stories/2023-11-future-
combat-air-system-fcas-enter-the-internet-of-military-things
Accessed March 2025

36.	 https://www.act.nato.int/activities/federated-mission-networking/
Accessed March 2025

37.	 https://defence-industry-space.ec.europa.eu/eu-space/galileo-
satellite-navigation_en Accessed March 2025

38.	 https:/ /commission.europa.eu/eu-regional-and-urban-
development/topics/cities-and-urban-development/city-
initiatives/smart-cities_en Accessed March 2025

39.	 https://www.intelligentcitieschallenge.eu/about-icc Accessed
March 2025

40.	 https://defence-industry-space.ec.europa.eu/eu-space/iris2-
secure-connectivity_en Accessed March 2025https://civil-
protection-humanitarian-aid.ec.europa.eu/what/civil-protection/
eu-civil-protection-mechanism_en Accessed March 2025

41.	 https://www.copernicus.eu/en Accessed March 2025

42.	 https://civil-protection-humanitarian-aid.ec.europa.eu/what/civil-
protection/eu-civil-protection-mechanism_en Accessed March
2025 Accessed March 2025

43.	 https://joint-research-centre.ec.europa.eu/jrc-science-and-
knowledge-activities/crisis-management_en Accessed March
2025 Accessed March 2025

44.	 https://home-affairs.ec.europa.eu/policies/schengen-borders-
and-visa/border-crossing/eurosur_en Accessed March 2025

45.	 https://www.glowconsortium.de/index.php/en/lofar-about-new
Accessed March 2025

46.	 https://evlbi.org/ Accessed March 2025

47.	 https://bootesnetwork.com/ Accessed March 2025

48.	 https://home.cern/science/accelerators Accessed March 2025

49.	 https://eurohpc-ju.europa.eu/index_en Accessed March 2025

50.	 Axelsson. Jacob. What Systems Engineers Should Know About
Emergence. First published: 26 September 2022; https://doi.
org/10.1002/iis2.12982

51.	 Systems Engineering Body of Knowledge (SEBOK), https://
sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_
of_Knowledge_(SEBoK), Accessed March 2025

52.	 INCOSE. 2015. INCOSE Systems Engineering Handbook: A
Guide for System Life Cycle Processes and Activities, Version
3.2.2. (4th ed.). Wiley.

34

BIOGRAPHIES

35

DAVID SÁNCHEZ GARCÍA
David Sánchez García holds
a BS/MS in telecommunication
engineering from UPM
(Universidad Politécnica de
Madrid). He has more than 30
years of experience at Isdefe
in systems engineering with
particular focus on electronic
warfare and signal intelligence
systems, where he is applying
innovative systems of systems
approaches in the Ministry of
Defense.

Currently he is leading Isdefe’s technical assistance to the
Joint Signals Intelligence SANTIAGO Program Office of the
National Armament Directorate (DGAM) SDG-PROGRAMAS.

He is certified as CSEP by INCOSE and as PMP by PMI. He is
also involved as an in-house trainer on systems engineering
at Isdefe.

DR. JUDITH DAHMANN
Dr. Judith Dahmann is a MITRE
Fellow at the MITRE Corporation
and the MITRE lead for Mission
Integration Technical Support
activities in the US DoD Office of
the Under Secretary of Defense
for Research and Engineering.
She leads the team supporting
mission engineering activities
for selected priority Defense
missions and the application of
digital engineering to mission
engineering. She was the
technical lead for development
of the DoD guide for systems engineering applied to systems
of systems (SoS) and was the project lead for International
Standards Organization (ISO) 21839, the first ISO international
standard on ‘SoS Considerations for Systems Throughout
their Life Cycle’. Prior to this, Dr. Dahmann was the Chief
Scientist for the Defense Modeling and Simulation Office
for the US Director of Defense Research and Engineering
(1995-2000) where she led the development of the High-
Level Architecture, a general-purpose distributed software
architecture for simulations, now an IEEE Standard (IEEE
1516). Dr. Dahmann is a Fellow of the International Council
on Systems Engineering (INCOSE) and the co-chair of the
INCOSE Systems of Systems Working Group and co-chair of
the National Defense Industry Association SE Division SoS
SE Committee.

CH
AP

TE
R

2
From Systems Engineering
to Systems of Systems

Engineering: An overview

Abstract

Engineering Systems of Systems (SoS) presents unique challenges that require a departure
from traditional systems engineering (SE) practices. While most SE practices provide a structured
framework for managing system life cycles, their direct application to SoS is limited by the degrees of
governance, managerial independence, operational independence, and interoperability constraints
among constituent systems (CS). Unlike traditional systems, where mandates and centralized control
can ensure compliance, SoS must balance command, negotiation, and influence, depending on
the autonomy of its components. This chapter provides a summary of the main adaptations that the
application of systems engineering requires to be effective in the engineering of SoS.

Keywords

SoS engineering, operational independence, managerial independence.

Dr. Michael Yokell, INCOSE (US Aerospace and Defense, retired) (Michael.Yokell@INCOSE.net)
Dr. Alejandro Salado, The University of Arizona (alejandrosalado@arizona.edu)

Adolfo Sánchez Domínguez, Isdefe (asdominguez@isdefe.es)

38

1. INTRODUCTION
Applying traditional SE principles to SoS is far from
straightforward. Unlike conventional systems, where
engineers design and control every element, SoS
presents a complex, decentralized, and evolving
landscape, as described in the previous chapter. The
core challenge is that an SoS is not built from the ground
up. Instead, it emerges from the interaction of multiple,
independently operated and managed systems, each
with its own stakeholders, objectives, and operational
constraints.

In this environment, the role of systems engineers
transforms from designers and decision-makers
to orchestrators and influencers, aligning diverse
interests, fostering interoperability, and guiding system
interactions to achieve a greater, emergent capability.

One of the most fundamental shifts in engineering SoS
is recognizing that traditional SE approaches, which are
highly prescriptive for SE processes, cannot be applied
in a one-size-fits-all manner to SoS [1]. For a traditional
system, most SE standards mandate what must be
done: requirements must be managed, verification
and validation must be performed, and all lifecycle
processes are expected to be executed in a rigorous,
disciplined manner. There is an implicit assumption
that there is centralized control, meaning engineers
can impose processes as needed to ensure system
success.

However, when working with SoS, almost everything
depends on the level of governance, managerial, and
operational independence of its constituent systems
(CS). Unlike a conventional system, engineers cannot
assume mandates will be effective across the entire
SoS. Some systems can be directly controlled, while
others operate with complete independence, following
their own priorities and decision-making structures. This
means that, while in some cases mandates can still be
used (especially for CS that are internally developed or
contractually obligated to comply with the SoS structure),
in other cases mandates are useless (particularly when
dealing with autonomous systems that exist outside the
SoS owner’s jurisdiction). Most commonly, however, the
solution lies somewhere in between, with degrees of
negotiation, influence, and governance mechanisms
used to align systems without imposing direct control.

This “it depends” is the essence of SoS engineering (SoSE). The
degree of governance, managerial, and operational independence
means that ownership of engineering decisions, whether they
involve architecture, integration, verification, or sustainment, may
be distributed because of the specific governance and managerial
structures of the SoS. The key challenge of SoSE, therefore, is
not just in applying engineering principles and methods, but in
understanding where and how they can be applied given the
autonomy, cooperation, and constraints of the CS involved.

Despite the increasing prevalence of SoS across industries, the
methods and practices for engineering SoS are still in their infancy.
While traditional SE has benefited from decades of refinement,
with well-established standards, methodologies, and best
practices [2], SoSE remains an emerging discipline, one where
fundamental concepts are still evolving, and many challenges
remain unresolved.

Traditional SE has been and continues to be formalized over time
through applications in aerospace, defense, automotive, and
industrial sectors. The processes outlined in standards like ISO/
IEC/IEEE 15288 [3] and the INCOSE SE Handbook [4] provide
clear guidance on how to approach system design, integration,
verification, validation, and sustainment. This indicates that these
methods are deeply ingrained in industry practices and are being
actively refined through both theoretical research and real-world
application.

In contrast, SoSE does not yet have the same level of maturity.
Although foundational work has been done, particularly in
defense and large-scale infrastructure, a large corpus of
consolidated knowledge, concepts, methods, and practices is
still accumulating. Unlike traditional systems, which have been
abundant and with various classes of systems of the same kind,
we not only have a very limited number of SoS, but they are
inherently heterogeneous and dynamic. In fact, the challenges of
governance, autonomy, and emergent behavior vary significantly
across domains, making it difficult to establish clear guidelines
(as stated earlier, “it depends”). In addition, while SE education
is growing significantly, SoS are not yet central to the educational
content. If any, they are treated as a side note or in a dedicated
course, exemplifying the different depth to which traditional
systems and SoS are addressed in these programs. The gap is
amplified by the fact that engineering SoS requires a paradigm
shift in engineering methods, as core assumptions for engineering
practices are different: from direct control to coordination, from
predictability to adaptation, and from closed design of individual
components to enabling emergent capabilities. These changes
require methods and approaches that have traditionally being
foreign to engineering.

39

Although SoSE is still in its early stages, progress is being
made though. Research activity is growing, and several
frameworks and methodologies are emerging. As of today,
we can leverage guidelines, principles, and some isolated
methods that are considered helpful to support SoSE. These
have been compiled in three international standards:

	• ISO/IEC/IEEE 21839 [5] focuses on critical considerations
for SoS during life cycle stages of constituent systems,
aligned with ISO/IEC/IEEE 15288, and addresses the
interaction and effective operation of constituent systems
within an SoS.

	• ISO/IEC/IEEE 21840 [6] offers guidelines for applying
ISO/IEC/IEEE 15288 in the context of SoS, exploring the
similarities and differences between systems and SoS
and detailing engineering practices for SoS.

	• ISO/IEC/IEEE 21841 [7] defines a taxonomy for SoS
to improve understanding and communication among
stakeholders, which also serves as a basis to characterize
the SoS at hand to better guide the selection of SoSE
practices.

We present an overview of such guiding principles in the next
sections. Particularly, we present three key aspects of SoSE
in Section 2 that provide an overview of some of the core
shifts from traditional SE to SoSE, and then follow in Sections
3 through 6 with overviews of the guidance for applying
traditional SE processes to SoS according to [6].

Note: Throughout the chapter, the term ‘system’ will be
sometimes used to refer to traditional systems, different from
SoS.

2. KEY CONSIDERATIONS OF SOSE
As described earlier, governance, managerial, and operational
independence are the critical differences that demand a shift
in SE practices for SoS. They give rise to interoperability,
predictability, and evolution as key considerations to define
SoSE practices.

Figure 1. The degree of governance, managerial, and operational independence requires new system
engineering approaches. (Left: traditional command and control; Right: SoS coordination).

40

2.1. Interoperability: A negotiated process, not a
defined specification

Since SoS are rarely designed as a unified whole, one of
the biggest challenges is making independently developed
systems work together. Traditional SE assumes integration
can be planned upfront, but in SoS, integration is often an
ongoing and dynamic process.

A fully governed SoS can dictate strict interoperability
requirements, forcing all CS to comply. However, in an
SoS with limited governance, engineers must negotiate
interoperability, sometimes convincing system owners to
adopt standards or provide data-sharing agreements.

In this environment, traditional SE tools, such as interface
control documents (ICDs), can still be useful, but they are not
enough on their own. Engineers can also need to establish
standards and common frameworks that systems voluntarily
adopt, use incentives to encourage alignment (e.g., providing
funding, technical support, or operational advantages), and
design middleware and adaptive architectures that allow non-
compliant systems to integrate without full standardization.

Therefore, instead of imposing interoperability as a
requirement, SoS engineers often guide interoperability as a
process of alignment and adaptation.

2.2. Emergent behavior and the limits of
predictability

A defining feature of SoS is that capabilities and behaviors
emerge from system interactions rather than being explicitly
designed. In a traditional system, engineers carefully define
what the system will do. In an SoS, capabilities often arise as
a side effect of system collaboration, sometimes beneficial,
sometimes problematic.

Because of this unpredictability and because many of their
CS are operational in real-world environments, SoS cannot
always be tested as a whole, challenging the adoption of
traditional system verification and validation (V&V), where
systems are expected to undergo a rigorous campaign
through prototyping, simulation, and controlled testing.
Instead, modeling, simulation, and real-world experimentation
become essential tools to assess how well the SoS as a whole
adapts to change, rather than just verifying whether each
individual CS meets its requirements.

2.3. Engineering for continuous evolution

Unlike traditional systems, which often have clearly defined
lifecycles, an SoS is always in flux. New systems join, old ones
leave, and technological advancements constantly reshape
the environment. The idea of a “finalized” SoS is a myth.
Instead, engineers must design for continuous evolution.

This means that rigid, sequential development models do
not work. SoSE requires incremental, adaptive processes
that allow for change without disrupting existing capabilities.
To manage this, engineers must think beyond just technical
solutions. Political, legal, and contractual frameworks must
also evolve alongside technical systems. Risk management,
traditionally focused on technical failures, must now
encompass organizational, economic, and geopolitical
uncertainties as well.

3. AGREEMENT PROCESSES

3.1. Acquisition process

For a traditional system, the organization that owns the
system is generally referred to as the acquirer, whereas
the organizations that provide the system are referred to as
suppliers. In the context of SoS, terms such as “consumer,”
“participant,” or “partner” probably better capture the
essence of their relationship. In the context of SoS, a
consumer obtains the capabilities of CS, with or without
explicit agreement, and without actually acquiring the CS that
produced the capabilities. Unlike with systems, the suppliers
continue to be managerially independent, and the CS remain
operationally independent.

In addition to formal approaches like contracts, less
formal approaches such as memoranda of agreement
and memoranda of understanding can be effective in the
management arrangements for some types of SoS. For some
types of SoS, though, agreements can be informal, tacit, or
absent. Accepting terms of use for a product or service is one
type of agreement. Many SoS operate effectively even in the
absence of agreements.

41

3.2. Supply process

Because CS remain managerially and operationally
independent, CS already have acquirers for their
product or service. Some CS can be willing to expand
or reallocate resources to address the needs of an SoS
acquirer, or agree to not change CS characteristics
without notice, but some CS are not.

Agreements within SoS span a wide spectrum of
formality, from contracts at one end of the spectrum,
moving through less formal approaches such
as memoranda of agreement, to memoranda of
understanding to no agreements at all. For example,
using the software can constitute an agreement to
certain terms and conditions. In SoS where an explicit
agreement does not exist, the supplier has no direct
obligations. However, suppliers generally want their
products and services to be used, so they have some
motivation to help acquirers find usefulness in them.

4. ORGANIZATIONAL PROJECT-
ENABLING PROCESSES

4.1. Life cycle model management process

CS have their own life cycles and life cycle models,
and can be at different places within those models
(ref. Figure 2). The life cycle model of an SoS can
be different from those of the CS. Effective use of
life cycle management process provides a context
for CS joining and leaving the SoS. Organizations
governing CS could have little insight or interest in the
policies, procedures, and life cycle models of the SoS
or another CS. However, responsibility, accountability,
and authority arrangements with CS should be
defined and understood.

Assessment of SoS life cycle models and processes
for use by the organization should consider that
SoS concerns, life cycle models, and processes
could differ from those of the CS. The life cycle
model and process of the SoS should recognize and
accommodate the life cycle model and processes
of the CS. For some SoS type, CS can be unable
or unwilling to make such adaptations. However,
adaptation to SoS concerns can include SoS
roadmaps or broad strategies. SoS process, model,

and procedure improvements should recognize that improvements
needed to support the SoS are different from those needed to
support the CS on its own and that the priorities of the SoS could
differ from the priorities of the CS.

Figure 2. Each CS has its own life cycle model and can be at different stages.

4.2. Infrastructure management process

Infrastructure requirements for SoS projects can be different from
infrastructure requirements for CS projects. For example, physical
facilities such as integration labs and test labs can be needed by
the SoS for interoperability testing to address SoS concerns. SoS
can need project infrastructure elements that are not needed by
any of the CS individually. Developing and acquiring SoS project
infrastructure elements can be quite different from systems. Because
SoS and CS can be at different stages within their life cycles, the
availability, robustness, and resiliency of SoS project infrastructure
can be of greater concern than with the CS alone.

42

4.3. Portfolio management process

Portfolio management is more complicated for organizations
involved with SoS. For the SoS, the lack of control over the CS,
which remain managerially and operationally independent, can
be especially problematic. Likewise, CS participation in an SoS
can be problematic due to consumption of resources beyond
what the CS originally needed to meet its own stakeholder’s
needs. For some types of SoS, the influence to achieve the SoS
capabilities can be created through highlighting the mutual
benefits with the SoS and its stakeholders, as well as with the
CS and their stakeholders. Disincentives should be addressed
and minimized where possible.

Depending on the degree of operational and managerial
independence, additional resources and budgets can be
needed to support an SoS beyond what was needed for the
CS. The accounting for these resources and budgets can
be different from the CS because of their independence.
SoS organizations should consider that other organizations
participating in the SoS could choose to sustain or not sustain
projects regardless of whether agreements and stakeholder
requirements are being met.

4.4. Human resource management process

Human resources for an SoS address activities/processes that
are distinct from the CS processes. Because SoSE differs from
SE, skills required by SoS projects differ from other types of skills
needed for CS. For example, because CS remain managerially
independent, skills related to influence instead of direction can
be especially important. Assessing the return on investment
in an SoS project is immature, so care should be taken when
resolving conflicts.

4.5. Quality management process

A quality management approach may be established for CS as
well as the SoS. SoS depend on the CS for quality management
of the CS. There can be variation in the management of quality
by the CS, ranging from highly prescriptive across all CS to
completely absent in some CS. Organizations participating in
an SoS should adjust their policies, objectives, and procedures
to accommodate these realities. SoS quality evaluation criteria
should focus on the SoS capabilities which can be different
from the CS capabilities. SoS organizations should consider
how to align approaches to achieve the integrated SoS goals in
the presence of variable quality systems.

4.6. Knowledge management process

Because CS are managerially independent, they have their
own taxonomies and knowledge assets for their systems.
It is possible that CS can collaborate with other CS or the
SoS, but SoS should not assume that they will. SoS may
use ISO/IEC/IEEE’s knowledge management process, for
example to define SoS-specific knowledge assets that
can be needed. SoS knowledge assets should survive
individual CS, especially when CS enter or leave an SoS.
Because the CS reside in different organizations, the
organizational knowledge, skills, and knowledge assets
can be distributed across different organizations.

5. TECHNICAL MANAGEMENT PROCESSES

5.1. Project planning process

Organizations create projects to meet changing SoS
objectives or capability shortfalls. Projects can create new
SoS and SoS elements, leveraging existing CS to fulfil
capabilities. Planning should recognize that the CS remain
managerially and operationally independent from the SoS
and the SoS organization. SoS planning should define the
roles responsibilities and authorities of the SoS organization
(if any) as well as CS organizations in the SoS plans.

5.2. Project assessment and control process

In the context of SoS, assessment is complicated, and control
is sometimes impossible. Skills related to coordination,
collaboration, and influencing can be especially important.
For some SoS, it is not always possible to perform technical
reviews of some of the CS. However, “proxy” reviews (i.e.,
without the CS owner present) can provide some insight.

Where possible, corrective action should be agreed upon
between the governing and managing authorities of each
CS and collaboratively decided and executed instead of
directed as is common with traditional systems. The use
of incentives or penalties can be considered for some SoS
types. SoS plans should be adjusted based on the current
and planned states of the CS.

43

5.3. Decision management process

As with systems, decisions can affect the system as a whole or
just elements of the system. For SoS, decisions can affect the SoS
as well as CS, so CS should be engaged in both the decision and
analysis processes along with the SoS. This is not always possible
because some CS are not aware of their participation in an SoS.
Managerial independence of the CS means that the CS manage
their own decisions, some of which can be contrary to SoS interests.

5.4. Risk management process

Risks faced by the SoS differ from those faced by the CS. Risks to
the SoS can result from CS that change, join, or leave the SoS or
do not operate consistently with SoS expectations. Analysis of SoS
risks can require analysis of the network of interoperating CS as well
as candidate replacement CS if CS change or leave unexpectedly.
Given that CS remain operationally and managerially independent,
CS incentives can be considered to facilitate proper treatment of
SoS risks. Enforcing risk treatment by CS is not always feasible.

5.5. Configuration management process

SoS configuration management focuses on system elements that
specifically relate to the SoS. In contrast, CS retain configuration
management of their systems. Because SoS functions are allocated
to the CS, interfaces between each CS should be well defined,
especially when the SoS does not control them. In the context of
SoS, “controlled” means monitored and recorded, not that there is
control exercised into approving/rejecting/implementing the change
itself.

Baselines for the SoS depend on what, if any, agreements are
in place. While cooperation from CS is helpful, it is not always
possible, especially in loosely organized SoS. It can be possible
to baseline or define compatibility across elements to map system
features. Changes to items under configuration management can
be controlled or uncontrolled from the perspective of another CS or
the SoS.

Some aspects and attributes of the CS can be related to certification
of interoperability. These attributes themselves can be leveraged
to establish a baseline from the SoS point of view. Interface
specifications can form a part of a baseline. Compatibility should
be considered when the specifications change. Depending on the
governance independence of the SoS, formal releases and deliveries
of SoS capabilities can be infeasible. Instead, they can occur when
CS capabilities are released and delivered.

5.6. Information management process

The types of information to be managed can relate
to the SoS itself, the governance of the SoS and the
CS. SoS information management should be clearly
defined and agreements made with the CS, where
possible, to share the needed information. Note that
for some SoS types, CS can be unaware or unwilling
to share information. SoS (and other CS) should
respect CS confidentiality, security, and ownership
of intellectual property, especially when agreements
are informal or absent. Some information from CS is
not always available to SoS stakeholders or other CS
stakeholders.

5.7. Measurement process

Informational needs of both the SoS and the CS
necessary for CS participation in the SoS should be
identified. The definition of these measures should be
accompanied by a description of the impact on the
performance or capability of each CS, if applicable,
and of the overall SoS. For some SoS types, collection,
verification, and storage of data is not always
possible. Where available, alternative approaches
should be defined. Additional SoS elements can
also be added to assist the monitoring of the SoS.
Depending on the governance independence of the
SoS, information provided by CS can be subjective,
erroneous or absent.

5.8. Quality assurance process

Ideally, criteria and methods for quality assurance
evaluations should be agreed upon. As with systems
and subsystems, the agreement should identify roles
and responsibilities as well as information, data, and
assumptions in relation to the planned evaluations.
In some cases, quality assurance activities can
be handled by the SoS, or separately by each CS,
without agreement between them. For some SoS
type, CS can be unaware of their participation. If
possible, problem treatment and definition of priorities
should be agreed upon between the governing and
managing authorities of each CS and the SoS.

44

6. TECHNICAL PROCESSES

6.1. Business or mission analysis process

Because the problems and opportunities addressed
by SoS are typically broader and more complex
than those addressed by systems, business or
mission analysis can require the use and integration
of modeling techniques and tools that are more
heterogeneous than with systems. Ideally, the
characterization of a solution space for an SoS should
include the candidate CS, how each CS supports the
new problem or opportunity, and any constraints these
CS can impose on the solution space.

Since CS that are already deployed when the SoS is
envisioned have existing operational considerations
and constraints, the SoS can be affected and
constrained. System approaches that assume the
ability to change the CS likely will not be effective.
Depending on the degree of managerial independence,
different approaches can be necessary. For SoS,
multiple alternative solutions can be viable.

6.2. Stakeholder needs and requirements
definition process

Stakeholder needs and requirements definition
process for SoS has the same focus as with systems,
but identification and access to stakeholders can be
constrained. It is not always possible to identify all
stakeholders; elicitation of stakeholder needs will likely
be incomplete and perhaps incorrect. The SoS should
plan to accommodate emergent stakeholders and their
needs as well as any constraints that potentially affect
SoS operation and evolution. For SoS, CS continue to
have managerial and operational independence as
well as interdependence. It is important to recognize
where key CS stakeholder needs align or conflict with
the SoS objectives. To be successful, SoS should
avoid infringing on CS objectives.

CS have their own operational concepts and lifecycles
that evolve independently, so it is important to
document where each system is within its lifecycle.
There can be different periods of stability for some CS
and instability for other CS. CS constraints on the SoS
should be identified.

SoS and CS stakeholders should strive for agreement where possible,
but agreement is not necessarily required of all CS stakeholders
for effective definition of the SoS. However, care should be taken
because disagreement can cause CS to exit the SoS or impede SoS
objectives.

6.3. System requirements definition process

As with systems, the SoS requirements definition process transforms
the stakeholders’ desired outcomes into SoS requirements,
characteristics, attributes, functions, and performance that the SoS
should possess to satisfy the stakeholder requirements. For some
types of SoS, CS owners can conduct or support SoS requirements
definition. For other types of SoS, the CS owner can be unwilling to
disclose this information. As with systems, SoS requirements and
design constraints can change over time. As CS change, join or
leave the SoS, the set of available capabilities changes, affecting
what is feasible for the SoS to provide. Requirements that were
previously met can be unmet without warning.

Because CS remain managerially and operationally independent,
CS do not always accept and implement SoS requirements.
Consequently, SoS sometimes do meet their objectives. However,
requirements definition should consider critical performance
measures for the CS and SoS to facilitate delivery of SoS capabilities
under various situations. As with systems, SoS stakeholder
requirements can trace to SoS capability objectives and CS or
system element requirements. Unfortunately, SoS requirements can
conflict with existing CS attributes.

Figure 3. CS have their own stakeholders with their own requirements.

45

6.4. System architecture definition process

As with systems, the architecture definition of SoS focuses
on the critical functionality of the elements. With SoS, these
include CS, system elements, and their interactions. Insight
into the inside architecture of CS can be unnecessary or
even impossible. Systems are often decomposed in terms
of hierarchies; SoS are often described as networks with
complex interconnections. Consequently, SoS architecture
can be limited based on partial information from the CS, some
of which can be unaware of their participation in the SoS.

The SoS architecture should expect a need to define system
elements that are not part of any CS. Likewise, CS change,
join and leave the SoS over time, so the architecture definition
can remain fluid. As with systems, SoS architectures should
reflect the needs of the SoS stakeholders for the SoS
capabilities. However, it is also important to acknowledge
in the architectures the needs of the CS stakeholders which
can be affected by CS participation in the SoS. Ideally,
SoS architectures should address SoS while minimizing or
avoiding adversely affecting the CS.

6.5. Design definition process

As with systems, an overarching design for the SoS is needed.
However, unlike systems, the system elements of an SoS can
be CS that are owned by other organizations and operated for
their own purposes. However, system approaches as in ISO/
IEC/IEEE 15288 can be applied to specific system elements
that are not part of any CS. Multiple design definitions can
be necessary to implement changes into the SoS on a time-
phased basis, especially when CS join or leave the SoS
unexpectedly.

SoS Design Definition should acknowledge that desired
changes to a CS are not possible and that the CS design
and capabilities must be accepted and accommodated
as is. To the extent possible, SoS Design Definition should
consider time phasing of the CS implementations so that CS
capabilities remain compatible with each other at all points
in time.

For SoS, design definition emphasizes the selection and
adaptation of CS or other system elements that can be
necessary to facilitate interaction of the CS in the SoS.
Alternative CS should be assessed for viability, not just
technically, but the implications of their operational and
managerial independence. A willing participant can

be advantageous of a technical superior, but unwilling
participant.

The selection of the set of CS to meet SoS needs is allocates
systems, not just system elements to SoS requirements. The
SoS design definition process focuses on assessing the
ability of CS and system elements, either current or proposed,
to implement the interfaces to meet SoS needs.

Organizations managing CS can be unwilling to fully
disclose design information. Fortunately, SoS do not need
to understand the internal aspects of CS designs, but can
be more narrowly concerned with the interfaces and external
characteristics of the CS. That is, in SoS design definition,
it is important to have just enough CS design information to
understand their behavior, but without access to the details
of how CS achieve it.

6.6. System analysis process

Like systems, SoS system analysis can leverage actual and
predicted data. Because many CS pre-exist the SoS, actual
data can be available from their operation, though CS owners
can be unwilling to share this information. For this reason,
predictive data separate from the CS can be necessary.

It is possible that the System Analysis process can be
performed by each CS owner to support CS-level decision
management with SoS impacts. However, CS owners
have different viewpoints and interests from the SoS, so
their analyses and results can differ from those of the SoS.
Unfortunately, CS decisions based on their own analyses can
conflict with SoS interests and requirements. Resolution of
conflicts can be very challenging or impossible.

SoS analyses should explore and validate assumptions and
results related to operational and managerial independence
of the CS. SoS should consider adding measuring points and
instrumentation to provide the data to validate analyses or
models.

46

6.7. Implementation process

SoS are typically implemented by composing existing and
potentially modified CS along with other system elements
to provide new capabilities. Constraints from existing CS
influence the requirements, architecture, or design. Like
systems, the remaining system elements need to be realized
and the implementation process from ISO/IEC/IEEE 15288
can be used.

SoS information management and support infrastructure
can enable the SoS to flourish and develop as needed. Time
phasing of CS changes should be carefully planned. Ideally,
each CS should be expected to continue to support its own
independent capabilities and any changes to the CS are ready
to support the desired SoS capability. To the extent possible,
care should be taken to confirm that desired interactions and
capabilities are not damaged by CS changes.

6.8. Integration process

SoS often consist of existing CS that are integrated to meet
the requirements of the SoS. Constraints on integration that
influence SoS requirements, architecture, or design, including
interfaces, can be extensive. Unlike systems, integration
for the SoS is often performed with operational CS in an
operational SoS environment. SoS Integration usually occurs
within the context of an evolving, continuously operating
SoS. It can be impossible or impractical to halt operation.
Consequently, planning for integration should facilitate
interaction with ongoing CS and SoS operations.

Because CS can change, join or leave an SoS, frequent
integration can be expected. Frequent checking of the
interfaces between the CS and implemented system elements
can be important.

6.9. Verification process

Verification of SoS requirements is not usually possible to
a similar degree of certainty and fidelity as is possible with
other types of systems. However, verification activities can
still be valuable to assess how well the SoS is meeting
the requirements to the extent that they are known and
understood. Unlike many systems, SoS verification almost
always occurs in the context of operations that are ongoing
and changing. Verification should be planned and executed
with ongoing operations in mind.

For some SoS, CS owners can perform some verification of
their partial views of the SoS. For others, it can be impossible
to test some SoS capabilities due to safety, security, or cost.
SoS Verification can rely on modelling or analysis. Unlike
systems, verification of some CS is not guaranteed. Complete
verification of the SoS and resolution of anomalies can be
infeasible.

6.10. Transition process

As with systems, the transition process establishes the
desired capabilities in an operational environment. For
some CS, new features and capabilities can be available to
stakeholders frequently, while other CS make transitions at a
much slower cadence. Consequently, transition events by CS
can occur just as frequently for the SoS. Some SoS owners
can influence the phasing of CS changes, while other CS can
be unwilling to adapt to the needs of the SoS. To the extent
possible, transition events should be planned and executed
to coordinate CS and SoS capabilities.

CS are usually in operation prior to the SoS capability being
transitioned to operations. It is possible that CS can join and
leave an SoS unexpectedly. Consequently, delivery of the SoS
capabilities is not guaranteed. SoS governance can consider
incentivizing CS to be created in certain areas.

6.11. Validation process

Validation of the SoS validation can occur as an ongoing
process throughout operations, rather than a singular event
as typically happens with systems. Access to objective
evidence about some SoS objectives or stakeholder
requirements can be limited or even absent due to safety,
security, or operational considerations. In such cases,
planning for SoS validation should consider the availability of
subjective or ancillary evidence.

As with the validation of system, validation of SoS can
identify discrepancies between the original requirements
and the operational capabilities that can be provided. SoS
stakeholders as well as their CS stakeholders, can have
conflicting goals. Thus, unlike systems, it can be impossible
to obtain full stakeholder ratification of the SoS validation.
For some SoS, CS owners can validate a partial view of the
SoS that is available to each CS owner, while others can be
unwilling to support SoS validation. For many SoS, service
availability of the SoS is not guaranteed.

47

Interestingly, validation of CS can be irrelevant or unnecessary if the stakeholder
validates the SoS. However, non-validated, strongly independent CS can reject or
abandon the SoS, posing a risk to the availability of SoS services and capabilities.

6.12. Operation process

SoS are often assembled or orchestrated from exiting CS that have their own
operational priorities and constraints. Sometimes it is not possible to feed these
priorities and constraints to the other processes in a timely manner. Operational
changes to the CS and their interfaces affect the SoS. Likewise, stakeholder
feedback on the operation of the SoS can suggest that changes should be made
to the CS, but the CS can be unwilling to make them because they have their own
operational interests that can differ from those of the SoS.

Figure 4. Some CS can validate partial SoS views, but non-
validated CS pose risks to service availability.

6.13. Maintenance process

Maintaining the SoS is particularly
challenging because organizations that
own and manage CS can make changes
to them for their own purposes, potentially
affecting the SoS and the interfaces to
other CS. These changes can occur
without prior warning or coordination
within the SoS. For some types of SoS,
organizations managing CS can be
unwilling to report pending changes
to address corrective, perfective, or
adaptive maintenance. Likewise, these
organizations can be unwilling to share
data related to failures. Planning for the
SoS can be constrained by the lack of
access to data that would typically be
available within a system. Consequently,
the ability for an SoS to maintain itself can
require proactive contingency planning.

6.14. Disposal process

Because CS within the SoS are
independently governed and managed,
it is possible, and perhaps likely, that
CS can exit the SoS without much
coordination or planning. An organization
can decide to dispose of a CS, adversely
affecting any SoS it was participating in.
For some type of SoS, the CS can be
unaware of the participation. Conversely,
an SoS can be retired and the outcomes
of the disposal process achieved without
adversely affecting the CS, which can
continue to be operated for their own
purposes. Unlike systems that are not
SoS, the SoS can simply disconnect
from the CS rather than disposing of the
CS. However, if the SoS has enabling
systems, services, or system elements
unique to the SoS that are not needed
by any of the CS, the disposal process
in ISO/IEC/IEEE 15288, clause 6.4.14
may be followed and the outcomes of the
disposal process achieved.

48

7. CONCLUSIONS
Applying systems engineering to SoS is not just about adapting existing processes, it is about embracing a fundamentally different
way of thinking. Instead of focusing on control, predictability, and optimization, SoS engineering is about influence, adaptation,
and resilience. This requires a shift in several areas:

1)	 The role of systems engineers must evolve from designer to orchestrator.

2)	 Influence must replace direct control as the primary means of ensuring system alignment.

3)	 Interoperability must become a fundamental requirement, not an afterthought.

4)	 Emergent behavior is anticipated and managed rather than avoided, and

5)	 V&V shifts from static, requirement-driven testing to continuous evaluation in real-world contexts. However, it is also important
to note that the development of dedicated approaches and methods to support this shift are in their infancy.

Change is necessary but it should be pursued with caution1.

1. Caution does not mean sticking to traditional systems engineering practices. Caution here means that extra care must be taken when dealing with the engineering of SoS; an SoS is not simply
a larger system…

49RE
FE

RE
NC

ES

1.	 McDermott, T. and V. Ramos, New Kinds of Systems, in
Introduction to Systems Engineering in the 21st Century, A.
Salado, Editor. 2024, Isdefe: Madrid, Spain. p. 35-55.

2.	 Salado, A., A. Sancehz, and D. Verma, Systems Engineering
in the 21st Century, in Introduction to Systems Engineering
in the 21st Century, A. Salado, Editor. 2024, Isdefe S.A.:
Madird, Spain. p. 15-33.

3.	 ISO, ISO/IEC/IEEE International Standard - Systems and
software engineering -- System life cycle processes. ISO/
IEC/IEEE 15288 First edition 2015-05-15, 2015: p. 1-118.

4.	 INCOSE, Systems Engineering Handbook. A Guide for
System Life Cycle Processes and Activities. 5th ed. 2023,
Hoboken, NJ, USA: John Wiley and Sons, Inc.

5.	 ISO/IEEE/IEC, ISO/IEC/IEEE 21839, Systems and software
engineering — System of systems (SoS) considerations in
life cycle stages of a system. 2019.

6.	 ISO/IEEE/IEC, ISO/IEC/IEEE 21840, Systems and software
engineering — Guidelines for the utilization of ISO/IEC/IEEE
15288 in the context of system of systems (SoS). 2019.

7.	 ISO/IEEE/IEC, ISO/IEC/IEEE 21841, Systems and software
engineering — Taxonomy of systems of systems. 2019.

50

APPENDIX: COMPARISON BETWEEN SYSTEMS ENGINEERING PRACTICES FOR
SYSTEMS AND SOS

 Processes System SoS

Agreement Processes

Acquisition

A single acquirer manages the
system and contracts suppliers

for its development and operation,
with formal agreements.

There may be no single acquirer;
CS may remain operationally and
managerially independent, with
agreements that may be formal,
informal, or even nonexistent.

Supply
The acquirer has full managerial

and operational control over
the system and its suppliers.

CS may remain independent with
their own acquirers. Adaptation to

SoS needs varies, and agreements
may range from formal contracts

to none. Suppliers may have
no direct obligations with SoS

unless explicitly agreed.

Organizational Project-
enabling Processes

Life cycle model management

Follows a well-defined life
cycle model managed by the

acquirer. When different life cycle
models are used in different

parts of the system, they are still
integrated at the system level.

Each CS may have its own life
cycle model, which may be at
different stages, and are not

necessarily integrated towards an
aggregated life cycle model.

Infrastructure management
Infrastructure requirements

are defined for a single
system and its needs.

May require additional infrastructure,
such as integration and test

labs, to ensure interoperability.
Availability and resiliency

are critical due to potentially
varying CS life cycle stages.

Portfolio management
Portfolio management is simpler,

as the organization has full control
over its system and resources.

Portfolio management may be
more complex due to the lack

of control over independent CS,
which can require additional

resources and budgets.

Human resource management

Human resources focus on
activities and processes specific
to the system, with skills tailored
to managing the system itself.

Human resources in SoS may
require different skills, particularly

related to influence rather
than direct control, due to the

managerial independence of CS.

Quality management
A quality management approach

is established and managed
for the system itself.

SoS depends on the quality
management of the CS, which

may vary significantly. SoS
quality evaluation focuses on
integrated capabilities rather

than individual CS capabilities.

Knowledge management Taxonomies and knowledge assets
are defined for the system itself.

SoS defines its own knowledge
assets, which must endure across

CS transitions. Collaboration between
CS or with the SoS is not guaranteed,

and knowledge is distributed
across different organizations.

51

Technical Management
Processes

Project planning
Projects are created to fulfill specific

system objectives and are fully
managed within the system's control.

Projects address capability
shortfalls by leveraging existing

CS. Planning must account for the
independence of CS and define

roles, responsibilities, and authorities
of both SoS and CS organizations.

Project assessment and control
Assessment and control are

straightforward and managed
directly within the system.

Assessment is complex with
limited control. Success relies
on coordination, influence, and

collaboration. Corrective actions
are collaborative, and plans should
adapt to the evolving status of CS.

Decision management
Decisions impact the system as a

whole or specific elements, with full
control over the system’s decisions.

Decisions impact both the SoS and
CS. CS may not be always aware

of their role, and their independent
decisions can conflict with SoS goals.

Risk management Risks are contained within the
system and are managed directly.

Risks arise from changes,
departures, or inconsistencies in CS.
Risk analysis involves understanding
the network of interoperating CS and

potential replacements. Enforcing
risk treatment is not always feasible.

Configuration management
Configuration management is
handled internally within the

system, focusing on its elements.

Configuration management focuses
on elements related to the SoS, with
CS retaining control over their own
systems. Interface specifications
and compatibility are critical, and

changes can be uncontrolled
from the SoS perspective.

Information management
Information management is
focused on the system and

its internal governance.

Information management involves
both the SoS and CS, potentially
requiring clear agreements for

sharing. CS may be unwilling or
unaware of the need to share

information, and confidentiality,
security, and intellectual property

must be respected. Some
information may not be readily
accessible to all stakeholders.

Measurement
Information needs are clearly

defined within the system
for its own performance.

SoS needs to define and manage
information across both the SoS and

CS, but data can be incomplete,
subjective, or unavailable.

Quality Assurance
Quality assurance criteria
and methods are clearly

defined and agreed upon.

Quality assurance can be handled
by the SoS or independently by

each CS, sometimes without
formal agreements. CS can be

unaware of their participation, and
priorities and problem treatments
need to be agreed upon between

CS and SoS authorities.

52

Technical Processes

Business or mission analysis
Problems are typically simpler,

and analysis uses more
homogeneous modeling tools.

Problems are broader and more
complex, requiring diverse modeling
tools and integration. CS constraints

and operational considerations
affect the SoS, and multiple

alternative solutions can be viable.

Stakeholder needs and
requirements definition

Stakeholder needs and
requirements are identified and
addressed with a clear focus.

Identifying and accessing
all SoS stakeholders can be

constrained, and needs can be
incomplete or incorrect. Emergent
stakeholders and conflicts with CS

objectives must be managed.

System requirements definition

Requirements are defined clearly
to meet stakeholder outcomes,

with stable characteristics,
functions, and performance.

Requirements are subject to change
as CS join, leave, or change,

affecting feasibility. CS are not
obliged to accept or implement SoS
requirements, and conflicts between
SoS and CS requirements can occur.

System architecture definition

System architecture is often
hierarchical, focused on
critical functionality and

internal components.

Architecture is network-based with
complex interconnections between

CS and system elements, and can be
limited by partial information from CS.

Design definition
Systems require a comprehensive

design that integrates all components
and elements within a defined scope.

Design must account for system
elements (CS) owned and operated

by different organizations for
independent purposes. Design
should consider changes on a

time-phased basis, acknowledging
that CS design and capabilities
cannot be altered. SoS design

focuses on selecting and adapting
CS or system elements for

compatibility and functionality.

System analysis
System analysis uses both actual
and predictive data to assess and

optimize system performance.

SoS analysis uses actual and
predictive data, but CS can

be unwilling to share real data.
SoS analysis should account for
the operational and managerial
independence of CS, adding

measurement points to validate
assumptions and results.

Implementation

Systems are typically implemented
by developing and integrating

new system elements based on
requirements and designs.

Implemented by composing existing
CS, potentially modified, along with

other system elements to create new
capabilities. Constraints from existing

CS impact the SoS requirements,
architecture, and design.

Integration

Integration is typically performed
in a controlled environment, where
new or modified system elements
are integrated based on a defined

architecture and design.

Integration involves existing
CS integrated to meet SoS

requirements, often within an
operational environment. Integration

occurs within a continuously
operating SoS, and it can be
impractical to halt operations.

Verification

Verification is typically performed in
a controlled environment with a high
degree of certainty, confirming that
the system meets its requirements.

Verification is more challenging and
less certain, often occurring in an

evolving operational environment. It
can be impossible to fully verify some

capabilities due to safety, security,
or cost constraints. Verification is

often reliant on modeling, analysis,
and partial testing of CS.

53

Transition

Transition involves moving a
system from development to
an operational environment,

with a clear focus on ensuring
it meets desired capabilities.

Transition in SoS involves
coordinating multiple CS, which

can have different transition
cadences. SoS governance can
incentivize CS to align with SoS

goals, but transitions are not
guaranteed. Frequent planning
and coordination are required.

Validation

Validation is typically a one-time
event, ensuring the system meets

its intended requirements and
objectives. It involves gathering
objective evidence to confirm

the system's capabilities.

Validation is an ongoing process,
influenced by the operational
context. Access to objective

evidence can be restricted, and
subjective or ancillary evidence

can be used. Discrepancies
between requirements and

operational capabilities can arise.
Full stakeholder ratification can be
impossible due to conflicting goals
between SoS and CS stakeholders.

Operation
Operational changes typically follow

a planned, centralized process,
affecting the system as a whole.

CS have their own operational
priorities and constraints. Operational

changes to CS and their interfaces
impact the SoS. CS can resist

changes suggested by SoS due
to differing operational interests.

Maintenance

Maintenance is typically
planned and controlled within

a closed environment, with
direct access to data.

Maintenance is challenging due to
independent CS, who can make
changes without coordination or
notification, potentially affecting
the SoS. Proactive contingency

planning is necessary.

Disposal

Disposal is managed within a
controlled environment, and

systems are typically retired or
decommissioned according
to established procedures.

CS can exit the SoS without
coordination, and the SoS can

simply disconnect from the
CS without disposing of it.

BIOGRAPHIES

DR. MIKE YOKELL
Dr. Mike Yokell is a retired

systems engineering leader

with more than 40 years

in the US aerospace and

defense industry. He is the

editor, co-editor or contributor

to numerous international

standards on systems and

software engineering. Mike is

certified as an expert systems

engineering professional by

INCOSE. He holds multiple

US and European patents for

model-based systems engineering and large-scale immersive

virtual reality. He contributes regularly to the INCOSE Agile

and System of Systems working groups.

55

DR. ALEJANDRO SALADO
Dr. Alejandro Salado is

an associate professor of

systems engineering with

the Department of Systems

and Industrial Engineering at

the University of Arizona and

the director of the systems

engineering program. In

addition, he provides part-time

consulting in areas related

to enterprise transformation,

cultural change of technical

teams, systems engineering,

and engineering strategy. Alejandro conducts research in

problem formulation, design of verification and validation

strategies, model-based systems engineering, and engineering

education. Before joining academia, he held positions as

systems engineer, chief architect, and chief systems engineer

in manned and unmanned space systems of up to $1B in

development cost. He has published over 150 technical

papers, and his research has received federal funding from the

National Science Foundation (NSF), the Naval Surface Warfare

Command (NSWC), the Naval Air System Command (NAVAIR),

and the Office of Naval Research (ONR), among others. He is

a recipient of the NSF CAREER Award and the International

Fulbright Science and Technology Award. Dr. Salado holds a BS/

MS in electrical and computer engineering from the Polytechnic

University of Valencia, a MS in project management and a MS

in electronics engineering from the Polytechnic University of

Catalonia, the SpaceTech MEng in space systems engineering

from the Technical University of Delft, and a PhD in systems

engineering from the Stevens Institute of Technology.

ADOLFO SÁNCHEZ DOMÍNGUEZ
Adolfo Sánchez holds a degree

in Computer Engineering from

the University of Zaragoza

and a degree in History from

UNED. He has been involved

in defining and developing a

modular avionics architecture

evaluator, maintaining Eurofighter

software, developing quality

assurance software for electronic

warfare strategic programs,

and acquiring, deploying, and

implementing the CIS Program

for the Military Emergencies Unit. Currently, he serves as the CIS

Defense Area Coordinator at Isdefe, supporting the Ministry of

Defense’s Digital Transformation Subdirectorate. He is a Certified

Systems Engineering Professional (CSEP) by INCOSE and internal

trainer for various systems engineering courses at Isdefe

CH
AP

TE
R

3
Mission Engineering

Abstract

Mission Engineering (ME) is emerging as a structured, mission-centric methodology designed to support
the development and integration of complex Systemsm of Systems (SoS) across operational domains
considering the mission and the operational expertise as the focus of the discipline. ME provides a
repeatable and data-driven framework that links engineering rigor to strategic and operational insights,
enabling capability development that aligns with defined mission outcomes. Using Mission Engineering
Threads (METs), Effect Webs, and structured frameworks such as DOTMLPF-P or MIRADO-I, ME
enables decision-makers to map, assess, and evolve the interactions between systems, people,
and processes critical to mission success. The ME methodology integrates risk-based assessments,
formal analysis of integration and interoperability, and the generation of mission success criteria—
from strategic intent to tactical performance—creating a common reference architecture that ensures
alignment across stakeholders, domains, and coalition partners. ME fosters a shift from platform-centric
optimized acquisition to capability-focused development, enabling resilient, interoperable, and future-
ready mission architectures that support both defense and broader industrial objectives.

Keywords

Mission Engineering, Systems-of-Systems, Mission Engineering Thread, Capability Development,
Operational Effectiveness, Integration, Interoperability, DOTMLPF-P , MIRADO-I, Effect Webs,
Resiliency.

Dr. James Moreland Jr, Retired US DoD Senior Executive and Raytheon
Technologies Vice President (james.moreland.mei@gmail.com)

LtCol. Víctor M. Sobrino García, Spanish Ministry of Defense (victor@sobrinosastre.com)

58

1. INTRODUCTION

Mission Engineering (ME) is a mission-centric approach for
Systems of Systems (SoS) that require a better understanding
of the interactions and dependencies between the multitude
of systems necessary to execute complex, multi-domain
operational missions. Originally, ME was developed and
implemented in the United States (US) Department of
Defense (DoD) as a methodology to pursue the effectiveness
of collaborating SoS based on overarching mission objectives
as key to define mission success. In essence, ME provides
a systematic, quantifiable, and repeatable approach that
supports strategic decision making across ecosystems,
supporting a successful transition of platforms and systems
into SoS capabilities.

The ME discipline links engineering rigor to operational and
business insights necessary to identify capability-related
requirements and solutions in alignment with the mission of
the overarching organization. Formally, ME has been defined
as “an interdisciplinary process encompassing the entire
technical effort to analyze, design, and integrate current
and emerging operational needs and capabilities to achieve

desired mission outcomes” [1]. In practice, mission engineers
plan, analyze, organize, and integrate operational concepts
for the purpose of evolving the end-to-end operational
architecture and capability attributes. In a defense context,
this takes place across the Doctrine, Organization, Training,
Materiel, Leadership and Education, Personnel, Facilities,
and Policy (DOTMLPF-P) spectrum (in Spain MIRADO-I,
Material, Infraestructura, Recursos Humanos, Adiestramiento,
Doctrina, Organización, e Integration), including adversary
and competitor behaviors. Despite its specificities regarding
the application of military force to success in the operational
arena, ME provides a set of tools and methods to enable
organizations across industries to take advantage of its
benefits.

ME analysis integrates authoritative data and a common
framework to produce SoS architectures and highlighted
capability attributes that inform requirements and establish
data driven technical architecture baselines. The ME
outputs inform stakeholders and decision makers across the
industrial sector ecosystem, as captured in Figure 1 for the
US DoD, which shows the methodology from defining the
problem statement or operational need to the development
of potential solutions.

Figure 1. OSD R&E ME methodology.

59

Institutions such as the Naval Surface Warfare Center
Dahlgren Division (NSWCDD) have pioneered ME
implementation within the US. While Europe does not
currently have an exact counterpart, initiatives within the
European Defence Agency (EDA) or national organizations
(e.g., Spain’s DGAM) are beginning to explore similar
approaches.

Once the mission success is understood with identified
mission success criteria, the operational capability and
specific mission can be determined for execution. An
operational capability can be described from both structural
and behavioral perspectives. The first is focused on how a
capability is structured (DOTMLPF-P for USA, DOTMLPF-I
for EU, MIRADO-I for Spain); the second defines what
outcomes the capability provides, and therefore, defines
what operational activities (OA) are fulfilled by this capability.

This combined SoS behavioral approach and structured
implementation has demonstrated tremendous success in
increasing the likelihood of integration and interoperability
with respect to the total SoS effectiveness, while moving
away from the optimization of individual systems following a
platform-centric approach. This is important for any complex

SoS represented as a mission engineering thread (MET) for
both the primary path of execution, as well as the alternative
paths that provide resiliency and redundancy in operations.
A MET refers to an end-to-end sequence of steps that
illustrate the technology, people, and resources needed to
achieve a mission objective under specific conditions. It
helps engineers understand how different systems interact
within a SoS to accomplish the overall mission. In general,
a MET provides insights into the functions, players, and
interactions involved in a mission, the flow of data and
decision-making across different systems, the impact of
environmental factors on mission performance, and the
resilience and availability of mission-critical systems.

Since the combination of these MET represents the chain of
operational activities producing effects for certain operational
capability, they will be referred to as ‘effects webs,’ as
opposed to for example kill chain, to capture different kinds
of graduated effects, such as distract or degrade that do
not necessarily always end with destruction. To deal with
different taxonomies and ontologies across industrial sectors
and military services, a common framework or reference
architecture is employed so that a logical comparison can
be made across ME products (ref. Figure 2).

Figure 2. Generic effects web framework providing common terminology [2].

60

This operational approach is also valid for business
applications, where they may define their own desired
effects and corresponding METs and effect webs.

2. WHY ME AS A NEW APPROACH
AND DISCIPLINE
Advances in adversarial (or competitors’) capabilities
pose a significant challenge to security (or business
success), as new threats that can range from next-
generation weapon systems and cyber warfare tactics
to artificial intelligence-driven decision-making (or other
novel technologies) are fielded. Any of these types of
technologies, as well as many others, can rapidly shift
the balance of power (or market). These advancements
enable adversaries (or competitors) to operate with
increased competitiveness (like reach, persistence,
speed, precision, and lethality in defense contexts),
potentially eroding strategic advantages and creating
vulnerabilities in critical defense systems (or product/
market portfolio in commercial sectors).

A broken MET occurs when there are disruptions or failures
in the sequence of activities and systems required to
achieve a mission objective. This situation leads to a failure
in an OA and to a compromised mission effectiveness. This
eventually translates into a gap or shortfall in capability.
This breakdown can be caused by various factors, such
as technical malfunctions, cyber-attacks, inadequate
integration between systems and processes, logistics
failures, communication breakdowns, or supply chain
disruptions. For example, insufficient fuel or ammunition
delivery, degraded satellite communications, or delays
in troop movement can all sever critical links in mission
execution.

To mitigate the risks associated with broken METs,
redundancy and resiliency are generally embedded
into mission planning and execution. Redundancy
ensures that alternative pathways and backup systems
are available to perform critical functions to maintain
the continuity of operations when primary systems fail.
Resiliency focuses on the capacity to adapt and recover
quickly from disruptions. It enables missions to withstand
and bounce back from unexpected challenges. Together,
redundancy and resilience create a robust operational
architecture that safeguards mission success even under
adverse conditions, reinforcing the integrity and reliability
of METs.

The ME approach prompts us to consider the potential mission
thread paths using the Effects Web Framework based on the
execution of defined mission essential tasks (e.g., how the
force plans to fight in a military context). Defining this framework
provides a common mechanism to decompose the mission
into essential functions –also called functional activities (FA)
in the NATO framework– so that joint/coalition systems can
be mapped in a logical manner. Otherwise, when all joint/
coalition forces are allowed to bring their own framework
and terminology to the assessment table, performing a real
function-to-system mapping across the entire force is highly
challenging or even infeasible. In the past, this has amounted
to integration and interoperability problems rendering the
MET broke and the lack of a SoS capability for specific
missions coming mainly from the isolated application of FA to
standalone systems that, in the end, did not completely fulfill
an operational capability.

End-to-end mission assessments are performed to grant a
SoS resistant and resilient. They are based on operational
evaluations that start with capability and spread OA and
FA across the entire SoS, while it boosts the integration and
interoperability of multiple systems to ensure accuracy in
determining capability gaps. This mission-wide comprehensive
approach provides data-informed decision-making that is
not only valid to provide materiel solutions for operational
gaps or shortfalls but also posits solutions across the whole
structural capability definition spectrum (DOTMLPF-P for
USA, DOTMLPF-I for EU, MIRADO for Spain), considering
both materiel and non-materiel areas. Moreover, even when
applied only to materiel solutions, the proposed approach
brings better advantage when holistic technological solutions
comprising a SoS are required.

Understanding the structural capability definition spectrum
is critical when developing a materiel solution because
it ensures that the solution is not only technologically
viable but also fully integrated into the broader operational
framework. A new capability must align with doctrine, be
supported by organizational structures, incorporate effective
training programs, and account for personnel requirements,
infrastructure needs, and policy constraints. Ignoring any of
these factors can lead to a materiel solution that is ineffective,
unsustainable, or incompatible with existing systems,
ultimately reducing mission effectiveness. Understanding
SoS at this level of detail reduces the risk of fielding broken
METs as you consider solutions across operational domains
and industrial sectors. Figure 3 provides an illustration of a
MET across the defined warfighting or operational domains.

61

In addition, this approach allows us to pay attention to
resilient alternatives when executing METs while reducing
unnecessary redundancy within and across the military
services. Figure 4 represents the case of working across
warfighting or operational domains while looking at alternative
paths of mission execution that provide resiliency and
redundancy. In order to take advantage of the methodology,
it is important to ensure that formal analysis is done to assess
the integration and interoperability of SoS required to execute

mission threads. Formal analysis and assessment of SoS
integration and interoperability to execute mission threads
drives the development and implementation of today’s US
DoD ME approach. Analysis using the Effects Web Framework
identifies operational gaps, science and technology solution
insertion points, concepts of employment, and research and
development requirements for the future solution space and
“to-be” architecture across mission areas.

Figure 3. Multi-domain Mission Engineering Thread (MET).

Figure 4. Multi-domain Mission Engineering Web.

62

Effective mission risk management is critical throughout the
defense acquisition process to ensure that systems meet
operational requirements and maintain mission effectiveness.
This is relevant to any industry deploying critical capabilities or
business delivering systems that are critical to their operations.
When assessing mission risk, evaluators must consider the
mission itself, including the unit equipped within the system,
the operationally relevant environment, vulnerabilities of the
system against the full spectrum of expected threats, and their
combined effects in the context of its intended operational
missions. In DoD programs, Mission-Based Risk Assessments
(MBRAs) are being integrated into acquisition planning
following an ME-based approach to evaluate mission-critical
functions against potential threat effects in operationally
representative scenarios (see Figure 5). These assessments
identify vulnerable system elements and interfaces, informing
the scope of operational test and evaluation, including live fire
test and evaluation, to ensure systems can withstand real-world
threats. By conducting MBRAs, program managers can monitor
and quantify risks to test objectives, acquisition programs,
end users, and overall UD DoD operations. This risk-based
approach ensures that testing strategies are appropriately
scaled and focused, facilitating informed decision-making
and enhancing the resilience and effectiveness of defense
systems in complex operational environments.

When METs break, the resulting rework and loss of
capabilities can significantly degrade mission readiness
and national security. Critical assets may need to be
reallocated, delayed, or entirely redesigned, leading
to wasted resources, increased costs, and operational
setbacks. These failures can also create gaps in capability,
reducing force effectiveness and leaving vulnerabilities that
adversaries may exploit. The cascading effects of these
disruptions can hinder strategic objectives, delay response
times, and ultimately weaken the nation’s ability to project
power, defend interests, and maintain a technological edge
in an evolving threat landscape.

Figure 5. Mission-based risk management.

63

3. VALUE PROPOSITION
The assessment of US DoD technologies, systems and/
or capabilities requires a SoS approach to analyze the
impact of making these complex investments across the
diverse domains of surface, undersea, air, ground, space,
cyber, and networks as well as coalition force integration. In
today’s acquisition environment, programs are far too often
matured independently and SoS integration occurs when
delivered to the field rather than during early development,
which increases cost and time to introduce a new
capability to the end user. Mission engineering emphasizes
capability-based assessments to produce integrated
warfighting capabilities that can be translated into specific
programmatic guidance to translate operational needs into
SoS and system requirements to drive today’s readiness
and the future capabilities of the individual military services.
The approach also provides critical insights into operational
gaps to help inform stakeholders as well as allows us to
make sure the right investments are being made across
relevant organizations.

The complex and now highly integrated machines of
operations continue to evolve enabling higher precision,
more effective power projection, and safer defensive
postures for the military services. The interconnectedness
of our own social fabric is finding its way into our ships,
aircraft, submarines, networks, space assets, tanks, and
the very weapons they deliver. For example, determining
the right investments for the development of space assets
and the protection of positioning, navigation, and timing
applications is extremely complex, requiring this systematic
approach to identify all the major interfaces and intersection
points amongst many systems/platforms in a multi-domain,
multi-functional environment. Understanding SoS at this
level of detail provides the opportunity to reduce the risk
of fielding broken mission threads/capabilities as we look
across warfighting or operational domains and individual
military services. In addition, this approach allows us to pay
attention to resilient alternatives for the execution of critical
mission threads while reducing unnecessary redundancy
within and across the joint/coalition force based on the way
our forces plan to fight with integration and interoperability
factors in mind.

4. ESSENTIAL ASPECTS OF MISSION
ENGINEERING

4.1. Continuity through established mission
success criteria

The SoS required to execute operational missions are too
often ‘stovepipe-optimized’ without sufficient deference
to total SoS operational utility. ME analyses often leverage
simulations and other tools to develop Measures of Success
(MoS), Measures of Effectiveness (MoE), and Measures
of Performance (MoP) for the constituent systems while
assessing the mission success criteria for the mission
essential tasks to achieve overall mission objectives through
experimentation. Something that is also applicable to
business.

Linking mission effectiveness from strategic to operational
to tactical levels requires a structured approach that aligns
overarching goals with actionable and measurable criteria at
each level. At the strategic level, organizations define MoS
that articulate the desired end state and long-term impact
of the mission. These high-level criteria serve as guiding
principles that ensure all subsequent efforts contribute to
overarching objectives, such as national security or strategic
autonomy, economic stability, or regional influence. Strategic
leaders determine MoS by assessing factors like deterrence
capability, global presence, or force readiness, ensuring
alignment with policy objectives and broader strategic
imperatives.

At the operational level, these strategic success measures
are translated into MoE that assess how well mission
essential tasks (often structured as a mission thread)
contribute to achieving the strategic goals. MoEs provide
a way to evaluate whether key operational actions are
contributing to desired outcomes, focusing on effectiveness
rather than efficiency. For example, in a military context,
MoEs for an air superiority mission might include sustained
control of designated airspace, response time to emerging
threats, or enemy attrition rates. These measures ensure that
commanders can adjust tactics, resource allocations, and
mission execution in response to real-time conditions while
maintaining alignment with strategic intent.

Lastly, at the tactical level, MoP are established to evaluate
how well individual systems, personnel, and processes
function in executing mission essential tasks. MoPs are
quantitative and focus on system-specific capabilities,

64

such as sortie generation rates for aircraft, readiness state,
weapon accuracy, or the uptime of critical communication
systems. These measures provide direct feedback on
whether the assets and processes at the tactical level are
performing at the required standards to support operational
effectiveness.

In brief, MoEs criteria measure if we are doing the right
things and the MoPs criteria measure if we are doing the
things right. By continuously monitoring MoPs, tactical
units can make necessary adjustments, ensuring their
performance directly contributes to mission success at
higher levels. MoPs are traditionally written and referred to
as Key Performance Parameters and Key System Attributes
as these are the criteria that are built into requirements
documents for the design or alteration of systems and where
the design trade space occurs. The linkage across these
three levels ensures that strategic goals drive operational
planning, and operational effectiveness depends on
tactical execution. By clearly defining MoS, MoE, and MoP,
organizations create a coherent framework that aligns
decision-making, resource allocation, and performance
assessment, ultimately enhancing overall mission success.

Figure 6 shows a representative mapping of these scoring
criteria levels which exists to create continuity across all
levels of operations with the goal of achieving unity of effort
towards the defined mission success.

Effect Based Operations (EBO) are an example of how the
indicators and metrics transformed military operations after
the Gulf War I. Previously, the attrition of adversarial assets
was the standard. The objective was then to eliminate enemy
forces in the search for a withdrawal or surrender, but the
EBO approach relied upon the basis of the analysis of the
enemies’ Centers of Gravity (CoG) in order to design plans
to deny those centers under the minimum cost premise. EBO
are therefore based on effects, and those effects are provided
by operational activities that in the end, are the more atomic
functional elements of a capability as defined by the NATO.
Effects are, hence, sustained by the capabilities, linking the
entire landscape of the levels of operational execution, from
strategical to tactical. Since CoG are currently dispersed
across the entire mission arena, the SoS is the enabler to
synchronize the achievement of combined effects to make
them valuable for the operation. ME, follows this approach to
extend this link to the technical level.

Figure 6. Developing Mission success criteria at all levels of operation.

65

In today’s execution of acquisition planning processes,
systems are designed and developed based on the specific
need to meet a requirement, not necessarily to support SoS
effects. This is typical of the acquisition process through the
Joint Capability Integrated Development System, which is
designed to develop a system within a specific context rather
than across a domain or integrated mission-based context.
The individual systems are not developed with the idea of
integrating across a SoS architecture to execute operational
METs. In other words, they are not capability-focused
programs pursuing the achievement of operational remarkable
effects at SoS level. Program managers understandably
optimize product design based on their specific customer
needs without assessing how the system interacts with other
deployed systems to collaboratively support the desired
effects during the execution of critical mission threads.
This ‘intra-optimal’ stovepipe system design is sub-optimal
when later evaluated from an ‘inter-optimal’ SoS perspective.
Unfortunately, considerable amounts of redesign would be
required to modify the system with respect to inter-optimal
SoS mission success. Engineering and deploying products
with SoS mission success in mind during system design is
the way to avoid integration and interoperability issues across
the force (see Figure 7).

An uncontrollable challenge is that the number of analytic
scenarios required to support robust SoS design increases
exponentially with the addition of each operational mission,
performance parameter, design criteria, adversarial threat,
and environmental factor. This combinatorial explosion
challenges the use of many traditional processes and tools

for realistic ME design of complex SoS. There is a need to
develop the principles, processes, and tools to assess and
support the design of complex SoS using the ME approach
to make the design of complex SoS more tractable. With that
said, the principles and foundations of systems engineering
are necessary but not sufficient to handle these complexities
of today.

While JCIDS (Joint Capability Integration and Development
System) provides a structured acquisition approach within
the US DoD, no direct equivalent currently exists in Europe.
Frameworks such as the NATO AAP-20 or national approaches
(e.g., Spain’s MIRADO-I) are still under development and
differ substantially in maturity and governance.

A mission-based engineering approach helps ensure the
system under development will easily integrate with other
systems while ensuring the capabilities necessary for mission
success. Further, the acquisition system is not equipped with
the ability to perform governance across a SoS; this means
that when ME is performed it is unlikely to remain stable
for a duration longer than one of the systems’ upgrade or
maintenance cycles. This opportunistic approach to ME
does not necessarily provide long term stability to support
missions but puts the stakeholder on the right vector
for functional effectiveness from the start. As mentioned
previously, the acquisition approach to concept, design, and
experimentation would need to be developed to ensure the
governance across any SoS could be guaranteed through
synchronization which is the current direction with capability
portfolio management.

Figure 7. Aligning operational Mission SoS to defined Mission success criteria.

66

4.2. Disciplined approach to field capabilities

The structured outlined approach to ME found in MEG v2.0
can be enhanced by following the 10-step process introduced
in this section. This process is mapped to the MEG v2.0
approach categories as shown in Figure 8.

This process begins with identifying missions and tasks and
progresses through defining mission success criteria, critical
success factors, and associated conditions that impact
performance. By mapping these conditions to mission tasks

and developing clear scoring criteria, decision-makers can
evaluate current capabilities against future needs, creating
“as-is” and “to-be” mission engineering threads to guide
improvements. Ongoing ME assessments ensure adaptability
in dynamic environments, while alignment with DOTMLPF-P
(DOTMLPF-I in the EU, MIRADO-I in Spain) ensures that ME
efforts support broader force development. Through this
structured approach, ME provides a data-driven foundation
for capability development, risk mitigation, and operational
effectiveness, ensuring that mission planning and execution
remain resilient against emerging threats.

Figure 8. ME 10-step process mapped to MEG v2.0.

The order of the 10 ME steps is outlined below starting with
the prioritization of operational mission areas and ending with
the continuous management of end-to-end METs to maintain
the execution health of capabilities.

1)	 Identify missions and tasks.

2)	 Define mission success and desired effect.

3)	 Identify critical mission success factors.

4)	 Identify conditions for each critical mission success factor.

5)	 Map critical mission success conditions to mission tasks.

6)	 Identify critical conditions for each task.

7)	 Define the appropriate scoring criteria for each mission
or task.

8)	 Create “as-is” and “to-be” mission engineering threads.

9)	 Conduct ongoing mission engineering assessments.

10)	Support DOTMLPF-P (DOTMLPF-I in the EU, MIRADO-I in
Spain) Mission Engineering Consumers.

The implementation of this process comes with challenges
associated with governance structure, data availability and
collection, stakeholder coordination across the US DoD,
multiple system life cycles due to maturation (legacy to new),
and workforce/tool development to name a few. However, the
Effects Web Framework (Figure 2) provides a mechanism to
translate what the US DoD plans to procure to the resulting
capability. An example outcome of this process showing the
potential SoS capability as an assessed MET is illustrated in
Figure 9.

67

Figure 9. Scoring criteria applied for example.

4.3. Opportunity to integrate
capabilities across nations

Our nations are becoming more complex
every year as we move towards fielding the
‘Internet of Things’ and work towards fielding
‘Digital Twins’ for more connectivity and
monitoring of performance health. The lack
of common approaches to analyze these
complex SoS with new tools and processes
will continue to cause delays in our ability to
execute rapid development and fielding of
capabilities. In fact, the ME approach has
tremendous promise in bringing together
the international community of allied
partners as we prepare to fight as a joint/
coalition force (see Figure 10). This figure
shows only allied partners who have been
in involved in recent discussions with the
US DoD; however, this does not represent
a bounded state on bringing in other allied
partners into the discussions to increase
coordination and collaboration using ME
principles and processes.

Figure 10. Vertical integration and interoperability across allied partners.

68

7. CONCLUSIONS
Mission Engineering provides a strategic approach to designing and managing complex SoS that extend beyond traditional
defense applications. While critical for national security and strategic autonomy, ME also enhances the ability to address a range
of mission challenges, including disaster response, humanitarian assistance, infrastructure resilience, and space exploration. By
leveraging principles such as interoperability, open systems architecture, and risk-informed decision-making, an organization or
a nation can optimize resources and improve mission outcomes across multiple domains.

The application of ME in civil-military cooperation, emergency management, and technological innovation ensures that an
organization remains agile in responding to both anticipated and unforeseen challenges. Integrating human systems considerations,
sustainability factors, and cross-sector collaboration further strengthens the country’s capacity to develop solutions that balance
operational effectiveness with long-term societal benefits. Ultimately, ME enables an organization to proactively shape its mission
capabilities in a way that is adaptable, cost-effective, and technologically advanced. By fostering an approach that spans defense,
security, and broader national priorities, an organization can enhance its strategic resilience while contributing to stability and
progress on both national and global scales.

While ME is maturing rapidly within the US DoD, European
institutions such as the European Defence Agency (EDA),
Spain’s Directorate General of Armament and Materiel
(DGAM), and national frameworks like MIRADO are
progressively integrating ME principles into their planning and
capability development processes. Increased collaboration
between US and European ME initiatives could help create
shared methodologies, interoperability standards, and joint
SoS assessments.

69

1.	 OSD R&E. (2023, October). Mission Engineering Guide
(MEG) v2.0. Retrieved from https://ac.cto.mil/wp-content/
uploads/2023/11/MEG_2_Oct2023.pdf.

2.	 Moreland Jr., James D. (2014). “Mission Engineering Integration
and Interoperability.” NSWCDD Leading Edge Technical Digest,
NSWCDD-MP-15-00096 01/15: pp. 4-15.

RE
FE

RE
NC

ES

BIOGRAPHIES

71

DR. JAMES MORELAND JR.
Dr. James Moreland Jr. retired

from the Senior Executive

Service at the U.S. Department

of Defense in 2020 and

subsequently served as Vice

President of Strategy and

as Vice President of Mission

Engineering and Integration

at Raytheon Technologies,

concluding five years of service

with the company in April 2025.

Prior to that, he served as the

Executive Director - Mission Engineering and Integration,

Deputy Assistant Secretary of Defense for Tactical Warfare

Systems, and Executive Director - Naval Warfare in the

Office of the Secretary of Defense, and as Chief Engineer

of the Naval Surface Warfare Center, Dahlgren Division. He

received a B.S. in Mechanical Engineering from the University

of Maryland, M.S. in Systems Engineering from Virginia Tech,

M.S. in National Resource Strategy from the Industrial College

of the Armed Forces, and a Ph.D. in Systems Engineering

from the George Washington University. He has served as a

senior executive advisor to the US National Science Board

and White House Office of Science and Technology and will

be serving on the US Air Force Scientific Advisory Board

starting in September 2025.

LT. COL. VÍCTOR M. SOBRINO
Lt. Col. Víctor M. Sobrino

is an Air Force F-18 pilot

currently assigned to the

European Defense Agency

as Project Officer for the

European Command and

Control Program. Before

this assignment he was the

Operational Head at the Next

Generation Weapons System

Spanish Program Office. He

was Squadron commander in

the 12th Fighting Wing of the Spanish Air force, and a staff

officer in the Spanish Air Force Air Combat Command as well

as in the Joint Force Air Component (JFAC). Apart from his

military studies that includes the Spanish Armed Forces Joint

Major Staff Course, he received a B.S. in Computer Science,

a M.S in Advanced Artificial Intelligence, a Master in Business

Administration, and a Master in Direction and Management

of Defense Procurement Systems. He is currently pursuing a

Ph.D. In artificial Intelligence from the Polytechnical University

of Madrid (UPM) and the Spanish National Cancer Research

Center (CNIO).

CH
AP

TE
R

4
Mission architecture modeling

Matthew Gagliardi, System Strategy, Inc. (SSI) (MGagliardi@Systemxi.com)
Matthew C. Hause, System Strategy, Inc. (SSI) (MHause@Systemxi.com)

Dr. James N Martin, The Aerospace Corporation (James.N.Martin@aero.org)
Víctor Ramos del Pozo, Isdefe (vramos@isdefe.es)

Abstract

When planning and conducting a Mission Engineering (ME) study, it is important to have a
comprehensive, accurate, and coherent model of the mission architecture. This chapter explores some
of the key modeling features and constructs that enable the development of a mission architecture
model to be used in support of an ME study effort. It discusses extensions being applied to the Unified
Architecture Framework (UAF) to better support ME activities.

Keywords

Mission Engineering, Mission Architecture, Mission Threads, Mission Engineering Threads, Enterprise
Architecture, Unified Architecture Framework

74

1. INTRODUCTION
A mission architecture typically involves multiple enterprises and
complex relationships between the enterprise entities (including
the systems of systems, SoS, and individual systems). The Unified
Architecture Framework (UAF) works well in capturing many of the
“non-physical” aspects of the relevant systems of systems, since
it highlights both materiel and non-materiel (such as, doctrine,
organization, training, leadership, personnel, facilities) solutions
that are involved in a mission architecture. UAF specifies a set of
architecture views for describing various aspects of an enterprise
and major entities in the enterprise [1-3] and provides a modeling
language (UAFML) that is especially designed for modeling an
enterprise. As such, it is appropriate for modeling a large and
complex mission architecture along with its variety of scenarios,
vignettes, MTs, METs, etc. [4, 5]. Some of the structural model
elements relevant to mission modeling are illustrated in Figure 1 and
described in Table 1.

While UAF provides a large number of potential
architecture views, as shown in Figure 2, mission
architecture modeling only needs a small subset of
these views. The Mission Problem definition and the
Mission Characterization aspects of the mission, along
with the Mission Thread (MT) elements and views
to be used in ME, map mainly to the Strategic and
Operational viewpoints in UAF as illustrated in Figure
2 [6]. The Mission Engineering Threads (METs) are
an implementation of the MTs, so these are primarily
depicted in the Resources viewpoint. However, note
that there are several other UAF viewpoints and their
associated modeling views that could be readily
used in an ME study and in related activities such as
capability planning, enterprise portfolio management,
annual budget formulation, program assessment and
evaluation, system requirements development, etc.

Figure 1. Mission modeling profile view.

Modeling
Element

Description

Mission
A Mission element is a generalization

of an Enterprise Phase element
in the UAF Domain Metamodel.

Actual Mission

An Actual Mission is a
generalization of an Actual

Enterprise Phase element in the
UAF Domain Metamodel.

Actual Mission Phase

An Actual Mission Phase is a
specialization of an Actual Mission
providing an instance specification
of a Mission and a Mission Phase.

Mission Thread
A Mission Thread is a generalization

of an Operational Activity.

Mission Task

A Mission Task is also a
generalization of an Operational

Activity, with Mission Threads
being made up of other Mission

Threads or Mission Tasks.

Mission Engineering
Thread

Mission Engineering Thread is a
generalization of a Function and

describes the implementation
of Actual Mission Phases.

Traceability between the MET
and MT uses the standard UAF

implements relationship.

Table 1. Modeling elements for use in a Mission architecture model.

75

To illustrate how the modeling language can be used to
define a mission architecture, the next sections present the
application of the ME concepts from the previous chapter on
a mission exemplar using mission modeling.

2. MISSION EXEMPLAR
The mission exemplar used in this chapter is the Battle of
Hoth from the second Star Wars movie, “The Empire Strikes
Back.” This mission is used because it is well known, contains
a rich source of systems, strategies, missions, and behaviors,
and illustrates joint operations1. The example, adapted from
[4, 5], concentrates on the Strategic and Operational views,
defining the concepts of missions, mission phases, MTs and
operational architectures, as well as definition of the resource
and organizational structures and functionality.

The mission is defined as occurring in scenarios and
vignettes over time, in a sequence of mission phases. The
operational architecture, which is composed of several
MTs and associated METs, is defined to satisfy motivational
factors, such as the Drivers and Enterprise Goals shown in
Figure 3. The operational architecture is used as the basis for
operational effectiveness analysis, sometimes accomplished
using modeling and simulation tools and techniques.

1. For further background information see [7] or better yet, grab some popcorn and watch
the movie.

2.1. Mission purpose, stakeholders, concerns,
goals, and drivers

Measures of Success (MOS), desired effects, and
capabilities are captured in the mission architecture model,
with the operational architecture elements tracing back to
these elements to ensure proper coverage. Measures of
Effectiveness (MOE) are assigned to the Mission Tasks that
make up each of the Mission Threads.

Definitions for related key concepts are shown in Table 2 and
the corresponding mission elements are shown in Figure
3. The Legion Commander is concerned about his loss of
position or possibly his life, which typically happens when
failure occurs in the service of the Empire. He wishes to
prevent a rebel resurgence and to ensure a decisive victory.
Darth Sidious and Darth Vader wish to control the Galaxy and
establish dark side dominance. Darth Vader also wishes to
protect Luke Skywalker. These Concerns relate directly to
the mission goals, which then link to the Drivers which have
forced the Empire to act. These will be discussed further on
in the chapter.

Figure 2. Mission engineering views in UAF.

76

Figure 3. Hoth summary and overview: Stakeholder concerns and goals.

Concept Description

Concern A matter of relevance or importance to a stakeholder regarding an entity of interest.

Driver Thing that forces to work or act; that which urges you forward.

Challenge A demanding or stimulating situation; a call to engage in a contest or fight.

Enterprise State Condition with respect to circumstances or attributes.

Capability Ability to achieve a desired effect under defined conditions and environments.

Opportunity A possibility due to a favorable combination of circumstances.

Risk A source of danger; a possibility of incurring loss or misfortune.

Effect A phenomenon that follows and is caused by some previous phenomenon.

Outcome Something that happens or is produced as the final consequence or product.

Goal A statement about a state or condition of the enterprise to be brought
about or sustained through appropriate Means.

Objective A statement of an attainable, time-targeted, and measurable target that
the enterprise seeks to meet in order to achieve its Goals.

Table 2. Strategic motivation elements.

77

2.2. Mission definition

The Empire Mission structure shown in Figure 4 illustrates the
complexity required to model missions. Empire doctrine proscribes that
every military mission has two phases to it: Planning and Execution. A
Planetary Invasion Mission is comprised of separate Scout, Landing,
and Attack Missions, each with their own Planning and Execution
Phases. These are all types of Invasion Missions. Each of these has a
defined Mission Type. The Execution and Planning Phases both inherit
Mission Tempo and Phase attributes. Mission type attributes have been
defined for several of the mission types. Scenario and Vignette types
have been linked to the missions that when instantiated define the
parameters and context of the mission. These are detailed in the next
section. Specific MTs can and should be linked to the various missions
to define the functional aspects.

2.3. Campaign, scenario and vignette

Since mission names can include the mission type (e.g.,
Hoth Campaign, Hoth Scouting Operation, or Hoth
Ground Battle), and the mission structural hierarchy
can show what mission is comprised of other missions,
mission types in Figure 5 are defined in an enumeration
and modeled as an attribute for the Mission Types in
Figure 3 instead of defining dedicated stereotypes.
Values chosen for the Hoth example are shown in Figure
4.

Figure 4. Mission definitions.

Figure 5. Levels of warfare and mission types [8].

For the concepts of Scenario and Vignette, new
stereotypes are used to describe the necessary context
information for the mission(s) being described in the
model, as shown in Figure 6. Scenarios describe the
geographical location and time frame of the overall
conflict. They include information such as threat and
friendly politico-military contexts and backgrounds,
assumptions, constraints, limitations, strategic
objectives, and other planning considerations [8].
Vignettes describe narrow and specific ordered sets of
events, behaviors, and interactions for a specific set of
systems to include blue capabilities and red threats within
the operational environment. Vignettes can represent
small, ideally self-contained parts of a scenario [8].

78

Since both concepts describe a set of information relative to
a mission, the most useful stereotype to extend is a Condition,
with each of them having their own elements that relate to the
contextual information described in the MEG. Modelers can
then create Actual Conditions that have specific values for the
appropriate Scenario and Vignette, as well as the thresholds
for determining success, and then apply them to the specific
Actual Missions within their model, providing the necessary
traceability to their missions. Since Scenario and Vignette can
be applicable to any Mission Type (as seen in Figure 5), the
Scenario should get applied to the top-level Actual Mission in
the model, and Vignettes should get created and applied to
each Actual Mission below the top-level one.

In the Hoth example, Figure 7 shows how the Scenario and
Vignette elements get defined and applied to the appropriate
missions. On the left are a default Mission Scenario and Vignette.
These elements will be included in the profile as examples in
the same way as DLOD and DOTMLPF projects are. These
have been extended for the Hoth Battle for a Planetary Invasion
scenario, Ground Attack vignette, and Air Attack vignette. These
can include additional conditions and values. Along the bottom
are a set of conditions that can be used throughout the model
regarding the environment, topography, and political situation.
These are used by the instances of scenario and vignette on the
right. These are then linked to the Mission definitions so that the
Mission actuals can reference the Vignette and Scenario actuals.
In this example, the actual scenario contains the vignettes.

Figure 6. Scenario and vignette extensions to UAF.

79

2.4. Mission relationships

Two relationships are used to connect mission types to MTs
(Process Defines Initiative), shown in Figure 8, and actual
missions to METs (Process Adapts to Initiative), shown in Figure
9. Figure 9 shows the structure of the Hoth Invasion, which is an
instance of the Planetary Invasion Mission defined in Figure 4.

Figure 7. Definition of scenario and vignette.

This Actual Mission is made up of the Planning and Execution
Phase as well as the Landing Mission, Attack Mission, and Scout
mission. These Missions each have Planning and Execution
Phases. The Execution phases all have METs mapped to them.
The Hoth AMEP Execution Phase has defined goals as well as
Operational and Resource Architecture.

80

Figure 9. Actual missions and mission phases.

Figure 8. Mission relationships.

2.4.1. Conflicting elements

Opposition and Conflict are inherent in ME. Some of these are
obvious in the context of this mission: the Empire Forces attack
the Rebel Forces, Energy Cannons attack the Defense Shield,
etc. Others are not so obvious, such as the conflict within the
Goals of the Mission shown in Figure 10. The Goal to Capture
Luke Skywalker reduces the chances of Destroy Rebel Defenses
and Prevent Rebel Escape. Normally, the Empire executes its

missions with extreme prejudice, preferring to destroy a planet
rather than allowing enemies to escape or information to be
released. Since they had to attack with conventional forces and
to do so with great care, they were unable to destroy the forces
or prevent the Rebel escape. Highlighting these conflicting
elements would help to ensure a successful outcome and
provide a means of mitigating risk and other aspects. Each goal
is further decomposed into its objectives. Objectives define
short term accomplishments while goals are long term.

81

2.4.2. Linking strategy to execution

The goals, drivers, challenges, opportunities, mission phases,
capabilities, and systems are linked together in Figure 11. The
Hoth AMEP execution phase phases the goals of Destroy Rebel
Defenses, prevent Rebel Escape, and Deliver Luke Skywalker

Figure 10. Mission goals and objectives.

and the Planetary Attack capability. This means that they are
realized during this phase. The Resource and Operational
Architectures implement the mission phase and the MET is
executed. Risks of the Loss of Empire Forces and Rebel Forces
Escape are identified for the opportunities. Mitigation strategies
can be developed for these risks.

Figure 11. Mission drivers, goals, challenges, opportunities and capabilities.

82

3. DEVELOPING AN OPERATIONAL
ARCHITECTURE

3.1. The Blue Force operational architecture

The Empire’s operational architecture, shown
in Figure 12, lays out at a logical level the main
elements of the Empire forces that are needed
to execute a Planetary Invasion. Note that the
Empire must also estimate what Rebel Forces
may be present, so that they can account for their
interactions with the Empire’s forces.

These candidate logical elements are mapped to
the required capabilities to ensure that they have
all been addressed as shown in Figure 13.

Figure 12. Attack phase operational taxonomy

Figure 13. Operational performers to capabilities mapping table.

Note that Empire Air Transport and Empire Scout Forces are not included
as they are not required for this phase. Having defined these structural
elements, their interactions can be defined using the internal connectivity
diagram, similar to a SysML IBD as shown below in Figure 14.

Figure 14. Attack mission architecture.

The mission architecture shows internal communication links as well
as weapons fire and scan data between the opposing forces. The
Rebel Forces are those which were identified during the Scout Mission.
Showing these interactions ensures that the required firepower and
tactical resources are available for the mission.

83

3.2. Operational activities

The Empire identifies applicable operational
activities and that each element in the Operational
Architecture could perform, in the context of a
Scout, Landing, or Attack mission in support of
a Planetary Invasion. These are mapped to one
another and correspond to the defined behavior
for these elements in Figure 15. The rebel and
empire elements are modeled on separate
diagrams.

Figure 15. Empire forces and activities.

These define the activities that can be performed
by the Empire forces. These will be used during
the execution of the mission. Figure 16 defines the
functionality defined for the Rebel Forces. This set
of defensive activities will be evaluated against
the Empire offensive activities.

Figure 16. Rebel performers and activities.

84

3.3. Mission thread definition

The Empire’s doctrine lays out the Mission Threads and Mission
Tasks for each Mission Phase. Figure 17 shows the breakdown
of Mission Threads and Mission Tasks for the Execution Phase
of a Planetary Invasion. It is broken down into Mission Threads
of Scout Planet, Weaken Planetary Defenses, Attack Primary
Objective and Deploy Attack Force. Each of these are further
decomposed into Mission Tasks.

For each Mission Thread and Mission Task an Operational
Activity Diagram is developed to describe what Operational
Activities are needed to accomplish each Mission Thread, and
what part of the Operational Architecture will be expected to
perform them. These were defined in Figure 15. Libraries of
these should be built up over time to minimize the required time
for mission engineering and ensure correctness and compliance
with standards and doctrine. Figure 18 shows the description of
the “Destroy Defense Forces” operational process diagram.

Figure 17. Planetary invasion mission threads and tasks.

Figure 18. Destroy defense forces.

85

Figure 19 shows the Strategic Traceability between Mission Threads,
Tasks, and Actual Missions. This demonstrates that the capabilities
are addressed by the functional elements. Only the Attack Mission
is shown for simplicity.

3.4. Differentiation between Enemy/Friendly/Neutral

ME models require the identification of different forces such as
enemy, friendly, neutral, or others. This can correspond to individual
elements as well as organizations and groups. The most useful way of
accomplishing this is through a set of stereotypes that allow tracking
these elements easily within the model, as well as allowing for unique
formatting (e.g., colors) that clearly identify them in diagrams. The
ME Profile adds 5 of these Force Designation stereotypes, with an
overarching stereotype that they specialize, as seen in Figure 20.
This also allows modelers to add additional stereotypes by simply
inheriting from the overarching Force Designation stereotype. The
term “Force Designation” was chosen as the term “Force Type”
implies Army, Navy, Air Force, etc., and could be confusing. These
types could be added by an engineer to extend the profile.

Figure 20. Force designation definition profile diagram.

Figure 19. Strategic traceability between mission
threads, tasks, and actual missions.

86

Figure 21 shows the opposing Empire and Rebel
forces. The Rebel forces are shown at the top
in red. Empire forces are shown in blue. The
force designations can be applied to either the
definition as shown here or to the role elements
in an internal connectivity diagram. Other force
designations may include civilians, commercial
operations, allies, etc. The opposes relationship
originally defined in Figure 8 shows mission
elements that will contend/attack/fight one
another.

3.5. Goals, objectives, effects, and
outcomes

As mentioned previously, goals and objectives
are modeled as types of requirements. As such,
they come with unique identifiers, can be nested,
and can make use of all the relationships afforded
to requirements. Figure 10 listed the goals and
objectives of the attack mission. A portion of
the Execute Planetary Invasion MT is shown in
Figure 22. The different mission tasks satisfy the
outcomes and objectives of the mission. In this
way, it demonstrates that a ME solution should
also be able to achieve the goals and objectives. Figure 21. Red and blue mission performer elements.

Figure 22. Mission threads and tasks linked to goals and objectives.

87

Figure 23 shows the objectives of the intelligence gathering
mission as well as the effects, outcomes and the systems
that will achieve those effects and outcomes. The effects and
outcomes are sequences corresponding to deploying drones
and spies, gathering information, sensing signals, analyzing
those signals and finally synthesizing that intelligence to
show the location of the rebel base.

Figure 23. Mission objectives, effects, outcomes and achieving elements.

88

3.5.1. Provenance/Confidence of enemy resources

The rebel forces capabilities, forces, activities, strength,
etc. have been discovered via the intelligence services.
Two aspects of any intelligence are the provenance of the
information and the level of confidence in the information as
well as the source. The structure and behavioral elements
created based on that intelligence should refer to the source
(provenance) and corresponding confidence. Figure 24
shows a portion of the rebel forces. Information on the rebel
forces has been collated by drones and spies. Enumerations
have been defined for the profile providing Intel Confidence
and Intel Type. Attributes correspond to the resource
elements. These are instantiated as a fielded capability
and specific values associated with them. In this case, the
intelligence was gathered by an intelligence probe droid, the
type is unknown, and the confidence level is medium.

3.5.2. Compliance/Conformance to doctrine/
standards.

The SysML requirement element has been extended to
provide concepts of Ref Doctrine, Ref Publication, and Ref
Standard (not shown for reasons of space). These provide
the ability to link specific steps in an MT or MET, mission
elements or the entire mission to atomic elements of doctrine.
This can be crucial to ensure that proper procedures are
followed when constructing missions. The UAF standard
concept is also available but is typically at a more “macro”
level of that deals with an entire document.

Figure 24. Mission resource elements and intelligence information.

89

4. DEVELOPING A RESOURCES
ARCHITECTURE

4.1. The Blue Force resources architecture

The beginnings of the Resources Architecture
were seen in Figure 24, which shows a portion
of the rebel forces involved in the battle. To
fully understand how the mission plays out,
the various resources (i.e. systems, software,
personnel) that are used to support the Mission
Tasks in the Mission Threads are captured in
the Mission Engineering Threads (METs) that
are part of the Resources Architecture. This is
done for both sides of the battle – for the Blue
Forces (on our side, the Empire in this case)
and the Red Forces (who are the adversaries,
the Rebels in the case of this example model).

4.2. Mission engineering thread functions

The various steps of the MET are defined for the
Execute Hoth Planetary Invasion. The functions
can either be part of the Mission Engineering
Thread, or they can be Functions performed
by the Resources, now that we have identified
some of these Resources. Figure 25 shows the
Mission Engineering Thread on the left and the
Mission Thread on the right. The functions in the
MET will “implement” the operational activities
in the MT. This model shows two shortcomings
of the architecture:

1)	 The MT for Weaken Planetary Defense
has no corresponding resource (system)
functions that implement this mission task
(i.e. operational activity).

2)	 The MET for Destroy Key Rebel Hoth
Defenses has a function Protect Empire
Ground Forces that has no corresponding
mission task, i.e. there is a missing
operational process that needs to be
performed but is not yet accounted for.

Figure 25. Mission resource elements and intelligence information.

90

4.3. Deploy scout droids process flow

Figure 26 illustrates a relatively complicated MET for the
various resource elements that Deploy Scout Droids. In
this process flow, the human and technical elements are
deployed upon receiving the Scout OPORD. Figure 27 shows
a related process flow that outlines the activities to prepare
for scouting and sending back status reports.

Figure 27. Scouting and status reporting process flow.

Figure 26. Deploy scout droids process flow.

91

5. OTHER CONSIDERATIONS

5.1. System of Systems issues

The systems that participate in the METs that
implement the MTs in the mission architecture are
usually developed by different organizations and
are not always developed with these particular MTs
in mind. These systems are also usually operated
by different organizations involved in conducting
the mission. So, from a SoS perspective, this
illustrates the managerial independence and
operational independence of the systems that
make up the SoS for each of the METs.

5.2. Key measurements and traceability

A well-defined model will contain quantifiable
measures for success. At the very least, it will
describe how to measure a successful outcome
for the various mission phases and mission
essential tasks. These will be modeled at the
levels of the mission, mission phase, MET, and
mission essential tasks. For a well-formed model,
these measurements need to coincide, link, and
trace to one another from system level Measures
of Performance (MOPs) focused on performance
of the individual constituent systems, to MOEs
defining mission success at each mission essential
task, to MOS defining the desired end state (see
Figure 28).

These key measures must flow down from MOS
and lead into the MOEs from which MOPs and
Measures of Suitability (MOSu) can be derived.
Though, to trace these measures through a SoS,
they need to be linked to statements of importance.
In this case, since we are in the military domain, we
can refer to these statements as critical operational
issues (COIs). For each of these COIs there may
be one to many MOS, MOEs, and further one to
many MOPs and MOSu as shown in Figure 28.
This diagram is purely notional, as these metrics
are largely stochastic, only estimable through
advanced simulation, and often represent
emergent properties of a complex SoS, making a
deterministic ‘roll-up’ impractical or impossible. An
example for the Hoth mission is given in Figure 29.

Figure 28. Relationship between critical operational issues and measures of effectiveness.

Figure 29. Typical MOEs through a mission engineering SoS lens.

92

5.3. All Models are Wrong, Some Models are
Useful…

Even a relatively simple Resource Architecture model requires
significant time and effort to develop, if everything in the
architecture is modeled. As with any model, understanding
what questions the model is intended to answer, what
information is available to model, and what resources you
have available to do the modeling (people, time, money, and
tools) will help frame what needs to be modeled. Of course,
once the modeling scope has been decided, any modeling
scope changes must be well managed; otherwise, unintended
risk to developing a useful model will be introduced.

It is likely that the entire scope of the modeling effort will not
be known, as required information may not be available at
the start of the modeling effort, or significant, unplanned
architecture changes occur. Identifying modeling risks
from the start is key to managing the modeling effort and
maintaining its usefulness. It is highly recommended that
prior to starting a model effort some time is spent conducting
a Problem Framing exercise.

6. CONCLUSIONS
Mission architecture modeling is a foundational enabler for effective ME. This chapter has demonstrated how a well-structured
mission architecture, rooted in the Unified Architecture Framework (UAF), supports the rigorous analysis, traceability, and coordination
required to execute complex missions involving multiple stakeholders, scenarios, and SoS. By systematically integrating strategic
intent, operational activities, and resource capabilities through constructs such as MTs and METs, UAF provides a cohesive modeling
language for describing and analyzing mission architectures.

Using the Battle of Hoth as an exemplar, the chapter illustrated how ME modeling not only clarifies the relationships between goals,
objectives, and operational elements but also reveals risks, conflicts, and dependencies inherent in the mission. It highlighted
the importance of contextual constructs such as scenarios and vignettes, and how these can be extended within UAF to provide
meaningful connections between conditions, behaviors, and mission execution.

Moreover, the use of measures (MOS, MOEs, MOPs) and the emphasis on traceability from high-level drivers to tactical resource
activities ensure that the mission model can serve as a foundation for analysis, assessment, and iterative improvement. The
incorporation of provenance and confidence in intelligence data, compliance to doctrine, and consideration of force designations
further enhances model fidelity and realism.

Ultimately, mission architecture modeling is not about producing a perfect representation, but rather about building a useful one; one
that can inform decisions, identify vulnerabilities, and guide effective action. The principles and constructs presented in this chapter
offer a scalable and repeatable approach for applying mission architecture modeling across defense, aerospace, and enterprise
contexts.

Organizations will need to determine what model libraries
they want to develop, share, and maintain. Although there are
many ways to separate ME models into reusable and case-
specific information, UAF already segments model information
such that one could simply create separate models based
on the top-level packages: Strategy, Operational, Services,
Personnel, Resources, Security, Projects, Standards, and
Actual Resources. Of course, a model library approach will
need to be made specific to how an organization wants to
do modeling. A model federation plan, even just a simple
one, should be devised prior to the start of modeling to help
partition the large model into smaller modeling projects to
facilitate model management and governance. This also
helps improve time to query the model, reduce model access
conflicts among team members, allow for greater control over
model changes and configuration control.

93 RE
FE

RE
NC

ES

94

1.	 OMG 2022, Unified Architecture Framework, Version 1.2, Object
Management Group, https://www.omg.org/spec/UAF/About-
UAF/.

2.	 OMG 2022, Unified Architecture Framework Modeling Language,
Version 1.2, Object Management Group.

3.	 OMG 2022, Enterprise Architecture Guide for the Unified
Architecture Framework (Informative), Version 1.2, Object
Management Group.

4.	 Gagliardi M., Hause M., “Implementing Mission Engineering with
UAF” In Proceedings of the Ground Vehicle Systems Engineering
and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-
18, 2022.

5.	 Gagliardi M., Hause M., Martin J., Phillips, M, 2024, “Darth
Vader’s Secret Weapon: Implementing Mission Engineering with
UAF” presented at the INCOSE International Symposium, Dublin,
Ireland.

6.	 Martin, J., & Alvarez, K., 2023, “Using the Unified Architecture
Framework in support of mission engineering activities”
presented at the INCOSE International Symposium.

7.	 Fandom, 2023, Battle of Hoth, Reference information Available
online from https://starwars.fandom.com/wiki/Star_Wars:_
Episode_V_The_Empire_Strikes_Back#The_Battle_of_Hoth

8.	 DoD, 2023, DoD OSD Mission Engineering Guide (MEG), Available
online at https://ac.cto.mil/wp-content/uploads/2023/11/MEG_2_
Oct2023.pdf Accessed November 2023.

95 BI
OG

RA
PH

IE
S

96

MATTHEW GAGLIARDI
Matthew Gagliardi is a

Principal at SSI and has over

twenty years of experience

in Systems Engineering in

the Automotive and Defense

sectors. His expertise includes

vehicle development, system

integration, systems engineering

processes and tools, and new

technology development. Matt

currently provides MBSE support

and guidance to multiple PEO

Ground Combat Systems programs, as well as to DEVCOM’s

Ground Vehicle Systems Center. Matt received a Bachelors in

Mechanical Engineering and a MS in Mechanical Engineering

at Purdue University. Matt has achieved SPRDE Level 3 from

Defense Acquisition University and is an OMG Certified

Systems Modeling Professional Model Builder and has been an

INCOSE CSEP. His role at SSI includes Consulting, mentoring,

conference presentations, and developing and presenting

training courses.

MATTHEW HAUSE
Matthew Hause is Principal

Engineer at SSI, a chair of the

UAF group, a member of the

OMG SysML specification team,

a co-chair of the OMG Reusable

Asset Specification (RAS) team,

and a thought leader in the use of

MBSE. He has been developing

multi-national complex systems

for over 45 years as a systems

and software engineer. He

started out working in the

power systems industry then transitioned to command and

control systems, process control, communications, SCADA,

distributed control, military systems, and many other areas of

technical and real-time systems. He has authored over 100

technical papers on a diverse range of subjects. His role at

SSI includes Consulting, mentoring, standards development,

presentations at conferences, and developing and presenting

training courses. He is also a proud recipient of the INCOSE

MBSE Propeller Hat Award.

97

DR. JAMES N MARTIN
Dr. James N. Martin is an

Enterprise Architect and a

Distinguished Systems Engineer

at The Aerospace Corporation

developing solutions for

information systems and for

space domain enterprises.

He is a member of the UAF

Revision Task Force with OMG

and was lead editor for the ISO

42020 standard on Architecture

Processes. Dr. Martin was a key

author on the BKCASE project in development of Enterprise

Systems Engineering articles for the SE Body of Knowledge

(SEBOK). He led the working group responsible for developing

ANSI/EIA 632, a US national standard that defined the processes

for engineering a system. He previously worked for Raytheon

Systems Company and AT&T Bell Labs on airborne and

underwater systems and on mobile telecommunication systems.

His book, Systems Engineering Guidebook, was published by

CRC Press in 1996. Dr. Martin is an INCOSE Fellow and was

leader of the Standards Technical Committee. He was the

founder and was until recently leader of the Systems Science

Working Group. He received from INCOSE the Founders Award

for his long and distinguished achievements in the field.

VÍCTOR RAMOS DEL POZO

Víctor Ramos del Pozo is a

systems engineer at Isdefe,

currently delivering technical

assistance for the Spanish

National Programme Office for

the Next Generation Weapon

System (NGWS) within a Future

Combat Air System (FCAS),

especially in the fields of the

Combat Cloud, Collaborative

Sensors, Simulation and

Systems of Systems. He

previously delivered technical assistance for the Spanish

National Armaments Directorate of the State Secretary for

Defence in the fields of defence industrial base analysis,

defence acquisition planning and major defence acquisition

programmes management.

Before joining Isdefe, he worked as a systems engineer at

EADS-CASA (current Airbus Defence and Space) for the

Multi-Role Tanker Transport and Future Strategic Tanker

Aircrafts programmes, and at Indra for the Identification

Friend or Foe Department.

He is a fellow of the International Council on Systems

Engineering (INCOSE) and delivers internal training at

Isdefe in the fields of systems engineering and programme

management.

In 2015 he was awarded with the Spanish Air Force Medal

(Cruz del Mérito Aeronáutico con distintivo blanco) for

his work supporting the Spanish National Armaments

Directorate.

CH
AP

TE
R

5
Design and implementation

of SoS governance

Abstract

Given the independence and autonomy of the constituent systems of a System of Systems (SoS),
governance becomes a critical aspect of their operation. At a basic level, governance provides for the
direction, oversight, and accountability of a SoS in fulfilling its intended purpose/mission. This chapter
provides an introductory treatment of the design and implementation of SoS governance. Three
primary topics are articulated. First, a systems-based perspective of SoS governance is provided.
Second, a next-generation systems theory-based framework for SoS governance, Complex System
Governance, is established. Third, the application of the framework for SoS governance is explored.
The chapter concludes with challenges and application guidance for practitioners responsible for
SoS design and governance implementation.

Keywords

SoS Governance, Framework, Systems Theory, Complex System Governance

Dr. Polinpapilinho F. Katina, University of South Carolina Upstate (pkatina@uscupstate.edu)
Dr. Charles B. Keating, Old Dominion University (ckeating@odu.edu)

César Heras Menor de Gaspar, Isdefe (chmenor@isdefe.es)
Víctor Ramos del Pozo, Isdefe (vramos@isdefe.es)

100

1. INTRODUCTION
The focus on ‘governance’ for SoS is targeted to the active
steering of a SoS through the artful and integrated design,
execution, and evolution of the SoS [1]. Thus, the primary
motivation for this chapter is to present the role and
contributions that governance can make to the design
and implementation of SoS.

In this chapter, we address three primary topics. First,
we articulate a systems-based perspective of SoS
governance. This perspective examines the nature and
role of governance with respect to SoS governance
design and implementation. Second, Complex System
Governance (CSG) is introduced as a systems theory-
based framework for SoS governance. CSG is established
as an evolution of System of Systems Engineering,
focused on providing an approach to support more
effective direction, oversight, and accountability for
increasingly complex SoS. Third, the application of the
framework for SoS governance is explored. The chapter
concludes with challenges and application guidance for
practitioners responsible for SoS design and governance
implementation.

In evolving SoS design and implementation, eight
distinguishing characteristics for the governance of SoS
[2] are offered (Figure 1):

1.	 Holism: Governance operates at all levels of an SoS,
ranging from individual practitioner to enterprise.
Consideration is given to avoiding both hard (technical)
and soft (nontechnical) failure modes.

2.	 Wide Spectrum: The governance focus for SoS
looks beyond the narrow confines of technology-
based solutions. Instead, the scope of governance
entails technology, social, human, organizational,
managerial, resources, context, commercial, policy,
and political considerations.

3.	 Pluralistic View: Governance does not assume a
unitary (singular agreement) view of SoS design
and implementation. Instead, a pluralist (multiple
perspectives) view is taken to understand that SoS
governance must contend with numerous different
and potentially conflicting motivations, perspectives,
and aims.

4.	 Continuous: Governance development is continuous,
realizing that SoS governance is never complete and
must be continually pursued.

5.	 Feasibility: Governance development must consider that
there are design and implementation issues that lie beyond
the capacity of a SoS to address. Every SoS has limitations
as to what can be pursued with a high possibility of success.

6.	 Existing: Irrespective of their acknowledgment, the functions
of SoS governance are being performed by any viable
(continuing to exist) SoS. However, the state and performance
of the SoS governance may fall short of that desire and
potentially be moving toward failure.

7.	 Context: Context includes those circumstances, factors, and
conditions that influence, and are influenced by the SoS. The
context within which SoS governance is performed is critical
to enabling or constraining SoS governance.

8.	 Incorporation: Design and implementation of SoS
governance must incorporate the variety of methods, tools, or
techniques available and accessible to support governance
development. Every SoS is unique and will have different
methods, tools, and techniques available.

Figure 1. Eight distinguishing characteristics of SoS governance.

101

2. GOVERNANCE IN THE CONTEXT OF SYSTEM
OF SYSTEMS
For SoS, governance plays a critical role in ensuring
consistency in the direction, oversight, and accountability as
the SoS performs its mission. In this section, we distinguish
between management and governance and explore the role
of governance in SoS design and implementation.

Table 1. Differences between management and governance.

Characteristic Management Governance
Implications for
SoS Design and
Implementation

Emphasis
Outputs (tangible,

objective, short-term)
Outcomes (less tangible,

subjective, long term)

Determination of governance
‘goodness’ is not simple

or straightforward.

Central questions
of concern

What? And How? Why?
Governance exists at a higher
logical level of performance –
emphasizing system purpose.

Focus Near-term demonstrable results
Long term future

focused trajectory

The focus of governance
is expansive, entertaining

long-view questions of
strategic rather than

operational significance.

Determinants of success
Easily defined, measured,

and tracked
Difficult to define and measure

While governance measures
might be developed, they
necessarily lack precision.

Time horizon Short term Long term
The nature of governance

invokes a much longer
time horizon.

Action-response proximity
Limited duration between

action and system response

Long separation between
action and realization
of system response

The evolutionary nature of
SoS lengthens the time and
proximity between actions
and realization of results.

Uncertainty Local uncertainty concerns Global uncertainty concerns
Governance has a more

global level of uncertainty
and its resolution.

Stability and emergence
Local proximity stability,
local level emergence

Global proximity stability,
global level emergence

The global focus of governance
is concerned with emergence
and stability at a higher level.

2.1. Nature and role of governance

The concept of governance is somewhat novel with respect to
SoS. At a high level, the focus on ‘governance’ is taken as the
active steering of a system through the artful and integrated
design, execution, support, and evolution of the SoS [2].

Governance has similarities but is also different than
management. Table 1 identifies the critical distinctions between
management and governance along with implications for SoS
design and implementation of governance [2, 3].

102

Etymologically, ‘governance’ (govern) finds its roots in the Latin
‘gubernare’ meaning to steer, as well as the Greek ‘kybernētēs’,
meaning to pilot, governor (from Hibernian to steer, govern).
Thus, at the most fundamental level, governance is about
steering.

There are multiple perspectives on governance. However, for
SoS, three perspectives are essential concerning the role of
governance [3]:

1.	 Process-centric: Governance is focused on collective
decision-making processes. These processes are
steeped in formal, consensus-seeking, and deliberative
decision-making. The central objective of this governance
perspective is to provide effective processes. These
processes enable the act(s) of governance to be
performed.

2.	 Structure-centric: Governance emphasizes the
formulation and execution of structures. These structures
preserve order/continuity while steering the system in the
desired direction. The primary objective is to establish
sufficient structure such that the trajectory of a system
toward desired ends is maintained.

3.	 Policy-centric: Governance emphasizes the formulation
of policies. These policies are targeted to inculcate the
rules, norms, principles, and behaviors that support
regularity in performance. The primary objective is to
invoke policies that support direction/control essential to
achieving/maintaining system performance.

2.2. The unique role of governance for SoS design
and implementation

Based on this discussion of governance, we can draw several
important themes for SoS design and implementation. For
SoS, governance must provide continuous achievement of a
triad (see Figure 2):

1)	 Direction: sustainment of a coherent identity (grounding
essence of an SoS) that is capable of supporting
consistency in the decision, action, interpretation in
support of long-range strategic trajectory of the SoS;

2)	 Oversight: providing necessary controls, regulation,
and performance monitoring to integrate the SoS in
performance of the mission/purpose; and

3)	 Accountability: ensuring that responsibilities are
established and resources are efficiently and effectively
utilized to support achievement of SoS aims.

With these three pillars of governance, the achievement of
the Process-Structure-Policy imperatives for SoS design and
implementation of governance can be developed.

Figure 2. The SoS governance triad.

3. SOS GOVERNANCE

Present-day SoS are increasingly interconnected and complex
yet enable possibilities far beyond any previous capabilities.
These enhanced capabilities exist beyond SoS member
systems and could not have been imagined a decade ago.
It almost goes without saying that we are experiencing
difficulties in governing SoS as we seem incapable of
matching the acceleration of information, interconnectedness,
and technology driving our current state of affairs. For all the
‘goodness’ and capabilities that SoS have brought, they have
also generated problems that appear to be intractable given
our current methods and frameworks to address them [1-3].
The time is appropriate for designing and implementing new
frameworks to enhance our ability to more effectively govern
present and future evolutions of SoS.

Complex System Governance (CSG) is an emerging evolution
of SoS seeking to enhance our capabilities for the design,
execution, and evolution of SoS. The emerging CSG field
offers a new and novel path forward in governing increasingly
complex SoS and their problems. Since its inception in 2014,
CSG has matured significantly, evolving from its early stages
into a knowledge-rich field, contributing both theoretical
insights and practical applications for operational SoS [4].

103

CSG evolved from the work in System of Systems Engineering
(SoSE) as articulated by [5, 6]. CSG’s development was partly due
to the limitations of SoSE to consider both the ‘hard’ (technical) and
‘soft’ (nontechnical) aspects of complex systems, moving beyond
the strict dominance of ‘technology first, technology only’ based
approaches and solutions. Thus, by incorporating the essence of
Systems theory, CSG aimed to address the entire spectrum of SoS,
spanning the entire range of socio-technical-economic-political
dimensions. Additionally, incorporating governance moved CSG
to a higher level of emphasis, focused on direction, oversight,
and accountability across the entire range of socio-technical-
economic-political drivers of SoS. The CSG field is very young,
and while much remains to be accomplished as CSG continues
to develop, the time is appropriate to acknowledge and amplify
CSG’s contributions to SoS governance.

In this section, we provide a framework for designing and
implementing SoS governance (CSG). The section begins by
explaining the two informing fields —Management Cybernetics and
Systems Theory— which, alongside (System) Governance, provide
the conceptual foundations for the establishment of CSG. Next, the
CSG Paradigm is articulated to establish the fundamental aspects
of CSG for SoS governance. Following the paradigm introduction,
the detailed framework for CSG is provided. This framework, built
upon the underlying informing fields and paradigm, provides
the essence of CSG through a set of functions and associated
communication channels. Together, these provide for the design
and implementation of governance for a SoS.

3.1. SoS governance at the intersection of three
fields

Three informing fields serve as the conceptual basis for CSG [3,
30]. In broad terms, these fields include:

1)	 General Systems Theory, which provides the set of
propositions (laws, principles, concepts) that serve to define
the behavior, structure, and performance of all complex
systems;

2)	 Management Cybernetics, which is described as the science
of effective system structural organization targeted to assure
system viability (continued existence); and

3)	 System Governance, which is focused on establishing
direction, oversight, and accountability for complex systems.
System governance has been discussed above. We continue
with a discussion of the two remaining fields, which will be
briefly examined for their unique contribution to CSG as
a foundation for the design and implementation of SoS
governance.

3.1.1. Systems theory contributions

The contribution of Systems Theory to SoS Governance
is threefold. First, Systems Theory provides a strong
and rigorous theoretical grounding. Second, Systems
Theory has been articulated as a set of axioms (taken-
for-granted assumptions) and associated propositions
(principles, laws, and concepts) that seek to describe,
explain, and predict the behavior, structure, or
performance of systems, either natural or manmade [7-
9]. While a detailed development of Systems Theory is
beyond the scope of this chapter, it suffices to say that the
axioms and propositions provide the intellectual basis
for SoS governance. Third, Systems Theory provides
a language to understand systemic deficiencies that
impede the performance of governance functions for
SoS. These deficiencies, known as pathologies, are
observed as violations of underlying Systems Theory
propositions.

In effect, Systems Theory provides a theoretical
grounding for the design and implementation of SoS
governance, such that integration and coordination
necessary to ensure SoS viability can be maintained.

3.1.2. Management cybernetics contributions

Management Cybernetics is broadly defined as ‘the
science of effective system structural organization’ [10-
12]. Critical to CSG is the concept of the ‘metasystem’
as a set of interrelated functions that must be performed
by any viable (continuing to exist) system. The
metasystem provides integration (allowing a system to
act as a unity) and coordination (providing for smooth
interaction among system constituents). Thus, a SoS is
structured in a way that permits it to meet performance
levels necessary to continue to be viable (exist).

Management Cybernetics brings three important
contributions to the design and implementation of
governance for SoS. First, grounding in Management
Cybernetics offers a strong theoretical/conceptual
foundation. Management Cybernetics, at a most basic
level, is concerned with communication and control.
This aligns with governance to provide direction and
monitoring as a system continues on a desirable
trajectory. Concerning control, the cybernetic viewpoint
suggests that control-based constraints placed on a
system provide regulatory capacity essential to assure

104

system performance and continued viability. Second, Management
Cybernetics forms a basis for governance structure, which includes
functions and communication channels consistent with the achievement
of governance for a system [10-13]. Management Cybernetics is a
launching point for the CSG Reference Model [3]. Third, Management
Cybernetics has been successfully applied for over five decades.
Despite technological shifts and the rapid pace of change in SoS,
Management Cybernetics has remained relevant and maintained a
strong and sustained presence.

3.2. SoS governance – A next generation paradigm

CSG is the “Design, execution, and evolution of the metasystem
functions necessary to provide control, communication, coordination,
and integration of a complex system” [4, p. 264]. Within this definition,
we find the underlying paradigm that brings the definition to life [2, 14].
The paradigm that instantiates this definition is captured in Figure 3.

First, design accentuates the necessity
to purposely pursue the creation of the
governance structure. While the design for
SoS governance represents the normative
case, execution tempers the normative design
based on deployment in the operational
setting. Where design meets execution, the
result is inevitably a design that requires
evolution (development) to make modifications
necessary to adjust to unknowns, emergence,
and design inadequacies for a given context of
application.

Second, the four aspects of CSG include
control (the regulatory constraints that
ensure SoS performance and trajectory),
communication (the flow, processing, and
interpretation of information through channels),
coordination (focused on interaction among
constituent entities comprising the system, and
with those external to the system, to prevent
unnecessary fluctuations), and integration
(maintenance of system unity through common
goals, accountability, and balance between
individual constituent autonomy and system
level interests).

Third, viability (continued existence) is assured
by the performance of functions (system
imperatives that must be performed to maintain
viability) and associated communication
channels (the conduits that provide for the
flow of information and interpretation within
and external to the system). The functions and
communication channels together comprise
the ‘metasystem’ which institutes SoS
governance (Figure 4).

Fourth, functions and communication channels
are performed by mechanisms (vehicles that
serve to implement) that are unique to each
system governed.

Figure 3. The SoS governance paradigm relationships.

105

Central to SoS governance is the metasystem. The
metasystem is the composite of functions and communication
channels that are above and beyond individual systems
that enable SoS governance. Nine interrelated functions
and ten communication channels capture the essence
of governance for a SoS [3, 4, 15]. These functions are
an extension of Management Cybernetics [10-12]. The
metasystem functions and corresponding communication
channels are depicted in Figure 4. As the figure shows,
there are four primary functions and five related subordinate
functions, along with 10 communication channels [2-4, 16].

CSG is the set of 9 interrelated functions that act to provide
governance for a complex system. These functions include:

	• Metasystem Five (M5) – Policy and Identity: provides
overall steering (e.g., vision, purpose, mission) for the
SoS, giving direction to ensure that the trajectory of the
SoS is retained, provides for maintenance of identity
(the essence of uniqueness for the SoS) responsible
to engender consistency in decision, action, and
interpretation, represents the SoS to the ‘outside’,
maintains boundary conditions, and balances focus
between short and long term SoS interests.

	• Metasystem Five Star (M5*) – System Context:
responsible for elaborating and managing the
specific context (factors that enable and constrain the
performance of the SoS, e.g., support infrastructure,
culture, stakeholders) within which the metasystem is
embedded. Monitors and facilitates communication of
contextual factors, within and external to the SoS.

	• Metasystem Five Prime (M5’) – Strategic System
Monitoring: provides oversight of the system performance
at a strategic level and determines the degree to which
the SoS is effective in pursuit of long-range directions and
maintenance of future trajectory.

	• Metasystem Four (M4) – System Development:
emphasizes understanding and implications for pursuing
and achieving the long-range development of the SoS to
ensure future viability. Processes environmental scanning
to determine impacts on present operations and future
development.

	• Metasystem Four Star (M4*) – Learning and
Transformation: concentrated on facilitating learning
based on correcting design errors in the metasystem and
planning for the responsive transformation of the SoS.

Figure 4. Metasystem functions and associated communication channels.

106

	• Metasystem Four Prime (M4’) – Environmental
Scanning: designs, deploys and monitors
sensing of the environment for trends, patterns,
conditions, circumstances, or emergent events
with implications for both present and future
system viability. Maintains an active model of the
SoS environment.

	• Metasystem Three (M3) – System Operations:
focuses on the day-to-day operations of the
metasystem to ensure that the SoS maintains
desired performance levels consistent with
resource distributions to produce value by the
SoS.

	• Metasystem Three Star (M3*) – Operational
Performance: concerned with developing and
monitoring system operational performance
measures to monitor productivity achievement
and identify and assess aberrant conditions.

	• Metasystem Two (M2) – Information and
Communications: focused on the design
for the flow and interpretation of information
within the SoS metasystem and from the SoS
metasystem to the constituent systems. Provides
for consistent interpretation of exchanges through
communication channels to support consistency
in decision, action, and interpretation within and
external to the SoS.

One way the CSG’s nine interrelated functions
enable SoS governance is through the metasystem
communication channels. These channels support the
flow of information for decision and action as well as
produce consistency in interpretation for exchanges
within the metasystem and between the metasystem
and external entities. Table 1 below concisely lists the
communication channels, their primary associated
metasystem function, and their particular role in SoS
governance.

Communications
Channel and
Associated
Metasystem

Function

Channel Role for SoS Governance

Command
(Metasystem 5)

	• Provides non-negotiable direction to the

metasystem and governed systems.

	• Primarily flows from the Metasystem 5 and is

disseminated throughout the system.

Resource bargain/
Accountability
(Metasystem 3)

	• Determines and allocates the resources

(manpower, material, money, methods, time,

information, support) to governed systems.

	• Defines performance levels (productivity),

responsibilities, and accountability for governed

systems.

	• Primarily an interface between Metasystem 3 to

the governed systems.

Operations
(Metasystem 3)

	• Provides for the routine interface concerned with

near-term operational focus.

	• Concentrated on providing direction for system

production of value (products, services,

processes, information) consumed external to the

system.

	• Primarily an interface between Metasystem 3 and

governed systems.

Coordination
(Metasystem 2)

	• Provides for metasystem and governed systems

balance and stability.

	• Ensures design and achievement (through

execution) of design: (1) sharing of information

within the system necessary to coordinate

activities, and (2) ensures decisions and actions

necessary to prevent disturbances are shared

within the Metasystem and governed systems.

	• Primarily a channel designed and executed by

Metasystem 2.

Audit
(Metasystem 3*)

	• Provides routine and sporadic feedback

concerning operational performance.

	• Investigation and reporting on problematic

performance issues within the system.

	• Primarily a Metasystem 3* channel for

communicating between Metasystem 3, the

governed systems, and the metasystem

concerning performance issues.

107

Communications
Channel and
Associated
Metasystem

Function

Channel Role for SoS Governance

Algedonic
(Metasystem 5)

	• Provides a ‘bypass’ of all channels when the

integrity of the system is threatened.

	• Compels instant alerts to crisis or potentially

catastrophic situations for the system.

	• Directed to Metasystem 5 from anywhere in the

metasystem or governed systems.

Environmental
Scanning

(Metasystem 4’)

	• Provides design for sensing to monitor critical

aspects of the external environment.

	• Identifies environmental patterns, activities, or

events with system implications.

	• Provided for access throughout the metasystem

as well as governed systems by Metasystem 4’.

Dialog
(Metasystem 5’)

	• Provides for examination of system decisions,

actions, and interpretations for consistency with

system purpose and identity.

	• Directed to Metasystem 5’ from anywhere in the

metasystem or governed systems.

Learning
(Metasystem 4*)

	• Provides detection and correction of error within

the metasystem as well as governed systems,

focused on system design issues as opposed to

execution issues.

	• Directed to Metasystem 4* from anywhere in the

metasystem or governed systems.

Informing
(Metasystem 2)

	• Provides for flow and access to routine information

within the metasystem or between the metasystem

and governed systems.

	• Access provided to the entire metasystem and

governed systems.

	• Primarily designed by Metasystem 2 for utilization

by all metasystem functions as well as governed

systems.

Table 2. Communication channels to support SoS governance.

At first exposure to the framework for SoS
Governance, it appears somewhat detailed and
perhaps overwhelming. However, the functions
and communication channels are already being
performed to some degree in each viable (continuing
to exist) SoS. Unfortunately, they are most likely
performed in a piecemeal (ad hoc) fashion, without
the benefits of purposeful and integrated design,
oversight, and accountability. Ultimately, a SoS may
be governed without explicit acknowledgment of the
functions and communication channels. However, we
suggest that if the performance of SoS governance
is to reach higher levels, the functions and
communication channels offer an explicit framework
to engage in rigorous self-study and development.

4. APPLICATION FOR DESIGN
AND IMPLEMENTATION OF SOS
GOVERNANCE

Given the SoS Governance framework provided, our
question now becomes, How can this framework be
implemented to support the purposeful development
of SoS governance? To answer this question, we
focus on the identification of SoS governance
deficiencies. Governance deficiencies are identified
as ‘pathologies’, which are aberrations in normal or
healthy performance of governance functions. This
section examines the question of SoS governance
implementation with three central topics. First, the
identification of pathologies, across the metasystem
governance functions is explored. These pathologies
indicate areas where governance functions fall short
of meeting desirable performance expectations.
Second, several scenarios are explored where SoS
governance might offer utility for improving the
current and future SoS performance. Third, a set
of practitioner guidance for the implementation of
SoS governance is developed. This guidance offers
‘lessons’ from our applications of CSG to improve the
state of governance for SoS.

108

4.1. Identification of pathologies as issues
in SoS governance

At a basic level, pathology is generally associated
with health, where pathology indicates a departure
from what is expected as normal or healthy system
operation (e.g., the human body). With respect to SoS
governance, a SoS pathology is “A circumstance,
condition, factor, or pattern that acts to limit system
performance, or lessen system viability, such that
the likelihood of a system achieving performance
expectations is reduced” [18, p. 253]. In essence,
a pathology is the degradation of a system function,
impacting the ability of the system to produce desirable
performance. Pathology is observable as symptomatic
of an underlying condition. Thus, a pathology is not
necessarily something obvious. Instead, it requires
exploration at a deeper systemic level beyond its
surface-level symptomatic manifestation. In SoS
Governance, a pathology is indicative of ‘violations’
of Systems Theory propositions (laws, principles, and
concepts).

CSG functions and communication channels that
provide for SoS governance offer a set of “coordinates”
to locate the existence of a pathology. This location
is linked to the nine different metasystem functions
essential to the continued viability of a SoS, which
are articulated as a set of 53 specific pathologies
in relationship to the metasystem functions are
articulated. These pathologies are organized around
the nine metasystem functions and serve to identify
aberrations to the normal (healthy) performance of
metasystem functions (Table 3) [18, 19].

Metasystem
function

Corresponding set of pathologies

Metasystem

five (M5): Policy

and identity

M5.1. Identity of system is ambiguous and does not

effectively generate consistency system decision,

action, and interpretation.

M5.2. System vision, purpose, mission, or values

remain unarticulated, or articulated but not embedded

in the execution of the system.

M5.3. Balance between short term operational focus

and long term strategic focus is unexplored.

M5.4. Strategic focus lacks sufficient clarity to direct

consistent system development.

M5.5. System identity is not routinely assessed,

maintained, or questioned for continuing ability to

guide consistency in system decision and action.

M5.6. External system projection is not effectively

performed.

Metasystem

Five Star (M5*):

System context

M5*.1. Incompatible metasystem context constraining

system performance.

M5*.2. Lack of articulation and representation of

metasystem context.

M5*.3. Lack of consideration of context in metasystem

decisions and actions.

Metasystem

Five Prime (M5'):

Strategic system

monitoring

M5’.1. Lack of strategic system monitoring.

M5’.2. Inadequate processing of strategic monitoring

results.

M5’.3. Lack of strategic system performance indicators.

Metasystem Four

(M4): System

development

M4.1. Lack of forums to foster system development

and transformation.

M4.2. Inadequate interpretation and processing of

results of environmental scanning – non-existent,

sporadic, limited.

M4.3. Ineffective processing and dissemination of

environmental scanning results.

M4.4. Long-range strategic development is sacrificed

for management of day-to-day operations – limited

time devoted to strategic analysis.

M4.5. Strategic planning/thinking focuses on

operational level planning and improvement.

109

Metasystem
function

Corresponding set of pathologies

Metasystem Four

Star (M4*): Learning

and transformation

M4*.1. Limited learning achieved related to environmental shifts.

M4*.2. Integrated strategic transformation not conducted, limited, or ineffective.

M4*.3. Lack of design for system learning – informal, non-existent, or ineffective.

M4*.4. Absence of system representative models – present and future.

Metasystem

Four Prime (M4’):

Environmental

scanning

M4’.1. Lack of effective scanning mechanisms.

M4’.2. Inappropriate targeting/undirected environmental scanning.

M4’.3. Scanning frequency not appropriate for rate of environmental shifts.

M4’.4. System lacks enough control over variety generated by the environment.

M4’.5. Lack of current model of system environment.

Metasystem Three

(M3): System

operations

M3.1. Imbalance between autonomy of productive elements and integration of whole system.

M3.2. Shifts in resources without corresponding shifts in accountability/shifts in accountability without corresponding shifts in

resources.

M3.3. Mismatch between resource and productivity expectations.

M3.4. Lack of clarity for responsibility, expectations, and accountability for performance.

M3.5. Operational planning frequently pre-empted by emergent crises.

M3.6. Inappropriate balance between short term operational versus long term strategic focus.

M3.7. Lack of clarity of operational direction for productive entities (i.e., subsystems).

M3.8. Difficulty in managing integration of system productive entities (i.e., subsystems).

M3.9. Slow to anticipate, identify, and respond to environmental shifts.

Metasystem Three Star

(M3*): Operational

performance

M3*.1. Limited accessibility to data necessary to monitor performance.

M3*.2. System-level operational performance indicators are absent, limited, or ineffective.

M3*.3. Absence of monitoring for system and subsystem level performance.

M3*.4. Lack of analysis for performance variability or emergent deviations from expected performance levels - the meaning of

deviations.

M3*.5. Performance auditing is non-existent, limited in nature, or restricted mainly to troubleshooting emergent issues.

M3*.6. Periodic examination of system performance largely unorganized and informal in nature.

M3*.7. Limited system learning based on performance assessments.

Metasystem Two

(M2): Information and

communications

M2.1. Unresolved coordination issues within the system.

M2.2. Excess redundancies in the system result in inconsistency and inefficient utilization of resources - including information.

M2.3. System integration issues stemming from excessive entity isolation or fragmentation.

M2.4. System conflict stemming from unilateral decisions and actions.

M2.5. Excessive level of emergent crises - associated with information transmission, communication, and coordination within the

system.

M2.6. Weak or ineffective communications systems among system entities (i.e., subsystems).

M2.7. Lack of standardized methods (i.e., procedures, tools, and techniques) for routine system level activities.

M2.8. Overutilization of standardized methods (i.e., procedures, tools, and techniques) where they should be customized.

M2.9. Overly ad-hoc system coordination versus purposeful design.

M2.10. Difficulty in accomplishing cross-system functions requiring integration or standardization.

M2.11. Introduction of uncoordinated system changes resulting in excessive oscillation.

Table 3. Pathologies corresponding to metasystem functions.

110

Although beyond the scope of this chapter, the metasystem
pathologies are also linked to violations of underlying Systems Theory
propositions [20, 21]. Pathologies Identification for SoS governance
includes assessment across three dimensions of existence, impact,
and feasibility. Existence deals with the degree to which the pathology
is determined to be present in a SoS metasystem. Impact deals with
the degree of severity that the existence of the pathology suggests
for the performance of the SoS metasystem. Feasibility addresses
the likelihood that, given the current state of the metasystem and
its context, the pathology could be addressed with a reasonable
chance of successful resolution. Each pathology can be assessed
along the three dimensions (Figure 5).

4.2. Scenarios for implementation of SoS governance

In this section, we examine three scenarios where SoS governance
provides insights and potentially offers different alternatives
for governance development. The first scenario examines the
prioritization of pathologies for SoS development. This scenario
examines the potential for direction, or redirection, of scarce
resources based on priority development needs to address
pathologies. The second scenario is based on maturing systems-
based capabilities for SoS governance. The third scenario examines
providing clarity in SoS governance.

Figure 5. Three-dimensional assessment of pathologies.

4.2.1 Prioritization of scarce resource
investment for SoS development

All SoS have resources that are invested to provide for
system development and improvement. An example
of this is the introduction of a new initiative (e.g.,
Lean Six Sigma) as something that is recognized as
a good thing to do to improve a SoS. However, not
recognizing what ‘issues’ the initiative would address
does not mean it is right or a wise investment of scarce
resources. SoS governance suggests that scarce
resources should be applied to the SoS governance
areas that are shown to be lacking (e.g. pathologies of
highest existence, impact, and correction feasibility).

Scarce resources should not be squandered on
development activities without establishing their
specific need and priority contribution to advance
the state of SoS governance. Two other contributions
of SoS governance might come to fruition in this
scenario. First, there is the possibility of ‘redirecting’
scarce resources, already committed, to higher
priority pathologies in need of development. Second,
understanding the state of SoS governance
provides the opportunity to move beyond piecemeal
development to pursue more orchestrated, holistic,
and integrated SoS governance development. Instead
of looking at development initiatives in isolation,
each SoS governance development initiative can
be prioritized based on governance needs. Those
development initiatives deemed to not have a fit or
appear infeasible should be avoided.

4.2.2 Maturation of systems-based
capabilities for SoS governance

All SoS have a level of systems maturity. This level
is a function of the experiences, activities, design,
and execution of the SoS. If this maturity is left to
develop on its own, there is no guarantee it will either
be at a desirable state or have the desired rapidity
of development. Engaging in the purposeful design
and implementation of SoS governance contributes
to the maturation of systems-based capabilities.
Purposeful governance development can follow a
cycle of (1) discovery of governance pathologies’
existence, impact, and feasibility for resolution, (2)
prioritization and ranking of governance pathologies
to be addressed with scarce resources, and (3)

111

purposefully engaging high-priority targets for development.
The impact of this cycle is the continuing maturation of
systems-based capabilities for SoS governance.

4.2.3 Clarity and transparency in SoS governance

SoS governance development can enhance performance
in several distinct ways. First, SoS governance makes the
SoS and its context clear, explicit, and transparent. SoS
governance development calls for the construction of a
representation that entails making the SoS governance
design explicit. Left at a tacit level, SoS governance can
remain ambiguous and potentially create a source of
confusion in the execution of governance functions and
communication channels. In contrast, by making the SoS
governance design explicit, transparency can create clarity
in both design and implementation. Second, from a ‘baseline’
state of SoS governance, the trajectory of governance and
the contributions of specific development initiatives can be
assessed. This clears the path to continuing, modifying, or
eliminating governance development initiatives based on
performance assessment. Third, a clear and transparent SoS
governance provides for consistency in the current and future
trajectory of the SoS. This supports the ability to challenge
decisions, actions, and interpretations that uphold a ‘status
quo’ without sufficient explanation, logic, or rationale.

Clarity and transparency are hallmarks of effective SoS
governance. The better that SoS governance is understood,
the increased likelihood that people will understand their
roles, responsibilities, contributions, and accountability for
governance functions.

5. GUIDING PRACTICES

This section aims to encapsulate the design and
implementation of SoS governance. First, SoS governance
is summarized in a concise presentation of key points. Five
key points are offered to delineate SoS governance from
the perspective of CSG. Second, a set of challenges and
cautions are explored for SoS governance implementation.
The thrust of these challenges is rooted in our experiences in
the implementation of SoS governance.

5.1. A concise explanation of SoS governance for
practitioners

SoS governance offers practitioners a new and novel
approach to achieve more sophisticated governance. CSG
was offered for SoS governance as the “Design, execution,
and evolution of the metasystem functions necessary to
provide control, communication, coordination, and integration
of a complex system” [4, p. 264]. SoS governance can be
captured in 5 fundamental themes.

1.	 All systems are subject to the propositions (laws,
principles, and concepts) of systems. Just as laws
govern matter and energy (e.g., the law of gravity), there
are propositions that explain and predict the behavior and
performance of systems. These system propositions stem
from General Systems Theory and are always there, non-
negotiable, unbiased, and offer explanations for system
performance. Practitioners need to question, ‘Do we
understand fundamental systems propositions and how
they impact the design and performance of governance
for our SoS?’.

2.	 All systems perform essential governance functions
that determine system performance. Nine system
governance functions and 10 communication channels
were presented. These functions and communication
channels are performed by all systems, regardless of
sector, size, or purpose. The functions define ‘what’
must be accomplished for the governance of a system.
Functions are invoked by a set of implementing
mechanisms unique to a SoS (means of achieving
governance functions). For example, a weekly staff
meeting and semiannual conferences are examples
of mechanisms. Mechanisms determine ‘how’
governance functions and communications channels are
accomplished. Each mechanism can be tacit-explicit,
formal-informal, limited-comprehensive, or routine-
sporadic in their application. Practitioners must ask, ‘Do
we understand the mechanisms that perform essential
governance functions and communication channels to
produce SoS performance?’.

3.	 Governance functions can experience pathologies
(deviations from ‘healthy’ system conditions) in
the performance of functions and communication
channels. There is no SoS governance system design
that achieves perfection in execution. Irrespective of
the ‘greatness’ of a system design, execution relies on
too many variabilities to ‘assure’ complete realization of
design intentions. The effectiveness of governance is
dependent on the efficacy of identification, assessment,
response, and evaluation of inevitable pathologies.
Governance supports the achievement of resilience
and robustness to withstand and persevere in the

112

midst of external turbulence and internal system flux. Well-
governed systems address pathologies as they occur, while
excellent systems continually design out governance pathologies
before they escalate into crises. Practitioners must ask, ‘Do we
purposefully design and continually redesign our SoS to address
and preclude pathologies?’.

4.	 Violations of systems propositions in the performance of
governance functions carry consequences. System propositions
cannot be ignored. Regardless of noble intentions, unconscious
ignorance, or willful disregard, violating system propositions
carries real consequences for system performance. In the best
possible case, violations of systems propositions will only degrade
performance. In the worst case, violations of systems propositions
will escalate to cause catastrophic consequences or, worse yet,
total system collapse. Practitioners must ask, ‘Do we understand
deficient SoS performance in terms of violations of underlying
system propositions affecting functions?’.

5.	 System performance can be enhanced through the purposeful
development of governance functions. When SoS fail to
meet performance expectations, assessment of contributing
deficiencies (pathologies) in governance functions offers novel
insights into the deeper sources of failure. SoS performance issues
can be traced to issues in governance functions and eventually to
violations of underlying system propositions. Through purposeful
development, governance can proceed from a more informed
position. Practitioners must ask, ‘How might our SoS governance
functions and communication channels be explored to determine
violations of system propositions?’.

While not a complete set of themes for SoS governance, the provided
set captures the essence of the new CSG field for guiding SoS
governance design and implementation.

5.2. Challenges and cautions for SoS governance
implementation

The design and implementation of SoS governance is not a simple,
mundane, or low-resource endeavor. Given the enormity of a SoS
governance development undertaking, there are several challenges
that practitioners should consider. Our current experience in the
application of CSG has provided the following insights for those
contemplating such an undertaking for SoS governance development
[2]:

1.	 SoS governance development is not the Entry Point: As
promising as SoS governance might be for advancing system
understanding and performance, it is not the highest priority for
those who might be considering engagement. Instead, the priority
for practitioners is focused on ‘their problems’. Thus, focusing
on the role of SoS governance in addressing relevant system
problems is likely to generate greater engagement.

2.	 SoS governance engagement is not an all-or-
nothing endeavor: Building on the results of
initial explorations of SoS governance and their
implications, numerous potential developmental
paths can be pursued. Having SoS governance
postured as an ‘all-or-nothing’ endeavor for SoS
development is flawed. Instead, the development
path might pursue a spectrum of activities
(education, training, limited assessment,
modeling, etc.) and developmental levels
(practitioner, system, project, entity, enterprise,
problem) to enhance SoS governance.

3.	 SoS governance is not an ‘In-Addition-To’
endeavor: Unlike more traditional system
development activities that seek to address
a new concern by introducing a totally new
initiative (e.g. Lean, Six Sigma, TQM, CRM,
AI Adoption, Internet of Things, etc.), SoS
governance functions and communication
channels are already being performed by a SoS
that is viable (exists). The functions may not be
articulated or produce desirable performance,
but nevertheless, they are being performed to
some degree. SoS governance is focused on
understanding and potentially improving what
a SoS is already performing. Therefore, the
language, thinking, and explorations of SoS
governance are applied to an existing SoS where
they are already being ‘tacitly’ performed.

4.	 SoS governance development time and risk
should initially fall on the guide: It is unrealistic
to expect SoS participants to fully engage in a
SoS governance development initiative in terms
of investment of time and acceptance of ‘risk of
failure.’ Instead, the SoS governance facilitator
should bear the initial burden of time investment
and risk mitigation as opposed to implementing
SoS. This division should continue until the value
of investment (time) and utility of SoS governance
development combine to produce a risk-value-
cost trade-off perceived as being within reason
by practitioners. SoS governance development
should be conducted in a ‘safe to fail’ mode,
where there are possibilities to take risks without
the fear of retribution for falling short.

113

6. CONCLUSIONS
Designing and implementing SoS governance is not trivial. However, for those practitioners and entities willing to boldly engage in
SoS governance development, the potential for enhanced SoS performance is substantial. Four primary points of emphasis exist
for this exploration of SoS governance and implementation. First, SoS governance provides direction, oversight, and accountability
and was presented as distinctly different from traditional management. Second, SoS governance was presented through a set of
9 metasystem functions and 10 communication channels that produce governance and support continuing system viability. Third,
the SoS governance functions are subject to experiencing pathologies as deviations in normal or healthy conditions. Pathologies
degrade SoS performance and can eventually lead to catastrophic failure. Pathologies can be assessed for their existence,
impact, and the feasibility of successful resolution. Fourth, the contributions of SoS governance include permitting an efficient
allocation of scarce development resources, maturing systems-based capabilities, and providing transparency in the purposeful
design, execution, and development of SoS governance. Engaging SoS governance development is not a trivial endeavor. The
required resources, will, and commitment for SoS governance development are extensive. However, the potential for improvement
in SoS performance is significant.

114

REFERENCES

115

1.	 Katina, P. F., Keating, C. B., Bobo, J. A., & Toland, T. S. (2019). A
governance perspective for system-of-systems. Systems, 7(4), 54.

2.	 Keating, C. B. (2022). Complex System Governance. In Complex
System Governance: Theory and Practice (pp. 151-186). Cham:
Springer International Publishing.

3.	 Keating, C. B. (2014, June). Governance implications for meeting
challenges in the system of systems engineering field. In 2014 9th
International Conference on System of Systems Engineering (SOSE)
(pp. 154-159). IEEE.

4.	 Keating, C. B., Katina, P. F., & Bradley, J. M. (2014). Complex
system governance: concept, challenges, and emerging research.
International Journal of System of Systems Engineering, 5(3), 263-288.

5.	 Gorod, A., Sauser, B., & Boardman, J. (2008). System-of-systems
engineering management: A review of modern history and a path
forward. IEEE Systems Journal, 2(4), 484-499.

6.	 Keating, C., Rogers, R., Unal, R., Dryer, D., Sousa-Poza, A., Safford, R.,
and Rabadi, G. (2003). System of systems engineering. Engineering
Management Journal, 15(3), 36-45.

7.	 Adams, K. M., Hester, P. T., Bradley, J. M., Meyers, T. J., & Keating,
C. B. (2014). Systems theory as the foundation for understanding
systems. Systems Engineering, 17(1), 112-123.

8.	 Whitney, K., Bradley, J. M., Baugh, D. E., & Jr, C. W. C. (2015).
Systems theory as a foundation for governance of complex systems.
International Journal of System of Systems Engineering, 6(1-2), 15-32.

9.	 Castelle, K., Bradley, J. M., & Chesterman Jr, C. W. (2022). Systems
Theory for Complex System Governance. In Complex System
Governance: Theory and Practice (pp. 97-118). Cham: Springer
International Publishing.

10.	 Beer, S. (1979). The heart of Enterprise. Wiley, Cheshire.

11.	 Beer, S. (1995). Brain of the Firm. John Wiley & Sons.

12.	 Beer, S. (1985). Diagnosing the system for organizations. John Wiley
and Sons.

13.	 Warfield, J.N. (1976). Societal systems: Planning, policy and
complexity. New York, NY: Wiley-Interscience.

14.	 Keating, C. B. (2022). Complex System Governance. In Complex
System Governance: Theory and Practice (pp. 151-186). Cham:
Springer International Publishing.

15.	 Keating, C. B., Katina, P. F., & Bradley, J. M. (2015). Challenges for
developing complex system governance.

16.	 Keating C.B. (2014). Governance implications for meeting challenges
in the system of systems engineering field. In: 2014 9th international
conference on system of systems engineering (SOSE), IEEE, Adelaide,
pp. 154–159.

17.	 Keating, C. B., & Morin, M. (2001). An approach for systems
analysis of patient care operations. JONA: The Journal of Nursing
Administration, 31(7/8), 355-363.

18.	 Keating, C. B., & Katina, P. F. (2012). Prevalence of pathologies in
systems of systems. International Journal of System of Systems
Engineering, 3(3-4), 243-267.

19.	 Katina, P. (2022). “Metasystem Pathologies in Complex System
Governance” in eds. Keating, C., Katina, P., Chesterman, C., and
Pyne, J. Complex System Governance, Springer.

20.	 Keating, C. B. (2015, May). Complex system governance: Theory
to practice challenges for system of systems engineering. In 2015
10th System of Systems Engineering Conference (SoSE) (pp. 226-
231). IEEE.

21.	 Katina, P.F. (2016). Systems theory as a foundation for discovery
of pathologies for complex system problem formulation. In A. J.
Masys (Ed.), Applications of Systems Thinking and Soft Operations
Research in Managing Complexity (pp. 227–267). Geneva,
Switzerland: Springer International Publishing.

22.	 Keating, C. B., & Katina, P. F. (2019). Complex system governance:
Concept, utility, and challenges. Systems Research and Behavioral
Science, 36(5), 687-705.

23.	 Keating, C. B. (2022). Complex System Governance. In Complex
System Governance: Theory and Practice (pp. 151-186). Cham:
Springer International Publishing.

116

BIOGRAPHIES

117

DR. POLINPAPILINHO F. KATINA
Dr. Katina is an Associate Professor

(tenured) in the Department of Informatics

and Engineering Systems at the University of

South Carolina Upstate (Spartanburg, South

Carolina, USA). He has served different roles

in private and public industries, including

Design Electric (Charlottesville, Virginia,

USA), Politecnico di Milano (Milan, Italy),

National Centers for System of Systems

Engineering (Norfolk, Virginia, USA), Old

Dominion University (Norfolk, Virginia, USA),

Syracuse University (Syracuse, New York,

USA), and The University of Alabama in Huntsville (Huntsville, Alabama,

USA).

Dr. Katina holds a B.S. in Engineering Technology, an M.Eng. in Systems

Engineering, and a Ph.D. in Engineering Management and Systems

Engineering (Old Dominion University, Norfolk, Virginia, USA). He received

additional training at the Politecnico di Milano (Milan, Italy).

His teaching and research interests revolve around topics of Complex

System Governance, Critical Infrastructures, Emerging Technologies (e.g.,

IoT, Smart Grids), Engineering Management, Infranomics, Manufacturing

Systems, System of Systems, Systems Engineering, Systems Pathology,

Systems Theory, and Systems Thinking.

His profile includes more than 200 peer-reviewed journal articles,

conference proceedings, and book chapters. He has also co-authored

more than a dozen books, including “Gamification for Resilience” (Wiley,

2023). He has published in over 21 peer-reviewed journals with high impact

and visibility. He is a recipient of several awards, including the 2020 IAA

Social Sciences Book Award (IAA: International Academy of Astronautics).

Dr. Katina is a Senior Member of IEEE and Epsilon Mu Eta (Engineering

Management Honor Society), ABET Program Evaluator, and journal editor

for several journals, including Advanced Manufacturing (ELSP), Control

and Engineering of Complex Systems Frontiers in Complex Systems

(Frontiers Media SA), Cureus Journal of Engineering (Springer/Nature),

Discrete Dynamics in Nature and Society (John Wiley), International

Journal of Critical Infrastructures (Inderscience), and International Journal

of System of Systems Engineering (Inderscience).

118

DR. CHARLES B. KEATING
Dr. Keating serves as Professor

Emeritus of Engineering

Management and Systems

Engineering at Old Dominion

University. His research

focuses on Complex System

Governance, System of

Systems Engineering, Systemic

Intervention, and Management

Cybernetics. He is a Fellow,

Past President, and 2015

Sarchet Award recipient from

American Society for Engineering Management for his

pioneering efforts in the field. He has published over 170

peer reviewed papers and graduated 32 Ph.D.s. His research

has spanned defense, security, aerospace, healthcare, R&D,

and automotive industries. He holds a B.S. in Engineering

from the United States Military Academy (West Point), a

M.A. in Management from Central Michigan University, and

a Ph.D. in Engineering Management from Old Dominion

University. His memberships include the American Society

for Engineering Management, the International Society for the

System Sciences, and the International Council on Systems

Engineering.

CÉSAR HERAS MENOR DE GASPAR

César Heras Menor de Gaspar

is a systems engineer. During

his almost 20 years at Isdefe,

his career has been focused

on engineering activities

within the Spanish National

Armaments Directorate of the

State Secretary for Defence,

in the areas of planning for

the acquisition of weapons

and material resources,

development of RPAS (Remotely

Piloted Aircraft System) systems and management of

defence procurement programmes.

Currently provides technical assistance in the Office of the

Next Generation Weapon System (NGWS) Program within

the environment of a Future Combat Air System (FCAS),

especially in the areas of sixth-generation fighter, remote

systems and systems of systems.

Before joining Isdefe, César worked as a systems engineer

at HoneyWell, Amper Programs in the avionics and

communications systems programs.

In 2021 he was awarded with the Spanish Air Force Medal

(Cruz del Mérito Aeronáutico con distintivo blanco) for his

work supporting the Spanish National Armaments Directorate

119

VÍCTOR RAMOS DEL POZO

Víctor Ramos del Pozo is a

systems engineer at Isdefe,

currently delivering technical

assistance for the Spanish

National Programme Office for

the Next Generation Weapon

System (NGWS) within a Future

Combat Air System (FCAS),

especially in the fields of the

Combat Cloud, Collaborative

Sensors, Simulation and

Systems of Systems. He

previously delivered technical assistance for the Spanish

National Armaments Directorate of the State Secretary for

Defence in the fields of defence industrial base analysis,

defence acquisition planning and major defence acquisition

programmes management.

Before joining Isdefe, he worked as a systems engineer at

EADS-CASA (current Airbus Defence and Space) for the

Multi-Role Tanker Transport and Future Strategic Tanker

Aircrafts programmes, and at Indra for the Identification

Friend or Foe Department.

He is a fellow of the International Council on Systems

Engineering (INCOSE) and delivers internal training at

Isdefe in the fields of systems engineering and programme

management.

In 2015 he was awarded with the Spanish Air Force Medal

(Cruz del Mérito Aeronáutico con distintivo blanco) for

his work supporting the Spanish National Armaments

Directorate.

CH
AP

TE
R

6
System of Systems

planning and integration

Abstract

The system heterogeneity and dynamic organization of Systems of Systems create opportunities
and complexities that necessitate a careful planning and integration process to meet the needs of
early users while not constraining future anticipated or unidentified needs. This process involves
consideration of and trade-off negotiations involving as many as two dozen factors, accomplished in
as many as nine planning activities. This chapter examines the factors affecting SoS planning and the
goals of each planning activity.

Keywords

SoS planning, SoS integration, SoS lifecycle, SoS integration

Dr. Michael Sievers, University of Southern California (michael.sievers@usc.edu)
Pablo Marticorena San Jose, Isdefe (pmarticorena@isdefe.es)

122

1. INTRODUCTION
This chapter examines the factors and methods employed in
planning and integrating the technical aspects of a system
of systems (SoS). Notably, the lifetime of a SoS may extend
over many years, beginning with modest initial capabilities
that continually evolve to meet the needs of new users and
usages. A well-conceived planning exercise aims to create
a SoS foundation that accommodates near-term connectivity
and services for early users while not constraining future
anticipated or unidentified needs.

While planning and integrating a SoS shares many activities
similar to those used in developing a traditional system, a
SoS has unique characteristics that contribute to its utility and
complicate its planning and integration [1-5], as discussed in
Chapter 1, which occurs in multiple, interdependent activities.
The following section discusses planning considerations.
Section 3 examines planning for interoperability, Section 4
discusses SoS integration, and lastly Section 5 provides the
conclusion.

2. SOS PLANNING CONSIDERATIONS

2.1. SoS performance and behavior features

Before describing planning activities, discussing key features
that impact planning is necessary. These features establish
the requirements and constraints for SoS architecture,
functionality, safety, security, operations, and utility. Table 1
lists key SoS factors and their planning influences.

Factor Concern Planning Function

Accessibility
The services and products produced by the SoS are easily

accessible to SoS users.
Determine what services and resources clients need and the

means and constraints for providing them.

Adaptability
The SoS interactively changes its behaviors and connections to

suit individual users.
Determine what adaptability is needed and how to provide it.

Affordability
The degree to which the lifetime cost of the SoS is within

anticipated budget constraints.
Establish budgets for development, operations, and

maintenance.

Availability
SoS services and resources can be reasonably assumed to be

available whenever needed.
Determine the necessary availability of services and

resources that meet client expectations.

Composability
SoS components may be connected in many ways, as defined by

user goals and requirements.
Architecture planning that assures the composability of

services and applications.

Confidentiality
Sensitive data and services are made available only to

designated users.
Determine what content, services, and applications are

sensitive and the approach to assuring confidentiality.

Disaster management
Preparing for and executing processes and procedures for
recovering operations should some or an entire SoS be destroyed

by a large-scale disaster such as a fire, flood, or earthquake.

A catastrophic disaster may damage data and computational
resources. Determine what must be protected and a plan for

providing that protection.

Elasticity
The SoS architecture enables automatic provisioning and release

of resources that meet changing workloads.
Planning the SoS architecture to accommodate flexible

allocation of resources to match workloads.

Extensibility
The degree to which a SoS can provide for future resources,

applications, services, and behaviors.
Plan for a SoS architecture that can seamlessly accommodate

future resources and services.

Interoperability
The ability of constituent systems to exchange and use

information and services.
Determine how interoperability will be accomplished in new

and legacy components.

Maintainability
The degree to which resources in the SoS can be maintained for

correcting, preventing, and eliminating faults.
Establish the processes, roles, responsibilities, and audits

necessary for evaluating and restoring SoS performance.

Performance
Ensuring that the SoS meets performance requirements under

expected usage and environmental conditions.
Evaluate client performance requirements and plan the

needed SoS architecture and resources.

123

Factor Concern Planning Function

Quality of service
A measure of the effectiveness and performance of a service
or the SoS for performing tasks and meeting user expectations.

Evaluate the quality of service expected by clients and
plans for measuring and making repairs or modifications to

maintain it.

Real-time
Some SoS applications may require tight time constraints to

complete services or deliver products.
Plan for edge or fog computing to accommodate hard real-

time applications.

Repairability
The SoS has features that support the diagnosis and repair of

failed or malfunctioning resources.

Related to maintainability, plans that make the SoS
diagnosable and repairable while preserving required

availability.

Resilience
The ability of the SoS to continue providing useful services during

disruption and to repair any damage post-disruption.
Plans for incorporating mechanisms that preserve functionality

in the presence of resource faults and cyberattacks.

Safety
An SoS that implements safety-critical functions requires special
attention to ensure those functions remain controlled and safe.

Plan to add features that protect safety-critical functions.

Scalability
This attribute is related to elasticity; scalability measures how well

the SoS can adapt to increasing workloads.
Evaluate and plan for the temporary allocation of resources

needed by a client workload.

Security
Protecting the SoS from unauthorized access and ensuring data

integrity and confidentiality.

Cybersecurity plans include audits, detection methods, user
training, and continual testing. Planning for cyber-resilience

involves means for learning and adapting to new attacks.

Spectrum management
Efficient electromagnetic spectrum management in wireless

networks to avoid interference and ensure communication.

Plan the use of the electromagnetic spectrum in a way
consistent with SoS communication requirements and

regulatory provisions.

Trust Reliance on the SoS’ capability, honesty, and reliability.
Determine the extent and means necessary to ensure clients

trust interactions with other clients and SoS resources.

Usability The SoS is user-friendly and easy to operate.
Plan for intuitive and easy-to-use client interfaces, such
as web services, RESTful applications, and application

programming interfaces.

Users and usages

SoS client needs and expectations drive the need for resources
and composability. Increasing numbers of users and threads
directly affect the quantity and type of resources and their

interoperability.

Plan for changes and growth in client services and resources.

Verifiability
Ensure that the SoS was built correctly and provides the expected

capabilities.
Develop plans for performing end-to-end testing of SoS

missions, capabilities, and threads.

Table 1: Planning Considerations.

124

2.2. SoS planning activities

Figure 2 shows the interaction between planning actions that
are defined in Table 3. Strategic, tactical, and operational
planning are decomposed into their subplans. Lower-level
plans tend to have a single purpose, and their details are
found in Table 3. Long-term planning extends the goals of
strategic planning. Retirement planning is developed from
strategic and tactical planning. Lifecycle planning is informed
by tactical planning. Each plan may address one or more of
the factors in Table 2.

Figure 2: Ontological structure showing SoS concepts and relationships.

125

Planning
Activity Purpose

Strategic

Strategic planning establishes the process for defining an organization’s future direction, needs, and goals. These plans align,
motivate, and engage internal and external stakeholders with strategic priorities that reflect mission goals and priorities. A strategic
plan is the basis for understanding and accommodating extensibility, adaptability, affordability, availability, resilience, scalability,
security, confidentiality, and safety. Strategic plans are often static or minimally changed during the lifetime of a SoS. As strategic

plans define the business case and overall missions, they are rarely changed, although capabilities and threads may be changed.

This activity analyzes and assesses the SoS value proposition, missions, trends, best practices, current developments, and gaps;
develops a strategy that aligns key stakeholders with missions and the resources needed to achieve them; establishes the processes

required to accomplish the strategy; and monitors and evaluates plan progress and replans when necessary.

The plan includes a statement of purpose, analysis of strengths, weaknesses, opportunities, and threats.

Tactical

Tactical plans map strategic plans into the near-term goals, strategies, and micro-strategies of specific organizations for achieving
those goals. These plans include considerations of SoS processing and storage resources, communication, elasticity, maintainability,
and interoperability expected of the SoS for carrying out real-time and non-time-critical services and product generation, evaluating
product quality, and monitoring SoS performance and resilience. Tactical plans adapt to new needs and realities during the SoS

lifetime and are more volatile than strategic plans.

Tactical planning includes creating goals, allocating responsibilities, establishing timelines, determining resources, and assigning
tasks.

Operational

Operational plans establish the flow of activities that achieve tactical plans. These plans often cover a few months and provide the
guidance needed by enterprise managers for operating the SoS. Operation planning comprises the detailed planning of how the SoS
will operate in real-world scenarios. This includes defining workflows, processes, and system interactions to ensure smooth operations.

This activity initiates Capability-Based, Lifecycle, Risk Management, and interoperability planning.

Capability-Based
Focuses on identifying and developing the capabilities required by the SoS. This involves defining
the desired outcomes and ensuring that the systems within the SoS can achieve these capabilities.

Lifecycle

Focuses on managing the entire lifecycle of the SoS, from the initial concept through development,
deployment, operation, and eventual decommissioning. This ensures that the SoS remains effective
and relevant throughout its lifespan. Lifecycle planning primarily takes input from strategic and

tactical planning.

Risk Management
Involves identifying, assessing, and mitigating risks associated with the SoS. This ensures that
potential issues are addressed proactively to minimize their impact on the SoS. Risks are often

expressed as the likelihood of an unwanted event and the impact of the event if it happens.

Interoperability
Ensures that the systems within the SoS can work together seamlessly. Plans involve defining

standards, protocols, and interfaces facilitating system communication and integration.

Long-Term

These plans explore SoS options and potential uses many years beyond strategic plans. The primary distinction between long-term
and strategic plans is that strategic plans are the means for achieving an organization’s expected future needs. In contrast, long-term
plans are a form of unconstrained brainstorming. Strategic plans are on the path that develops SoS requirements and use cases, while

long-term plans are unfunded candidates for future goals.

Short-Term
Short-term plans decide the capabilities available to SoS clients at a point in time. These plans directly influence SoS requirements,
personnel assignments, and near-term tasking. An example might be planning the delivery of a specific service used throughout the

SoS.

Validation
Describes the facilities, configuration, resources, test equipment, personnel, test scenarios, and success criteria associated with

validating expected SoS functionality and requirements.

Deployment

Details the plans for how the SoS will be deployed. Deployment options include running the new system alongside an old system,
setting up the new system to slowly perform functions of an old system, shutting down an old system and the new system takes
over, gradually modifying an old system to the new system, having the new system shadow an old system but is hidden to users, or
progressively enabling and testing components of the new system available to users when an old system doesn’t exist. Deployment

may also occur with integration.

126

3. PLANNING FOR INTEROPERABILITY
An essential aspect of SoS planning involves understanding
the form and degree to which services and resources must
interoperate [7]. Interoperability can occur at different scales
and times and can be applied differently to individual clients
and services. Importantly, interoperability must exist with legacy
systems that may or may not provide the necessary services.

Commonly, four levels of interoperability may be implemented
in a SoS.

	• Foundational interoperability is the simplest form in
which data are shared among systems in an SoS, but
the data are not interpreted. Human users interpret
exchanged data for use by data clients. It involves
establishing communication links and protocols that
enable data transmission between systems.

	• Structural or syntactic interoperability comprises
consistent data formats that all systems within the SoS
understand. This form of interoperability enables all
systems to retrieve, interpret, and process information.
It ensures that the data syntax, such as data formats
and communication protocols, are standardized so that
systems understand and process the data correctly.

	• Semantic interoperability assures that the systems
within an SoS share a common conceptual understanding
of data and messages. It also removes the possibility of
misinterpreting shared information. It involves defining
common data models, vocabularies, and ontologies to
ensure that the data exchanged has the same meaning to
all participating systems.

	• Organizational interoperability enables consistent
data sharing across an SoS aligned with common goals,
needs, expectations, usage, workflows, and enterprise
governance.

Thread execution needs and timelines strongly influence SoS
interoperability, which impacts SoS architectural decisions,
communication options, resilience, maintainability, safety,
and availability.

Considerations and accommodations for interoperability are
captured in tactical plans as capability statements that describe
information sources, uses, and destinations. For example,
a mission goal to reduce aircraft accidents is associated
with capabilities for collecting heterogeneous aircraft sensor
data, collecting weather data, distributing data to situational
awareness processors, decision making, and real-time air traffic
management control.

Operation and short-term plans describe the technical means
for accomplishing interoperability as tactical capabilities dictate.
Following the air traffic control example above, interoperability
may involve service and message brokers, middleware, data
exchange standards and protocols, web services, and proxy
servers, among many other options. Real-time traffic control
needs information exchanges guaranteed to be free of delays
and extended outages.

Interoperability impacts the overall performance of the SoS.
Interoperability enhances the adaptability of SoS, allowing it
to incorporate new systems and technologies. Planning must
be flexible to accommodate changes and upgrades. Also,
interoperability ensures seamless integration of constituent
systems, which is crucial for effective SoS operation. Planning
must consider how to optimize performance through effective
interoperability by mitigating or eliminating challenges resulting
from:

	• Legacy systems may use outdated technologies and
communication protocols. Legacy can be challenging
to interoperate with newer systems unless significant
changes or specialized middleware are used to translate
between legacy and newer system syntax and semantics.

Planning
Activity Purpose

Support
Plans the means and staffing to support the operation of the SoS after it is deployed. Support may include service functions that

monitor performance, error rates, usage, and outages. Support planning may consist of plans for training operators and users.

Retirement Planning
Describes the plans for retirement and disposal of the SoS. Retiring a SoS does not necessarily imply retiring constituent systems
but could remove the framework and utilities associated with SoS interoperability and support. Importantly the plan should address
continuation of client services on another SoS. Planning for retirement begins with strategic planning and is detailed in tactical planning.

Table 3: Planning activities details.

127

	• Interoperability requires standardized communication
protocols (e.g., HTTP, FTP, SOAP, REST, TCP/IP, UDP,
ICMP, etc.) to facilitate information exchange between
systems. Planning must define these protocols to ensure
smooth interactions. Managing data at scale involves
coordinating and consolidating data from multiple sources.
A particular challenge is providing interoperability with
legacy data stored in siloed databases with obsolete
formats that depend on outdated database management
software.

	• Heterogeneous programming languages, operating
systems, and hardware used by different systems may
not readily interoperate.

	• Systems may use different data formats (e.g., JSON,
XML, plain text, CSV, proprietary formats). Translating
those formats for interoperability can be difficult and can
slow exchanges.

	• Communication and processing bottlenecks may slow
exchanges, especially as the SoS scales upward.
Bottlenecks can worsen when layers of middleware add
overhead and additional communication delays.

	• Semantic misunderstandings are perhaps the most
significant challenge of interoperability because they
prevent proper interpretation of exchanged information.
Misunderstandings are especially problematic when data
from different domains are exchanged.

4. ARCHITECTURE AND INTEGRATION
PLANNING
A SoS architecture comprises enterprise resources and their
connections as required for providing threads that achieve
mission capabilities. Accommodating the attributes noted
in Chapter 1 places additional demands on architectural
planning. In simple terms, planning the physical architecture
of an SoS involves choosing options that efficiently balance
opposing attributes. Unfortunately, several realities complicate
architecture planning.

Consider a federated architecture to illustrate the complexities
in SoS structure and interoperability. A federation is a form
of collaborative SoS in which multiple autonomous systems
work together to achieve a common objective. Each system
within the federation operates independently of the other
systems using its data, processes, and control. Collaboration
occurs because of well-defined exchange and application
invocation interfaces. Systems in loose federations operate

almost entirely independently of each other and coordinate
through data exchanges and authentication. Tight federations
comprise a central authority for coordinating the activities of
autonomous systems. Hierarchical federations are structured
like tight federations, but the central authority also determines
enterprise policies. Peer-to-peer federations have no central
authority, and coordination is managed by consensus and
predefined protocols. Lastly, hybrid federations are a mix of
tightly and loosely federated systems that a central authority
may coordinate.

Planning resilience, availability, cybersecurity, maintenance,
disaster recovery, and safety accommodations entails knowing
and predicting potential disruptions when possible and having
procedures to manage the unexpected. Further complications
arise when the SoS executes threads that must be completed
at time scales that cannot tolerate long outages. The planning
process must anticipate the need for robust architectures and
develop, test, and revise contingency plans as unexpected
fault conditions and novel cyberattacks occur. Commercial
cloud providers offer tools, services, and architecture
recommendations for building robust and responsive SoS.
An architecture plan could include a cost-benefit analysis of
engaging a commercial cloud vendor versus building a SoS in-
house.

Architecture planning should also consider usages outside
mission applications, such as application and service
development and deployment, service discovery, maintenance,
performance and security monitoring, and auditing. Commercial
cloud providers also offer these capabilities. A plan could
include evaluating the cost-benefit of using a commercial
service provider or building needed capabilities in-house.

Planning a SoS configured as a cloud needs a process for
determining the cloud type, e.g., public, private, hybrid, or
community:

	• Public cloud environments use information technology
infrastructure and services provided by third-party vendors
over the internet. Public cloud resources are shared among
multiple organizations and individuals. Key features include:

Scalability
Virtually unlimited scalability to

meet varying demands.

Cost Efficiency
Operates on a pay-as-you-go
model, reducing upfront costs.

Accessibility
Accessible from anywhere with

an internet connection.

Management
The cloud provider manages and

maintains the infrastructure.

128

	• Private clouds are dedicated to a single organization,
providing exclusive access to computing resources. They
can be hosted on-premises or by a third-party provider.
Key features include:

A SoS that executes real-time or time-critical threads may
need to consider high-performance, low-latency architectures
such as edge or fog architectures. Edge computing reduces
latency by physically moving computing and data storage
close to the data source or user. Fog computing reduces
latency by using geographically distributed computing that
extends cloud computing to network edges. A plan should
include a process for evaluating architectural options related
to the performance of near-term and future mission threads.

Lastly, SoS resources, applications, and services are
connected in ways that are consistent with the attributes in
Section 1. Other factors [2] impacting SoS integration are
shown in Table 4.

Security
Enhanced security and control

over data and applications.

Customization
Tailored to meet specific

organizational needs.

Compliance
Easier to meet regulatory and

compliance requirements.

Management Can be managed internally or outsourced.

	• Hybrid clouds combine public and private clouds,
allowing data and applications to be shared between
them. This approach offers flexibility and optimization of
existing infrastructure. Key features include:

Agility
Ability to quickly adapt to

changing business needs.

Scalability
Leverages the scalability of public

clouds while maintaining control over
critical data in private clouds.

Cost Optimization
Balances cost and performance
by using the most appropriate

environment for each workload.

Business Continuity
Enhances resilience by distributing

workloads across multiple environments.

	• Community clouds are shared among multiple
organizations with similar requirements, such as
regulatory compliance or security needs. The participating
organizations or a third party manage them. Key features
include

Shared Resources
Cost-effective sharing of resources

among community members.

Compliance
Tailored to meet specific regulatory and

compliance needs of the community.

Collaboration
Facilitates collaboration and data sharing
among organizations with common goals.

Security
Enhanced security measures tailored

to the community's needs.

Factor Purpose

Stakeholders

Stakeholders have diverse needs and goals that
must be aligned for successful SoS integration. Their
requirements drive the design and functionality of
the SoS, ensuring that the integrated system meets
the collective objectives. Additionally, customers
for mission data products, suppliers of information
needed to produce mission data products, quality
assurance monitors, developers, verification and
validation teams, security specialists, accountants,
system maintainers, auditors, and managers who
need access to specific SoS data, status, and

physical resources.

Architecture
Development

Besides defining physical and software
composition, a plan should identify the process
by which a SoS architecture is developed and
reviewed, as well as the trades needed to allocate
functions and data. The architecture defines the
structure and interaction of constituent systems
within the SoS. A well-designed architecture
facilitates seamless integration, ensuring systems

can work together effectively.

Integration
Resources

SoS integration sometimes requires special
equipment, facilities, and staffing for installation
and checkout. Adequate resources, including
funding, personnel, and technology, are crucial
for integration. Limited resources can hinder
integration, leading to delays and suboptimal

performance.

Integration
Processes

Integration processes comprise the steps to
perform integration using integration resources.
Initial process descriptions are usually detailed
enough to determine the integration resources.
Process specifics are developed during operation

and short-term planning.

Integration
Requirements

Mission functions will have requirements related to
accuracy, throughput, capacity, timeliness, safety,
etc. Planning should establish how requirements

are elicited, validated, tracked, and allocated.

129

Table 4: Factors impacting SoS integration.

Factor Purpose

External
Influences

External factors such as regulatory changes,
technological advancements, and market
dynamics can impact SoS integration. These
influences must be considered and managed to

ensure successful integration.

Risk
Management

A risk management plan should be developed for
all aspects of the SoS. Regarding integration, risks
may be associated with late deliveries, failures and
defects, inconsistencies, and assembly errors. A
risk management plan provides the process for

collecting, bookkeeping, and retiring risks.

V&V

The type of SoS will determine the extent to which
verification and validation (V&V) are possible.
At minimum, systems should perform V&V on
interface protocols to ensure compliance with
SoS agreements and standards. A V&V plan
explains what is checked and the success
criteria. Additionally, planning should indicate
V&V roles and responsibilities and the process for

documenting and adjudicating V&V failures.

Tailoring
and Reuse

Tailoring involves customizing integration
processes to fit specific needs, while reusing
leverages existing components and processes to
save time and resources. Both practices enhance

efficiency and reduce integration costs.

Certification
and

Accreditation

Certification and accreditation ensure that the SoS
complies with relevant standards and regulations.
This process validates the safety, security, and

performance of the SoS, assuring stakeholders.

A plan should define the process for selecting the SoS integration
best suited for thread execution as shown in Table 5.

Option Purpose

Data
Integration

Data integration focused on maintaining data
consistency across the SoS. Ideally, data should
be standardized across all systems. However,
middleware or similar services can be employed
when system-level standardization is not feasible.

Point-to-Point

Point-to-point integration comprises direct
connections between resources. This method
is straightforward, but inflexible, leading to

complexities as the SoS grows.

Star

Star integration is associated with making direct
connections between all resources. It provides a
high degree of connectivity but may be difficult to

manage.

Hub-and-
Spoke

Hub-and-spoke integration has a central hub that
connects resources. It simplifies management and

reduced the number of connections needed.

Vertical
Vertical integration connects systems within an
organization. This approach is suitable within the

same organizational boundaries.

Horizontal

Horizontal integration connects systems across
organizations. It is ideal for integrating systems
that need to collaborate across organizational

boundaries.

Middleware

Middleware is glue software that smooths
connectivity between software components that
may not share common data semantics or syntax.
It is useful for integrating heterogeneous systems

and data.

SOA

Service-oriented integration connects services to
clients through a service broker, hiding transaction
details and the client's and the service’s location.
Universal Description, Discovery, and Integration
(UDDI) is a standard for specifying, publishing, and

discovering web services.

SOAP

Simple Object Access Protocol (SOAP) is a
transport-independent web service messaging
protocol that is suitable for scenarios requiring

robust security and transaction compliance.

REST

Representational State Transfer (REST) is a
simple, scalable, flexible, stateless, client-server
communications protocol. REST is ideal for web-
based applications requiring lightweight and

efficient communication.

Table 5: Thread execution options.

130

5. CONCLUSION
This brief chapter overviewed the factors and trade considerations necessary in planning a SoS development. It discussed
multiple plan phases consistent with traditional systems engineering. Each plan phase defines processes eliciting and evaluating
increasingly finer levels of design and operational detail.

Ideally, the chosen architecture and integration approach
should provide capabilities for early users while not
constraining future growth. There is a trade between
upfront design and implementation costs versus increased
lifecycle costs. Creating flexible architectures involves more
complicated integration mechanisms with greater upfront
costs and risks. However, restrictive architectures that are
less costly and risky in the beginning will be more expensive
to update in the future.

131

1.	 Boardman, J. and Sauser, B, “System of Systems – The Meaning
of,” Proc. IEEE/SMC Int. Conf. Systems Engineering, Los Angeles,
CA, 2006, pp. 118-123

2.	 Madni, Azad and Sievers, M., “System of Systems Integration:
Key Considerations and Challenges,” INCOSE Systems
Engineering, 17 (3), 2014, pp. 330-347

3.	 INCOSE Systems of Systems Primer, INCOSE-TP-2018-003-01.0

4.	 Maier, M.W. “Architecting Principles for System of Systems,
Systems Engineering, 1 (4) 1998, pp. 267-284

5.	 Sage, A.P., and C.D. Cuppan. “On the Systems Engineering
and Management of Systems of Systems and Federations of
Systems,” Information, Knowledge, Systems Management, Vol.
2, No. 4, 2001, pp. 325-345

6.	 Diallo, Saikou & Herencia, Heber & Padilla, José & Tolk, Andreas.
(2011). Understanding interoperability,” EAIA ’11: Proceedings of
the 2011 Emerging M&S Applications in Industry and Academia
Symposium, Boston, MA, April 3-7, pp. 84-91

RE
FE

RE
NC

ES

132

BIOGRAPHIES

133

PABLO MARTICORENA
Pablo Marticorena holds a BS

in Computing Management

from the Polytechnic University

of Marid and an MS in

Computer Engineering from

the Universidad Autónoma de

Madrid. Throughout his career,

he has held various technical

and managerial roles, both

inside and outside Isdefe,

including Data Warehouse

administration, SQL/e-CODEX

development, digitalization of public administrations,

management of technology providers, requirements

specification, verification/validation, and RAMS analysis.

In his main line of work, he has established himself as an

expert in Software Safety and Assurance, accumulating over

22 years of experience in the Air Traffic Management sector.

He has supported multiple automation areas, ensuring

regulatory compliance of changes made to various critical

control systems, in addition to contributing to the integration

of methodologies within the life cycles of these systems.

He is currently contributing his expertise in requirements

engineering to the iTEC SkyNex program, where Isdefe

collaborates with ENAIRE and INDRA to integrate technological

advancements into Air Traffic Control, creating a unified,

efficient, and sustainable ATM environment. Finally, it is worth

noting that he remains passionate about his profession and

about contributing to the development of Spain and Europe

through his technical skills and interpersonal abilities. He also

participates as an internal trainer at Isdefe and is an INCOSE

CSEP.

DR. MICHAEL SIEVERS
Dr. Michael Sievers earned a

Ph.D. in Computer Science

and MS and BS degrees in

Electrical Engineering, all from

UCLA. He is currently a senior

systems engineer at Caltech’s

Jet Propulsion Laboratory and

on the University of Southern

California systems engineering

faculty. He specializes in space

and ground system mission

design, fault-tolerance and

resilience, end-to-end information systems, system software,

high-performance computing, command and data handling,

MBSE, and system trust and reputation. He is currently

leading the development of resilience methods for a large

U.S. Government system-of-systems and teaches classes in

system integration, critical system resilience, and machine

learning. Dr. Sievers is an INCOSE Fellow, AIAA Associate

Fellow, and an IEEE Senior Member.

CH
AP

TE
R

7
System of Systems
test and evaluation

Abstract

Testing and evaluation (T&E) of a System of Systems (SoS) present unique challenges that differ
significantly from those encountered in traditional system-level testing. This chapter presents a
comprehensive approach to SoS T&E, emphasizing the need for adaptive frameworks, robust modeling
and simulation techniques, and the integration of operational context throughout the test lifecycle. Key
considerations include interoperability, dynamic configuration, and the evaluation of performance
under realistic, mission-driven scenarios. The chapter also touches on metrics for success, validation
strategies across heterogeneous systems, and the importance of stakeholder collaboration. The
goal is to ensure that the SoS meets overarching mission requirements while maintaining reliability,
scalability, and resilience in complex environments.

Keywords

System, Test, Evaluation, SoS

Mark Phillips, University of New South Wales (mark.phillips@unsw.edu.au)
Dr. Keith Joiner, University of New South Wales (k.joiner@unsw.edu.au)

Aurelio Fernández Sáez, Isdefe (afernandez@isdefe.es)
Manuel Fernández Astaburuaga, Isdefe (mfastaburuaga@isdefe.es)

136

1. INTRODUCTION
This chapter provides guidance as to how to Test & Evaluate
System of Systems (SoS). Test and Evaluation (T&E) of a
SoS is a complex and dynamic process that involves
multiple stakeholders, integrating multi-proprietary and
thus independent yet interdependent systems to achieve
a common goal. Unlike traditional system testing, SoS
T&E must address emergent behaviors, interoperability
challenges, and evolving operational requirements [1, 2].

From the customer’s perspective, T&E ensures that the
SoS meets mission objectives, operational effectiveness
(mission success), and suitability within real-world
constraints. Customers, typically government agencies or
large enterprises, focus on validating performance, risk
mitigation, and ensuring compliance with regulatory and
security standards [3]. Conversely, from the contractor’s
perspective, SoS T&E involves balancing system integration,
cost, schedule, and technical feasibility. Contractors
are responsible for meeting contract requirements while
ensuring that constituent systems function cohesively
within the broader SoS architecture. They must navigate
evolving customer needs, technological uncertainties, and
interoperability constraints across different vendors and
legacy systems.

Effective T&E of an SoS requires, to the greatest extent
possible, the delineation of predictable performance
from whatever emergent phenomena can and will occur
through life. This requires a rigorous test methodology,
including modeling and simulation, live testing, and iterative
assessments throughout the SoS lifetime and the lifecycle
of each of its constituent systems [4]. Both customers
and contractors must engage in collaborative planning,
leveraging agile and adaptive T&E strategies to address the
complexities of SoS environments.

2. CONCEPTS THAT AFFECT SOS TEST
The difference in treatment between traditional and SoS
T&E can be substantial. Therefore, we should consider
the difference when we develop T&E plans. Generally, the
constituent systems being integrated have their own levels
of maturity in terms of technology, manufacturing, and
interoperability readiness levels. This will make it challenging
to synchronize the different lifecycles to ensure that the SoS
can be tested with a stable functional, configuration, and
allocated baselines. This will require close coordination with
the customer(s) as part of the SoS governance process. As
shown in Table 1, we can identify areas where we should pay
close attention due to the integration issues that arise when
building a SoS. Note that some of these considerations may
also apply to traditional systems.

The importance of managing the overall SoS baseline in
coordination with the constituent system baselines cannot
be overstated. Failure to achieve this generally results in cost
overruns and failure to meet mission objectives.

137

Traditional Systems
Engineering

System of Systems
Engineering T&E Considerations

Purpose
Development of a single system

to meet stakeholder needs
and defined performance.

Evolving new SoS capability by
leveraging synergies of legacy systems.

Consider the governance model and the
requirements for resourcing for the customer(s).

System Architectures
System architecture established

early in lifecycle and
remains relatively stable.

Dynamic reconfiguration of
architecture as the needs change;
use of service-oriented architecture

approach as enabler.

Define the SoS boundary and provide a T&E
Master Plan that pays close attention to the

interoperability between constituent systems
and the satisficing of the mission of the SoS.

System
Interoperability

Defines and implements specific
interface requirements to

integrate components in system.

Constituent systems can operate
independently of SoS in a

useful manner. Protocols and
standards essential to enable

interposable systems.

Develop architecture representations early that
identify the interoperability metrics required
to assess fitness for purpose. Integrating a
SoS can sub-optimize performance overall.

Map systems to mission capabilities and
identify threshold and objective measures.

Acquisition &
Management

Centralized acquisition and
management of the system.

Constituent systems separately
acquired and continue to be

managed as independent systems.

Ensure that the governance model for the SoS is
resourced to effectively build and execute a T&E

plan. Consider impact to constituent systems
and the unforeseen need to account for baseline
changes. This implies that it may not be possible

to conduct intrusive testing on constituent
systems or stop services to perform testing at the

edge as the behavior of the SoS will change.

Table 1: T&E Considerations for SoS (adapted from [5]).

3. RISK MANAGEMENT IN SOS
TESTING
The T&E of a SoS is an inherently complex and
dynamic process that requires a structured yet
flexible approach. From the customer’s perspective,
SoS T&E ensures that mission objectives, security,
and operational effectiveness are met. From the
contractor’s viewpoint, managing cost, schedule, and
technical risks is a critical challenge. By employing
a mix of modeling and simulation, agile testing,
interoperability assessments, and adaptive risk
management strategies, stakeholders can enhance
the reliability and performance of SoS. As technology
advances, future SoS testing methodologies will likely
incorporate artificial intelligence, digital engineering,
and autonomous testing frameworks to further improve
efficiency and effectiveness.

Risk management is integral to SoS T&E, as system
interdependencies can introduce unintended failures or
mission-critical risks. Both customers and contractors
must collaborate on risk identification, mitigation, and
contingency planning throughout the T&E process.

3.1. Identifying emergent risks

Emergent behavior is a defining characteristic of SoS, where individual
components may function correctly in isolation but cause unintended
consequences when integrated. Typically, the constituent systems are
already operational and the difference between integrating green field
(new) systems and those that are already operationalized means that
the behaviors will change, whether positive or negative emergence
will be the underlying discovery. Identifying such risks early through
system-of-systems hazard analysis (SoSHA) and failure mode and
effects analysis (FMEA) is essential [3].

3.2. Stakeholder coordination and communication

SoS risk management requires strong coordination between
government agencies, contractors, and third-party vendors. Clear
communication channels and shared risk registers help stakeholders
to align risk priorities and mitigation strategies [4]. This is more
challenging for SoS than traditional systems as the power of each
stakeholder will vary as will the lifecycle stage of each constituent
system and the programmed resources for remediation and
integration. Tools such as Stakeholder analysis can help mitigate
problems early through identification of power and influence leading
to a more coherent governance model.

138

3.3. Adaptive risk mitigation strategies

Unlike traditional system testing, SoS risk mitigation
strategies must be adaptive and iterative as the
constituent systems are rarely aligned in stage
of development, upgrade, obsolescence, and
capability. The implication of this is that the Test and
Evaluation Master Plan (TEMP) should be dynamic in
nature. Continuous monitoring, predictive analytics,
and rapid-response testing frameworks help detect
and address risks as they emerge [2].

3.4. Balancing cost, schedule, and
performance risks

Contractors often face challenges in balancing
cost constraints, program schedules, and technical
performance requirements. Risk-informed decision-
making frameworks help prioritize testing efforts,
ensuring that critical risks are addressed without
exceeding budget or time constraints. SoS have the
added issues of competing schedules based on the
governance for each constituent system.

3.5. Regulatory and compliance risks

Compliance with government regulations, safety
standards, and cybersecurity requirements adds
another layer of complexity to SoS T&E. Adhering
to Department of Defense (DoD) directives, EU
regulation, national regulation as ENS (National
Security Framework, by its acronym in Spanish), ISO
standards as ISO 27001 and ISO 29119, or other
regulatory guidelines is essential to mitigate legal
and operational risks [3].

4. CONSIDERATIONS TO SUPPORT
SOS T&E
The considerations to support SoS T&E are varied.
While they are constantly being addressed by new
technologies, the principles of these considerations
have been known for over a decade. For example,
the following list has been adapted from [6], including
several direct quotes in italics.

4.1. Translating capability objectives

For a mission, the capability objectives of the SoS will be stated at a
high level; these capabilities drive the goals of the SoS, realized through
meeting measures of performance and effectiveness (MOP, MOE). As
already mentioned, whereas traditional systems will have technical
performance measures (TPM) and key performance parameters (KPP)
aligned with well-defined functional requirements, SoS will generally
not, due to the integration of constituent systems, many of which will
have already been fielded and maybe in the sustainment phase of their
lifecycle. Engaging customers in the capability development process
and understanding required trades might be helpful.

4.2. Monitoring and assessing changes

SoS are governed differently than traditional systems. The integration
of constituent systems, which have governance models established,
will make the integration and modification of systems challenging.
This requires careful synchronization of changes as each constituent
system has its own lifecycle.

4.3. Understanding systems and relationships

Constituent systems are connected through varying degrees of
complexity, and understanding their interconnections is essential.
A clear grasp of control and information flows within the SoS is
necessary. Although these challenges fall primarily within the domain
of engineering and development, the associated costs of remediation
and integration are important to customers, as they can significantly
impact project timelines and resource allocation.

4.4. Developing and evolving system architectures

Identifying and understanding the SoS boundary is essential, along
with mapping all interconnections and accurately describing the overall
architecture. The SoS is likely to evolve in both design and architecture
over time, and this potential for change should be anticipated and
addressed during the design phase. Responsibility for these efforts
should be shared equally between the development team and the
customer’s governance organization.

4.5. Assessment of SoS performance

The MOP and MOE required of the SoS must be clearly defined
and well understood. Given that SoS environments are often multi-

139

proprietary and span multiple generations, responsibility for overall
design control must be clearly established (particularly regarding
measures of supportability (MoS) such as training, maintenance, and
spares). It is essential to determine whether the SoS can achieve its
mission objectives through the integration of the desired capabilities.
All relevant ‘ilities’ (including interoperability, scalability, flexibility,
resilience, adaptability, sustainability, and security) must be explicitly
described and revisited with each generational update. These
expectations are to be set by the customer.

4.6. Orchestrating upgrades to the SoS

Synchronizing the evolving performance and supportability of
all constituent systems must be ensured consistently. Upcoming
upgrades to both the constituent systems and the overall SoS need to
be identified, along with their potential impact on capability. Effective
planning and resourcing of these upgrades are essential. Achieving
this requires a strong governance model with alignment among all
customers, enabling the contractor to implement the necessary
changes efficiently.

4.7. Addressing capability and solution options

The SoS must be aligned to support a defined mission, which directly
influences the required MOEs and MOPs. Modifications to constituent
systems are likely necessary to ensure successful integration within
the SoS. These modifications can be assessed against the relevant
‘ilities.’ This remains a key area of concern for the customer.

It also implies a need to generate metrics defining the end-to-end
SoS capabilities that provide a benchmark for SoS development.
Developing these metrics and collecting data (evidence) to assess
the state of the SoS is accomplished as part of the SoS system
engineered core element assessing the extent to which SoS
performance meets capability objectives and hence the mission
over time.

4.8. Emergent behavior

Emergent behavior arises from a combination of the behavior and
properties of the constituent system elements and structure through
allowable interactions between the constituent systems and may be
triggered or influenced by a stimulus from the system’s environment.
Therefore, system engineers need to assess and understand
the environment external to the SoS boundary and account for
interactions as best as possible. Emergence might not be predicted
and may result in a negative impact on the schedule and budget.

T&E Perspective for SoS

Capability objectives are not “specific requirements”
assessed through KPPs. Capability objectives
are a starting point for developing a statement of
expectations at the SoS level and require further
specification and elaboration to conduct T&E.

Communication is key, as is understanding how
the constituent systems are governed and who has
influence and resources. Constituent system changes
are often asynchronous to the SoS. Ensure both
the capability and technical aspects of the SoS are
equally addressed.

The SoS cannot be easily broken apart and tested;
in fact it should not, as this will affect the integrated
performance. The SoS must be tested in its SoS form,
else the behavior can and will change.

Bound the SoS and test as a holistic SoS irrespective
of the constituent systems behaviors. Maintain
configuration and adject as the capability needs drive
changes to the SoS architecture.

Ensure that the MOP and MOE of the SoS are well
understood and agreed to by the capability owner and
constituent system owners. Can the SoS perform its
mission as designed? The measurement may be as
much subjective as it is objective!

Changes to the constituent systems can impact
the SoS performance. Planning and orchestrating
upgrades or updates to the SoS will be essential to
testing and will modify the performance and affect
behavior.

There may be competing needs between constituent
systems and the SoS. SoS capability objectives
provide a foundation for identifying systems
supporting an SoS, developing an SoS architecture,
and recommending changes or additions to systems
to meet the capabilities. They also provide the basis
for defining and measuring top-level SoS performance
and effectiveness.

As emergence cannot be predicted the best course
is to allocate budget accordingly. Gaining knowledge
from similar integrations can help to inform the scale
of impact but not necessarily identify where or how.

140

5. TEST METHODOLOGIES
Testing and evaluating a SoS requires a departure from
traditional system testing approaches due to the complex
nature of SoS environments. Unlike single systems which
can be tested in isolated and controlled conditions, a SoS is
characterized by emergent behaviors, distributed control, and
independent lifecycle management of its constituent systems
[1, 2]. These SoS phenomena particularly undermines
confidence in the following approaches:

	• Develop once, maintain through life

	• Assuring once thoroughly, maintain through life

	• One-off design acceptance testing

	• Contracting out development with integration test only
once upon delivery

	• One-off operational test

An illustration of assurance in a heterarchical organization of
systems versus a hierarchical organization is shown in Figure
1 to illustrate the different assurance approaches needed.

“Traditionally, systems theory has emphasized
the distinction between a system’s internal
structure and its external behavior, with the latter
derived from the former. This approach has led to
a focus on structural representations of systems
in cybersecurity protection methods. However,
CPS [cyber-physical systems] are heterarchical
in nature and consist of multiple, diverse
elements that interact both independently
and interdependently. As a result, traditional
decomposition and predictive methods are
inadequate to capture the complexity of CPS.
In complex systems, structure and function are
intrinsically linked, and a system’s structural
characteristics shape its processes and
behaviors.”

Furthermore [7]:

Figure 1: Illustration of different organizational structures in an SoS (adapted from [8]).

141

Effective SoS testing relies on a combination of methodologies
tailored to address these complexities [9, 10, 11].

5.1. Modeling and Simulation (M&S)

M&S is a critical approach in SoS testing, enabling
stakeholders to assess interactions, performance, and
emergent behaviors before physical testing. Simulations
provide a cost-effective way to test various scenarios, stress
conditions, and potential system failures. From extensive
research analysis, digital twins are defined as ‘a virtual
representation of a physical system (and its associated
environment and processes) that is updated through the
exchange of information between the physical and virtual
systems’ (see Figure 2) [12]. Digital twins and system
emulations are increasingly used to analyze performance
and predict SoS behavior under different operational
conditions.

5.2. Incremental and Agile Testing

Due to the evolving nature of SoS, incremental and agile
testing methodologies are often employed, a residual of which
is critical throughout life to be ‘evergreen’ and thus resilient
to emergent behaviors [10,11]. These approaches focus on
iterative evaluations, allowing for adjustments based on real-
time feedback [3], with generational changes synchronized
in a resilience ‘battle-rhythm’. Agile testing strategies ensure
that changes to individual systems do not compromise
overall SoS functionality, particularly in environments where
constituent systems are developed by different contractors
or agencies who make changes at different times for different
customer mixes.

Figure 2: Illustration of a Digital Twin (adapted from [13]).

142

5.3. Live and operational testing

Live testing in an operational environment is essential
to validate the real-world performance of a SoS. Field
testing, joint exercises, and war-gaming simulations
provide insights into interoperability, resilience, and
mission effectiveness. However, live testing is resource-
intensive and often constrained by logistical and security
considerations [4].

5.4. End-to-End and interoperability testing

Ensuring seamless interoperability among constituent
systems is a primary challenge in SoS T&E. End-to-end
testing at the highest level of interoperability is needed
(see Fig. 1) to evaluate how well different subsystems
communicate, exchange data, and achieve mission
success, and through life to deal with emergence. This
testing often involves real-time monitoring of interfaces,
data exchange standards, and cross-platform
compatibility [2]. This aspect of SoS can be particularly
challenging for a capability manager, who operates
interconnected multi-proprietary systems for overall
effect, but has not yet invested in sovereign test-bench
representation of the connected systems (i.e., no network
integration center (NIC) or live-virtual-constructive (LVC)
simulation at the highest level of effect (Fig. 1)) [14, 9].

5.5. Cybersecurity and resilience testing

Given the interconnected nature of SoS, cybersecurity
vulnerabilities can have cascading effects across the
entire system. Testing for cyber resilience involves
penetration testing, threat modeling, and resilience
assessments to mitigate potential cyber threats [15, 7].
This requires a thorough and independent analysis of the
Cyber Kill chain to identify the attack vectors (mission,
attack, variant) across the SoS attack surface.

5.6. Digital twins

Digital twins are particularly effective for the T&E of SoS
when progressively developed with the capability and
used through life as an SoS T&E basis, as shown in Figure
3 [16]. However, the Model-Virtual-Design-Physical
diamond (Figure 4) [17] is perhaps more appropriate,
although reused or revisited through life (i.e., helical).

Figure 3: Illustration of the important through life use of a digital
twin for an evergreen SoS T&E basis (adapted from [16]).

Figure 4: Parallel development of virtual and physical systems (adapted from [17]).

In summary, the T&E of SoS requires a paradigm shift wherever
the capability manager and supporting contractors have not yet
embraced:

	• Continuous Monitoring, Development, Test & Release (which can
be enabled by Model-Based Systems Engineering [11], digital
twin [12], and digital engineering [18]).

	• Highly automated testing.

	• Support contracting for a rate-of-change [19, 20, 21, 22, 23].

	• Network Integration Centre at the highest level of integration [24].

	• Live, virtual & constructive (LVC) simulation for multi-generational
interfacing [9].

143

Put simply, SoS are complex systems where the appropriate
management is to create the wherewithal and culture to probe,
sense, and respond through life (e.g., Cynefin Framework
[25]).

6. GUIDING PRINCIPLES IN SOS T&E

6.1. Embracing continuous development, security,
and assurance

One of the key concepts to deal with SoS T&E is to embrace
those elements that are complex (ref. Figure 5).

The concepts of DevOps and DevSecOps [27] are key to the
T&E needed for SoS:

“In the business world, the demand for agility and speed
continues to grow. Advancements in technology such as
Continuous Engineering, particularly DevOps, allowed some
organizations to gain a competitive advantage. However,
security concerns have risen because of security breaches,
such as massive data breach and leaks, which are forcing
organizations worldwide to pay significantly attention to
security threats. This is especially true in the context of
safety-critical systems, given the possible consequences of
security incidents, e.g., loss of life, loss or misuse of sensitive
information and major financial loss. In this scenario, high
levels of security integration into DevOps are needed.
Thus, the need for security to be integrated in DevOps as
DevSecOps was first mentioned in 2012.”

DevSecOps can theoretically lead to a Continuous Authority
to Operate (CATO) [28, 10, 29] if there is sufficient automated
testing for assurance in these categories:

	• Functional/Use (expectation to change).

	• Abuse (i.e., safety).

	• Misuse/Malicious (i.e., cyberthreat always adapting) [30].

	• All non-functional (to the extent possible with fuzz testing
[31, 24].

As test cases are added from the top of the list to the bottom
there are increasing permutations and a need for greater
computation or other test resources. Combinatorial testing
helps through coverage of critical factors and functions
(multiway) [32, 33]. Hence, combinatorial testing is present
in some automated test tools, but to apply these correctly
requires additional competencies by testers in combinatorial
test design. The process of combinatorial test designing is
illustrated in Figure 6.

Figure 5: Illustration of the need to embrace complexity in management approaches [26].

144

Developing the test infrastructure to realize CATO is
challenging. An example is the 10-step methodology for
a Simulation, Experimentation, Analytics, and Test (SEAT)
Layered Architecture Framework Approaches [34]. Such test
approaches are promising, as are improvements in defense
and corporate test networks to perform fuzz testing [24] and
test methodologies to deal with APIs [35].

“Autonomous and AI-enabled systems present a challenge for
integration within the System of Systems (SoS) paradigm. A
full system of systems (SoS) testbed is necessary to verify the
integrity of a given system and preserve the modularization and
accountability of its constituent systems. This integrated system
needs to support iterative, continuous testing and development.

This need warrants the development of a virtual environment that
provides the ground truth in a simulated scenario, interfaces with
real-world data, and uses various domain-specific and domain-
agnostic simulation systems for development, testing, and
evaluation. … Such a virtual and constructive SoS architecture
should be independent of the underlying computational
infrastructure but must be cloud-enabled for wider integration of
AI-enabled software components.”

Fuzz-test of all permutations, mixing random and systematic
viewpoints seems to work best, especially for critical hardware
and software-intensive functions like an aircraft data bus, vehicle
LAN, ship IPMS, or rail signaling. An illustration of fuzz testing
using a Multi-Armed Bandit algorithm is shown in Figure 7.

Figure 6: Illustration of combinatorial test design process.

Figure 7: Illustration of Multi-Arm Bandit algorithm fuzz test approach from [37].

145

6.2. Embracing digitization and digitalization in
test

The second major T&E approach for SoS is another general
approach from digitalization, Model-Based Systems
Engineering (MBSE). MBSE captures the design context,
requirements, test metrics, systems design, test cases
as the SoS is developed, entering information once to be
used many times with substantially reduced documentation,
more pervasive and current approval, and the agility to be
evergreen (i.e., the authoritative source of truth) [13, 37].
Done properly to include the operational analysis layer,
MBSE enables end-to-end scenario or mission engineering
to be threaded to test cases and to drive subsequent
emergent change management with better targeted
regression testing.

Figure 8: Illustration of MBSE approaches for SoS (adapted from [41]).

MBSE used through life fundamentally helps keep T&E
evergreen, and facilitates model-driven test design [38].
Building an MBSE model to cover all relevant SoS elements
is challenging [39], as shown in Figure 8. Fundamentally,
an MBSE for SoS has to get each proprietary system into a
common modelling reference environment, one that is test
capable [40], or which allow for transformations between
different systems. Since some systems will be pre-digital
design, then some retrospective MBSE work is likely
necessary to digitize testing.

146

7. CONCLUSIONS
SoS T&E requires a different approach to systems testing due to the differences between the two and the properties of SoS. These
properties require that the approach taken for T&E considers the impacts of the constituent system baselines, the governance
and resourcing for the SoS integration and test, and the difficulties of testing a geographically distributed program that will likely
exhibit emergence. This requires close attention to the governance model employed and the anchoring of metrics in mission
effectiveness and performance.

A key consideration for SoS T&E that should be kept in mind is that the idea that the SoS can be fully tested before deployment
is simply not realistic. It may be more appropriate to view SoS T&E as an evidence-based approach to addressing risk. The SoS
systems engineering team identifies issues critical to success of each increment of SoS development, as well as places where
changes in the increment might adversely impact user missions and then focuses pre-deployment T&E on them.

Deferring system upgrades until all constituents in an increment are ready to test successfully is impractical and undesirable in
most cases. Since most SoS are comprised of already fielded systems, there may not be a discrete fielding decision.

Full SoS level testing can be costly, and it can be very difficult to create test environments which realistically represent the
expected results in an operation environment because of the size and complexity of many SoS environments.

147

1.	 Dahmann, J. and D. DeLaurenits (2023). Unique Challenges
in System of Systems Analysis, Architecting, and Engineering.
Systems Engineering for the Digital Age: Practitioner Perspectives.
D. Verma, John Wiley & Sons, Inc.

2.	 Dahmann, J., Lane, J., & Baldwin, K. (2011). An integrated
approach to system of systems effectiveness analysis. The Journal
of Defense Modeling and Simulation, 8(1), 3-16.

3.	 Department of Defense (DoD). (2020). Department of Defense
Test and Evaluation Management Guide. Office of the Director,
Operational Test and Evaluation.

4.	 Rebovich, G., & DeLaurentis, D. (2011). Systems of Systems
Engineering: Principles and Applications. CRC Press.

5.	 Vaneman, W. K. (2016). The system of Systems Engineering and
Integration “vee” model. 2016 Annual IEEE Systems Conference
(SysCon). https://doi.org/10.1109/syscon.2016.7490599

6.	 Dahmann, J., Lane, J. A., Rebovich, G., & Lowry, R. (2010). Systems
of systems test and evaluation challenges. 2010 5th International
Conference on System of Systems Engineering, 1–6. https://doi.
org/10.1109/sysose.2010.5543979

7.	 McDermott, T., et al. (2023). Concepts of Trust and Resilience in
Cyber-Physical Systems. Systems Engineering for the Digital Age:
Practitioner Perspectives. D. Verma, John Wiley & Sons: 473-488.

8.	 Norman, G. J., et al. (2011). “Current Emotion Research in
Psychophysiology: The Neurobiology of Evaluative Bivalence.”
Emotion Review 3(3): 349-359.

9.	 Joiner, K. and M. Tutty (2018). “A tale of two allied defence
departments: new assurance initiatives for managing increasing
system complexity, interconnectedness and vulnerability.”
Australian Journal of Multi-Disciplinary Engineering 14(1): 4-25.

10.	 Weiss, J. and D. Patt (2022). Software Defines Tactics: Structuring
Military Software Acquisitions for Adaptability and Advantage in a
Competitive Era. Online, Hudson Institute.

11.	 Call, D. R. and D. R. Herber (2023). A Case for Model-Based
Systems Engineering in an Agile World & Principles for Growth.
INCOSE International Symposium, INCOSE.

12.	 VanDerHorn, E. and S. Mahadevan (2021). “Digital Twin:
Generalization, characterization and implementation.” Decision
Support Systems 145: 113524.

13.	 Madni, A. M., et al. (2023). Exploiting Digital Twins in MBSE to
Enhance System Modeling and Life Cycle Coverage. Handbook of
Model-Based Systems Engineering. C. C. Madni. Cham Springer
International Publishing: 527-548.

14.	 Joiner, K., et al. (2018). Modelling the Efficacy of Assurance
Strategies for Better Integration, Interoperability and Information
Assurance in Family-of-System-of-Systems Portfolios. International
Conference on Complex Systems Design & Management, Springer.RE

FE
RE

NC
ES

148

15.	 Joiner, K. F., et al. (2018). “Four testing types core to informed
ICT governance for cyber-resilient systems.” International
Journal of Advances in Security 11.

16.	 Tolk, A., Barry, P. and Doskey, S.C. (2022). Using modeling
and simulation and artificial intelligence to improve complex
adaptive systems engineering. International Journal of
Modeling, Simulation, and Scientific Computing, 13 (2)
2241004: 1-19.

17.	 Richardson (2020). Model Based Systems Engineering: A
stepping stone on the path to Digital Engineering. GSFC
Systems Engineering Seminar

18.	 Mukhopadhyay, A., et al. (2023). A Perspective on the Adoption
of Digital Engineering Within an Enterprise. Online, Ansys.

19.	 Cordero, S., et al. (2020). Addressing Obsolescence from day
one in the conceptual phase of complex systems as a design
constraint. Product Lifecycle Management Enabling Smart
X: 17th IFIP WG 5.1 International Conference, Rapperswil,
Switzerland, Springer International Publishing.

20.	 Morgan, M., et al. (2021). “Synergizing model-based systems
engineering, modularity, and software container concepts to
manage obsolescence.” Systems Engineering 24(5): 369-380.

21.	 Oliver, E., et al. (2022). “A resilience systemic model for
assessing critical supply chain disruptions.” Systems
Engineering(5): 510-533.

22.	 Donelli, G., et al. (2023). “Concurrent Value-Driven
Decision-Making Process for the Aircraft, Supply Chain and
Manufacturing Systems Design.” Systems 11(12): 578.

23.	 23.	 Herburger, M., et al. (2024). “Building supply chain
resilience to cyber risks: a dynamic capabilities perspective.”
Supply Chain Management: An International Journal 29(7): 28-
50.

24.	 Joiner, K. F. (2024). “Review of Fuzz Testing to find System
Vulnerabilities.” ITEA Journal of Test and Evaluation 45(4).

25.	 Daniel, P. A. and C. Daniel (2018). “Complexity, uncertainty and
mental models: from a paradigm of regulation to a paradigm
of emergence in project management.” International Journal of
Project Management 36: 184–197.

26.	 McQuade, M., et al. (2018). Defense Innovation Board Do’s
and Don’ts for Software (draft). D. I. Board. Online, U.S. DoD.

27.	 Sánchez-Gordón, M. and R. Colomo-Palacios (2020). Security
as Culture: A Systematic Literature Review of DevSecOps.
IEEE/ACM 42nd International Conference on Software
Engineering Workshops, ICSEW, ACM.

28.	 Sanders, G., et al. (2021). Integrating ZeroTrust and
DEVSECOPS. Online, Carnegie Mellon University.

29.	 Olena, J. (2023). “Software Standardization and Infrastructure
Development Efforts in Support of Unmanned Maritime Vehicle
Autonomy.” Naval Engineers Journal 135(1): 41-45.

30.	 Fowler, S., et al. (2025: submitted). “Assessing Cyberworthiness
of Complex System Capabilities using the Cyber Evaluation and
Management Toolkit (CEMT).” Computers and Security.

31.	 Brumley, A. (2022). Introduction to Fuzzing Software. ITEA Online
(https://itea.memberclicks.net/member-landing-page), International
T&E Association: 29.

32.	 Kuhn, D. R., et al. (2016). Combinatorial Testing for Cybersecurity
and Reliability. Information Technology Bulletin, Computer Security
Division, Information Technology Laboratory, National Institute of
Standards and Technology, U.S. Department of Commerce.

33.	 Lanus, E., et al. (2021). Combinatorial testing metrics for machine
learning. IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Online, IEEE.

34.	 Mittal, S., et al. (2023). “Providing a User Extensible Service-Enabled
Multi-Fidelity Hybrid Cloud-Deployable SoS Test and Evaluation
(T&E) Infrastructure: Application of Modeling and Simulation (M&S)
as a Service (MSaaS).” Information 14(10): 528.

35.	 Gomez, A. and A. Vesey (2024). On the Design, Development, and
Testing of Modern APIs. Online, Software Engineering Institute.

36.	 Gohil, V., et al. (2024). MABFuzz: Multi-armed bandit algorithms
for fuzzing processors. Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE.

37.	 Verma, D., Ed. (2023). Systems Engineering for the Digital Age:
Practitioner Perspectives., John Wiley & Sons.

38.	 Alvarado, J. L. J. and T. H. Bradley (2024). “A Case Study-based
Assessment of a Model-driven Testing Methodology for Applicability
and Metrics of Model Reuse.” ITEA Journal 45(4).

39.	 DeLaurentis, D., et al. MBSE for System-of-Systems. Handbook of
Model-Based Systems Engineering. C. C. Madni. Cham, Springer
International Publishing: 987–1015.

40.	 Martell, J. A., et al. “Development of a Digital Engineering Testing
Framework for CUBESAT Applications.” ITEA Journal 45(3).

41.	 Swickline, C., et al. (2024). “A methodology for developing SoS
architectures using SysML model federation.” Systems Engineering
27(2): 368-385.

42.	 Gorod, A., et al. (2019). Evolving Toolbox for Complex Project
Management. Boca Raton, Florida, Auerbach Publications.

43.	 Dahmann, J., & Baldwin, K. (2008). Understanding the current
state of US defense systems of systems and the implications for
systems engineering. 18th Annual International Symposium of the
International Council on Systems Engineering (INCOSE).

149

44.	 Ferreira, F. H., et al. (2021). Reliability in Software-intensive
Systems: Challenges, Solutions, and Future Perspectives. 47th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), IEEE.

45.	 Nachbagauer, A. (2021). “Managing complexity in projects:
Extending the Cynefin framework.” Project Leadership and
Society 2.

150

BIOGRAPHIES

151

DR. KEITH JOINER
Dr. Keith Joiner, CSC, was an

Air Force aeronautical engineer,

project manager, and teacher

for 30 years before joining the

University of New South Wales

to teach and research test and

evaluation. He is the current

Chief Editor for the Journal of

Testing by the International Test

and Evaluation Association

(ITEA) and is also teaching

aircraft design. As Defence’s

Director-General of Test and Evaluation across all service

domains, he was awarded a Conspicuous Service Cross, while

for doing drawdown plans for the Multi-National Force in Iraq,

he was awarded a U.S. Meritorious Service Medal. He is a

Certified Practising Engineer and a Certified Practising Project

Director, with over 100 published research articles on ensuring

the reliability of engineered systems.

His diverse research includes:

1)	 assuring cyberworthiness, AI-enabled systems, and robotic

autonomous systems,

2)	 using high-throughput test design and complex systems

governance, and

3)	 developing air-sea hybrid vehicles and the electrification of

aircraft.

MARK PHILLIPS
Mark Phillips is Director of Major

Defense Acquisition Programs

Strategy at Intel Corporation

Government Technologies. Prior

to that he was a Technical Fellow

and Chief Engineer at Raytheon

Technologies focusing on missile

technology, and Principal Architect

for Lockheed Martin spending

the last 2 years there on the

National Cyber Range. Mark has

over 45 years in defense and

government technologies, spanning multiple countries specializing

in interoperability between systems. Mark served 20 years in the

Australian Army in a variety of roles and transferred to the Royal

Australian Air Force reserve to assist in liaison between the

US and Australia on training and test areas. Mark is a graduate

of the Royal Military College of Australia. holds a Bachelor of

electrical Engineering (Honors) from the University of New South

Wales, a Master of Engineering in Modelling and Simulation from

Old Dominion University, and is a Ph.D. candidate in Systems

Engineering at Old Dominion University.

152

AURELIO FERNÁNDEZ SÁEZ
Aurelio Fernández Sáez

is currently Technological

Modernization Special Projects

Manager at Isdefe, where he

leads ICT initiatives for the

General State Administration,

particularly in the areas of

Justice, Employment, Traffic and

Social Security. He previously

served as Head of the Quality

and Systems Testing Area,

coordinating strategic projects

for the Ministry of Justice and the State Public Employment

Service. With over 30 years of experience in Systems

Engineering and Digital Transformation, his profile combines

strategic vision, technical leadership, and institutional

commitment. He holds a degree in Aeronautical Engineering

from the Technical University of Madrid and certifications

in PMP, Lean Six Sigma and TOGAF. He is a member of

INCOSE. He has contributed to process standardization and

the management of multidisciplinary teams. He combines his

professional activity with a teaching career as a guest lecturer

at institutions such as the Technical University of Madrid,

the Autonomous University of Barcelona, the University of

Málaga, the University of Las Palmas de Gran Canaria, and

Isdefe’s internal training programs.

MANUEL FERNÁNDEZ ASTABURUAGA
Manuel Fernández Astaburuaga

is an aeronautical engineer

from the Polytechnic University

of Madrid. He is certified in

Prince2, ISTQB, COBIT and

CSEP for INCOSE. He has 25

years’ experience in Systems

Engineering, 3 of them in

Research and Development on

aircraft design at Delft Aerospace

University and the following

as a consultant in processes

and testing in Isdefe. Within them, he was Project Manager

of Aena’s SW Testing laboratory for 14 years. As a SW testing

specialist, he was member of the SSTQB (Spanish Software

Testing Qualifications Board) and also member of the Spanish

Working Group WP 26 within the SC7 committee of AENOR AEN

/ CTN 71 “Information Technology” for the SW testing standards

definition ISO-IEC 29119. Nowadays he leads a PMO for the

IT Directorate in the Spanish Traffic Authority (DGT) and he is

Internal trainer in Isdefe on Systems Engineering.

153

CH
AP

TE
R

8
From system life cycle

to SoS evolution

Tom McDermott, Stevens Institute of Technology (tmcdermo@stevens.edu)
Miguel Ángel Coll, Isdefe (macoll@isdefe.es)

Abstract

Systems of Systems (SoS) do not have rigid lifecycles but rather live in a constant evolution as some
constituent elements fade and some new ones join the SoS. This chapter discusses how both the
SoS and its constituent elements should be designed and/or architected and managed for evolution.
Evolution is driven within the SoS by evolving technologies, processes, products, and tools; and
externally by evolving domain drivers such as market competition, economics, and user preferences.
This evolution must be managed as both an intentional process and an opportunistic process. It
must be led. This chapter discusses strategies for managing SoS evolution based on both SoS
management principles and on Innovation System1 principles. The chapter views SoS evolution as an
enterprise leadership challenge and culminates with the qualities of effective SoS leaders.

Keywords

Systems of systems, SoS management, SoS leadership, Innovation systems.

1. “Innovation Systems” refers to organized networks of elements (people, businesses, universities, laboratories, governments, technological
infrastructure, etc.) that interact to develop, disseminate and apply technological or process innovations.

156

1. INTRODUCTION.
By definition, Systems of Systems (SoS) are composed
of constituent systems (CS) that are operationally and
managerial independent [1]. While this is true, most
modern SoS are also dependent on other SoS for sets of
capabilities, which blurs the boundaries of the SoS and
complicates management. With respect to SoS evolution,
changes to the SoS will always occur at the level of the
CS [2], which makes SoS change more complicated to
manage than in traditional systems. Individual CS can also
change independently of the SoS, creating unanticipated
effects at the SoS level. Because the SoS provides
capabilities that emerge beyond those of any individual
CS, an SoS could have unique inputs and outputs beyond
those provided by individual CS in their independent uses
[3]. In SoS evolution, one must take care that these unique
capabilities, and related inputs and outputs, are attained,
preserved, and appropriately managed at the SoS level.
As a result, SoS evolution must be coordinated at the SoS
level and managed across CS and perhaps other SoS.

SoS are becoming more complex. In commercial
organizations, most products today are being developed
and delivered with connectivity to other systems via
commercial networks and software applications. The
availability of information is increasing the amount of
autonomy and “intelligence” in many systems – even
simple products have SoS concerns. Military organizations
are also increasing connectivity of battlefields and other
assets, while increasing the amount of autonomy in each
CS. Military acquisition functions are also encouraging
innovation using commercial entities and commercial
technologies which reduces their influence at the CS level.
All SoS today are emphasizing deployment speed using
non-developmental systems, which also leads to reduced
CS-level influence. These trends lead to an increase in
both the operational and managerial independence of
CS, and more complexity for those that must lead SoS
evolution. Even since 2019 when the ISO/IEC/IEEE 21840
was published [2], we have been seeing significant
changes in the challenges of SoS evolution, to include:

1.	 SoS composed of larger numbers of CS.

2.	 Higher operational and managerial independence of
CS.

3.	 Greater connectivity between CS across the SoS, and
between SoS.

4.	 More geographic diversity in CS.

5.	 More autonomy in CS behaviors, and emerging autonomy in
SoS behaviors.

6.	 More rapid entry of new CS into the SoS.

7.	 Higher complexity and uncertainty in SoS design and
management.

As a result, the leadership and management attributes needed
to create and maintain SoS capabilities have changed. This
chapter explores approaches to leading and managing SoS
evolution, with a focus on innovation and socio-technical change.
The chapter begins with a discussion of SoS characteristics that
drive evolutionary behaviors. This is followed by a discussion of
challenges associated with leading and managing SoS evolution.
Methods to guide SoS evolution are then discussed, followed by
the leadership competencies necessary for managing SoS.

2. CHARACTERISTICS OF EVOLUTION
IN SOS

2.1. Generalities

Evolution in SoS requires a series of methods to structure and
manage the set of interacting CS toward a specific set of goals or
purposes [4]. A particular pain point in SoS management is the
development of methods and tools that help guide, predict, and
manage emergent attributes and capabilities [5]. Emergence in
SoS is often the result of series of innovations that cause new
SoS-level capabilities and attributes to be formed or to become
prominent. Thus, one way to view emergence in a SoS is as a
series of innovations that, over time, disrupt or transform CS
or their operational use in a way that creates new capabilities
or attributes that are unique to the SoS. The primary challenge
with SoS evolution is to influence these changes toward goals
that reflect the needs of SoS-unique stakeholder sets. As such,
one component of SoS evolution is to influence the stakeholders
in ways that ensure key desirable properties of the SoS are
met, which implies that stakeholder collaboration is needed
throughout an SoS lifecycle [6].

Most SoS today can be described as Sociotechnical Systems1.
Sociotechnical Systems are technology-driven systems that
involve significant human and social participation, and that
participation in turn influences the architecture and design of
the technical system [1]. Often SoS are also complex adaptive
systems, in which both the human/social participation and the
engineered system co-adapt over time [7]. The distinguishing

1. A “Sociotechnical System” is defined as a system that interdependently integrates social
elements (people, organizations, human processes) and technological elements (technologies,
infrastructure, software, hardware) to achieve a common purpose.

157

feature of a SoS is the behaviors of the “whole” come from
individual constituent systems that act independently and
autonomously [8].

Systems that have a social interaction demonstrate several
consistent patterns. The following characteristics have been
selected as most relevant to the concepts of evolution [9]:

	• Self-organization and multi-scale or multi-level
hierarchy: socially driven systems tend to self-organize
at lower layers and then create hierarchies as they
grow in size, usually driven by series of events. Often
the structure of these hierarchies also changes over
time. The behaviors that develop at higher layers do not
necessarily reflect the behaviors of individual agents
or groups. Even directed SoS have some level of self-
organization, as CS will compete for inclusion in the
directed SoS.

	• Autonomy or multi-agent interaction: individual agents
in the system operate autonomously, adapt, and learn
as they interact over time. The amount of autonomy in
individual agents has been increasing and will continue
to increase more rapidly. SoS are formed by formal or
informal agreements between autonomous agents,
requiring a view of an SoS as a multi-agent enterprise.

	• Emergence: new behaviors and properties emerge from
interactions that are representative of the whole of a
system. Emergence arises from the structure of the parts
and their interaction, as viewed in a context of interest.
These behaviors and properties cannot be predicted
from, or reduced to, the properties and behaviors of the
constituent parts.

	• Evolutionary development: goals and objectives,
as well as structure and functionality, are in constant
change as entities are added, modified, and removed.
However, the evolution of the whole happens slowly in
comparison to individual agents or components [10]
(although it is increasing in speed). Also, goals and
objectives in developing a new SoS are very different
than in sustaining existing SoS. Methods to evolve SoS
level capabilities are very context dependent.

	• Connectivity: evolution in the system is driven by
connectivity, communication (information flow), and
collaboration. This applies to both the SoS and the
organizations that participate in it. Both the connectivity
between CS and the amount of information flow
is increasing, while collaboration agreements are
becoming more critical. SoS collaboration is an enterprise
leadership challenge.

	• Complexity: the systems are sufficiently large in terms
of the number of physical connections, organizational
relationships, and information-driven interactions, where
they cannot be fully analyzed by conventional (i.e.
mathematical) descriptions of system behavior [11].
Qualitative tools and approaches are necessary.

In SoS literature, there is the concept of evolutionary
emergence, or the study of the evolutionary process the
system might take over time, and how to effectively guide
that process in the presence of other desirable attributes of
the systems (versus undesirable attributes). In this chapter
we view this evolution as a set of innovation pathways, where
groups of innovations become apparent over time at the SoS
level based on their disruptive or transformative impact to SoS
attributes and capabilities.

2.2. Unprecedented architectures versus incremental
evolution

It is important to view SoS evolution as two separate processes:
the emergence of a new SoS, which often results in a new
or “unprecedented” architecture, versus the sustainment
of an existing SoS, which requires a stable foundation. The
emergence phase is often competitive, where multiple potential
SoS are deploying new technologies and business models.
The emergence phase most often follows the “diffusion of
innovation” model popularized by Rogers, which measures
stakeholder adoption [12]. An SoS moves into the sustainment
phase when it has been adopted by a sufficient number of
users to achieve a stable operating model.

Two forms of evolution are relevant to SoS [13]: those that
change the components of constituent systems, and those that
change the structure and interactions (system architecture)
that are also provided by CS (usually defined as infrastructure).
Breakthrough or radically new products frequently use new
architectures to provide new capabilities. Truly transformative
changes most often reflect architectural changes. However,
well established architectures are difficult to change due to the
implicit knowledge and infrastructure investment they bring.
Thus, a further analysis component of SoS evolution must
separate architectural decisions from capability decisions.
Over time, architectural knowledge becomes embedded in
each CS company’s organization and procedures. Because
this knowledge is now implicit, it can be difficult for any CS to
change the architecture of its products. Thus, a SoS that is in
its sustainment phase tends to have only incremental changes
until it is disrupted by another SoS.

158

SoS tend to develop and evolve in layers. SoS literature
generally describes these as:

1.	 Technology layer: physical aspects of the SoS to
include hardware, networking, and other physical
infrastructure components. Some of these are not
technology, for example air traffic management
systems divide the airspace into zones to maintain
safety in the architecture.

2.	 Applications layer: the capabilities of the SoS,
including software applications, that interact with
data and information across CS to provide SoS
functionality and user interaction.

3.	 Information layer: the data and information that
is exchanged between CS and other SoS that are
provided for the SoS to operate effectively. This
layer should be focused on interoperability.

4.	 Business layer: the set of relationships across
the SoS and CS that respond to changing external
drivers and the individual business models of the
SoS and its CS.

SoS in the emergence phase are most often driven
by technical innovation in the first 3 layers. SoS in the
sustainment phase are most often driven by market
forces and business models in the business layer, as
well as the need for continued interoperability between
CS (via standards) that spans the technology and
information layers. These are very different dynamics
and require very different processes to manage their
evolution. The literature across these two phases is
strongly divided between SoS Engineering guidance
and Innovation System guidance. SoS engineering
guidance assumes we can apply systems engineering
and project planning principles to SoS evolution – that
they can be “engineered”. Innovation System guidance
aligns more with social systems and complexity theory
and suggests we can only influence SoS evolution,
not explicitly plan for it. Practitioners must blend these
approaches situationally, based on whether SoS
capabilities are emerging or being sustained.

2.3. Planning SoS evolution

The Wave model (Figure 1) is an established framework
for evaluating and planning evolution in SoS. It is a top-
down framework derived from systems engineering
processes. The Wave model recognizes that evolution
is continuously driven by input from the external

environment (context), and, unlike traditional systems engineering
views the analysis of system change is an ongoing process with
multiple overlapping increments. The Wave model views evolution
as a forward-looking process with feedback at each iteration and
attempts to group multiple constituent changes into SoS level
architectural changes to create efficiency in the test and validation
process [14]. Key aspects of the Wave model are determining a
starting point (Initiate SoS), conducting SoS analyses, developing
and evolving SoS architecture, and planning and implementing SoS
updates. The starting point for an SoS is difficult to define, as the point
in time that an SoS is initiated implies that all four architectural layers
are sufficiently mature to allow new capabilities to be deployed and
adopted (the diffusion of innovation model). The value of the Wave
model is the recognition that SoS updates must be planned, and that
there is some entity that is analyzing SoS updates and evolving the
SoS over time. Except in directed SoS, definitions of the SoS starting
point and related analyses can be quite subjective.

Key SoS analysis artifacts include SoS capability-based information
– concepts of operation and fundamental constraints; SoS systems
information – systems architectural views and CS descriptions;
SoS technical information (the technical hierarchy) – performance
measures and data: architectural and technical baselines – standards,
business rules, connections and interfaces; and SoS management
information – contracts and agreements. The successful evolution of
an SoS depends on how well SoS leaders communicate artifacts like
these, and how well other SoS stakeholders understand them.

Figure 1. The Wave model (adapted from [14]).

159

2.4. SoS as an innovation system

Innovation system literature views SoS emergence as
“technological transition consisting of major changes
in sociotechnical configuration” [15]. The equivalent to
SoS wave planning in innovation literature is “transition
management” [16]. Innovation system models recognize
innovation as a process that spans human and social
institutions where lower-level innovations in CS form
niches of adoption, which over time produce broader
changes in established SoS regimes, eventually resulting
in transformation of the existing landscape. Today one
can view the public development of driverless vehicle
technologies or generative AI transformer models as
such an evolution “in-process.” The primary aspect of
this model is that innovation progresses through social
layers and can be modeled as a multi-scale or multi-
layer social phenomenon. The transition management
literature represents the Wave model as a similar but
much messier bottoms-up process of change where the
SoS architectures are sociotechnical regimes and the
evolutions progress through many components of those
regimes (technology, policy, infrastructure, institutions,
industries, etc.), enabled by a landscape that is open
to change [15]. Figure 2 illustrates this process. One
must consider what is happening at any point in time
as a snapshot of each layer. Innovations at the CS level,
which also introduce new architectures, are a primary
driver of regime change and should be a focus of
attention in SoS evolution.

The Innovation System of Systems (I-SoS) framework
[17] adopts the idea that, in a SoS, multiple innovation
systems form relationships. For example, the SoS
information, sensing, computing, and control architecture
that enables driverless vehicles started as a CS-level
challenge (the DARPA Grand Challenges) and emerged
mostly in university laboratories. In the driverless
vehicle SoS the innovation system providing navigation
information (US Air Force Global Positioning System,
Google maps, TomTom, etc.) has an interdependent
relationship with the innovation system developing
automated vehicle control (DARPA vehicle grand
challenges, Google Project Chauffer which became
Waymo, Tesla, etc.) and the technology companies
providing graphics processing units (Nvidia) and low-
cost LIDAR2 (Luminar Technologies). Note that there are
multiple innovators including universities, government

2. LIDAR, Light Detection and Ranging is a remote sensing technique that uses
laser light pulses to measure distances and create 3D maps. The technology emits
laser pulses and measures the time it takes for the reflection to return, allowing the
distance to an object or surface to be calculated.

agencies, very large companies, and smaller technology providers
all involved in moving technological niches to new regimes. Many
SoS operate within policy constraints that must also participate
in the innovation system. In early days of Google’s driverless car
development, the State of California legislature passed Senate Bill
1298 regulating autonomous vehicles “driving on California roads
[18].

Figure 2. A dynamic multilevel perspective on
technology transitions (adapted from [15]).

SoS evolution results from change in three systems: the SoS of
interest, the innovation systems, and the broader sociotechnical
system where landscape development and regime changes
occur [9]. Figure 3 shows the degrees of overlap and separation
among the three distinct systems that make up the three systems
model. This view has been inspired and adapted from Lawson’s
“universal mental model” of a system [19]. Each system represents
a complex environment of interacting elements, but at potentially
different abstraction levels. Changes to the SoS of interest are
represented as needs or opportunities, and the SoS of interest
also has enablers and barriers that make it easier or more difficult
to change. The Innovation System has existing assets and its own
enablers and barriers that can be applied in a new system that
might be added to the SoS of Interest. These new systems are
described as “interventions” in the SoS of Interest since it already
has existing structure and capabilities that might encourage
or resist new capabilities. The new outputs from the Innovation
System must be coupled with the SoS of Interest via integration and
evaluation, but that process involves the greater Sociotechnical
System that has its own stakeholders, infrastructure, policies,

160

etc. To evolve, SoS stakeholders must embrace and
address stakeholders, enablers, and barriers across
all three systems. What has value in one system may
be at a different abstraction level than the other two.
The driverless vehicle example in Figure 4 makes
these differences in abstraction levels visually clear.

Figure 3. The three systems model (adapted from [19]).

Figure 4. Three systems model for the evolution of driverless vehicles [9].

161

The SoS of Interest is primarily composed of well-defined CS and
critical underlying system components. The innovation system is
a diverse set of stakeholders with highly complex interactions.
Both are enabled by the sociotechnical system, which is again
formed by diverse stakeholders with complex interactions. Each
of the three SoS are comprised of many CS; the actions that take
place within each CS define the overall level of SoS complexity
and adaptiveness to evolution. Note that some of the CS in an SoS
can reside in the sociotechnical system completely independent
of the physical manifestation of the SoS but also enabling the
SoS to operate effectively. Many of these CS will be associated
with policy, laws, and regulations. When evolving the SoS of
Interest, a holistic, three system-wide approach is necessary.
Many emergent SoS and many changes in SoS sustainment fail
because this holistic change leadership is either not present or
takes an overly technical view of the SoS.

Most SoS literature discusses methods for SoS management and
focuses on the SoS of Interest as the unit of analysis. The SoS of
Interest tends to be less complex than the Innovation System that
creates SoS evolution and Sociotechnical System that enables
or inhibits SoS evolution. Both the Innovation System and
Sociotechnical System are complex adaptive systems. While the
SoS of Interest might be managed, its evolution in the other two
systems must be led. This leadership takes the form of agreement
processes – agreements between the interested parties driving
the SoS outcomes, the interested parties at the CS level, and the
interested parties in the Innovation and Sociotechnical Systems.
Some agreements are contracts, but many are informal and
operate at lower levels of each participating organization. This
leadership also must plan for experimentation and “transition
stages” as the SoS is unlikely to evolve all at once. Thus, contracts
and other agreements must be flexible in order to account for
unplanned effort, cost, and schedule changes in the transition
process.

2.5. SoS evolution is change leadership

But who leads? “From a SoS standpoint, innovation is likely to
come from a person or group that has good knowledge about
the SoS component systems, has knowledge of how to put these
component systems together in an overall SoS (or is willing to
experiment with the SoS architecture) and is highly motivated
by a vision of the potential gains or capabilities the SoS will
provide” [20]. SoS evolution is often driven by technical teams
who envision and work toward new SoS capabilities but do not
have authority to direct SoS changes. This is the case even if the
SoS has strong central authorities (is more directed). At the core
of SoS evolution, there is a leadership challenge that must be
addressed.

The resultant SoS generally possess the characteristics
of complex adaptive systems due to the complexity of
the organizational aspects of SoS management [21]. To
succeed in SoS evolution one must be more focused on
the characteristics of the SoS technical organizations
than the technical characteristics of the SoS of interest.
Many successful SoS have resulted from the vision
of a technical leader operating within an organization
associated with one or a few CS. For example, Google
recruited its initial technical visionaries for self-driving
vehicles from the Stanford University team that won
the second DARPA Grand Challenge race, who then
envisioned and developed the technologies under
Google’s “Project Chauffer,” before spinning the project
off to Waymo. Several of the original 16 members of the
Stanford team are still involved in Waymo and its evolution
of its self-driving taxi service SoS [22].

SoS evolution often comes from decisions at the lowest
point in CS evolution that lead to interdependence
between individuals who need to work together to realize
their vision. Over time these SoS level relationships are
formalized through standard ways of doing business. SoS
governance should remain separated from management
at the CS level, or SoS evolution will become driven by short
term reactive changes instead of longer-term evolution
[21]. In truth, there is a need for both short term SoS level
updates/corrections as well as longer term evolution.
In SoS, attempts to drive innovation from the top down
will likely be undermined by the lower-level decision-
makers in the local CS if it is a different organization. As
a complex-adaptive system, the organizations involved
must be allowed to self-organize around the dual needs
of both the SoS and their local CS. However, as the SoS
emergent properties mature the core CS capabilities tend
to converge under a single organization through people
transfers, mergers, and corporate acquisitions.

162

2.6. SoS evolution lifecycle considerations

Abbott states [10]: “Systems of systems evolve in at least three
ways. (a) Technology changes, (b) Usage changes, (c) Standards
and interfaces change… Systems with these properties do
not lend themselves to easy hierarchical control. On the other
hand, systems of this sort are not completely formless. Any
system, to be useful, must be able to perform specific functions
at particular times. Systems of systems achieve this goal in
that at any given time (a) they include a collection of (relatively
stable) participating systems and (b) they implement a (relatively
stable) set of standards and interfaces. But neither the set of
participating systems nor the standards and interfaces are fixed
forever. They evolve—but slowly.”

Because of the complex nature of SoS evolution, there is not a
single approach to manage their evolution across the full lifecycle
of the SoS. SoS go through periods of emergent change as CS
level innovations gain acceptance or CS are retired, and periods
of stability where SoS level capabilities are ingrained in regimes
and the greater social landscape. SoS stakeholders must take
care to recognize and adjust their approach to manage in SoS
evolution based on the needs and context for SoS change. Even
if the SoS is in a stable period, a CS may undergo change:

	• SoS stakeholders may not know when planned maintenance
or upgrade of one or more CS occur, or, more importantly,
may be unable to synchronize or orchestrate when these
changes occur. Awareness is critical.

	• An upgrade of a CS may result in deterioration of the SoS
architecture because of new obstacles to interoperability.
This could include changes to CS that negatively impact CS
capabilities needed by the SoS, or changes to standards and
interfaces that various CS follow to participate in the SoS.
Some level of authority at the SoS level must lead adaptation
to the new SoS structure.

	• Retirement of a CS or a usage of that CS or a standard does
not necessarily imply the retirement of the SoS. Often the
replacement of a CS capability that is still needed by the SoS
must be paid for by an SoS authority.

	• Upgrades of the SoS may not be planned but simply occur as
a byproduct of new independent CS being deployed. Again,
a level of authority at the SoS level must address integration,
test, and training of the user community when these changes
occur.

Thus, even when a SoS is in a period of stability, those that
have a vested interest in the SoS capabilities and outcomes
must expend effort to be aware of pending or even planned
changes at the CS level. SoS tend to go through periods where
they are more open to new constituent systems and periods
where they are more integrated and as a result more stable.

More integrated and stable usually equates to “more
directed” in terms of SoS authorities. But in truth, almost
every highly successful SoS becomes successful in the
market because of an unprecedented (new) architecture,
which discourages central control in the early lifecycle.
The SoS then evolves to be more integrated and under
single organizational control, which constrains innovation
but creates stability. Concepts from change leadership
and from enterprise (business) transformation are more
relevant than concepts from management when an SoS
is undergoing evolution.

2.7. SoS evolution must be led

While formal standards such as ISO/IEC/IEEE 21839 and
21840 provide details of SoS management processes,
there is virtually no literature that discusses approaches
to leadership in SoS. Literature searches for content
associated with “SoS leadership” returns content primarily
on leadership in complex adaptive systems with little direct
content on leadership in SoS. However, SoS management
is clearly a leadership challenge. ISO/IEC/IEEE 21840
states [2]: “Agreement Processes are crucial for SoS
because they establish the modes of developmental and
operational control among the organizations responsible
for the SoS and the often-independent constituent
systems. Constituent systems, which are acquired and
managed by different organizations, often hold original
objectives that may not align with those of the SoS.
Except in the directed SoS case, the SoS organization
cannot task a constituent system organization without
their cooperation. In an acknowledged or collaborative
SoS, these tasks are balanced against the tasks of
the CS as a system of interest in its own right. For
virtual SoS, agreement processes may be informal, or
considered only for analysis purposes.” One could ask,
“In a context of independent constituents, what are the
strategies one can effectively employ to control/steer the
evolution of a SoS, especially, in eventual situations of
lack of cooperation?” [23]. Literature on leadership of
and agreement processes in complex adaptive systems
helps to form a model of leadership in SoS, which will be
discussed in Section 5.

Thus, the primary challenges to SoS evolution are more
associated with leadership than with management. The
next section looks at SoS challenges in general and SoS
evolution specifically.

163

3. CHALLENGES TO LEADING EVOLUTION
IN SOS
The challenge of SoS is making a SoS evolve towards new
outcomes or preserve already desirable outcomes as long
as needed, while independent CS may potentially resist
change or must evolve toward conflicting CS-level outcomes
[23]. Table 1 from ISO/IEC/IEEE 21840:2019 describes at a
high level the challenges in SoS evolution as differing from
evolution of systems [2].

Clearly from Table 1, while system evolution may succeed
based on technical change, SoS evolution can only succeed
as an organizational change process. Three references
characterize common challenges of evolving SoS from
three different perspectives: the SoS of interest [14], CS-
level organizational drivers [21], and SoS leadership [23].
The listed challenges are summarized in Table 2 columns
1-3. Column 4 is the authors’ summary of the key challenge
derived from commonalities between their work.

Systems tend to… SoS tend to…

Have a clear set of stakeholders.
Have multiple levels of stakeholders with
mixed and possibly competing interests.

Have clear objectives and purpose.
Have multiple, and possibly contradictory,

objectives and purpose.

Have a clear management structure
and clear accountabilities.

Have disparate management structure
with no clear accountability.

Have clear operational priorities, with
escalation to resolve priorities.

Have multiple, and sometimes different, operational
priorities with no clear escalation routes.

Have a single lifecycle.
Have multiple lifecycles with elements
being implemented asynchronously.

Have clear ownership with the ability to
move resources between elements.

Have multiple owners making individual
resourcing decisions.

Table 1. Comparing evolution of systems to evolution of SoS [2].

164

SoS Leadership
Perspective [23]

SoS of Interest
Perspective [14]

CS-level Organizational
Drivers Perspective [21]

Summary Challenge

Duality of the drivers. CS maintain
a separate identity outside of the
SoS, pursuing missions of their own.
As a result, the SoS will be exposed
to influences that would not occur if
it were centrally managed. What is
locally favorable to CS teams and

individuals will drive tasks.

SoS Authorities. Each CS has its own
local ‘owner’ with its stakeholders,
users, business processes and
development approach. As a result,
the type of organizational structure
assumed for most traditional systems
engineering under a single authority
responsible for the entire system is

absent from most SoS.

Twin hierarchies are both necessary
and useful. In SoS evolution, role
dictates who is responsible, not
traditional organizational hierarchy.
Alliances of expertise must be
established, and the associated task
hierarchies must be distinguished

from organizational hierarchies.

A strategy must be developed to
connect and promote SoS level
evolutionary outcomes across CS-level
teams. This is via tasks associated with
role, not organizational structure. This
adds complexity to the management
of both CS and SoS. There may not be
an entity with authority to define and

manage this strategy.

A fractured managerial environment.
Along with independence of the
CS, this creates barriers for the CS
individuals responsible for SoS tasks,
resulting in inter-organizational,
economic, and sociotechnical

disincentives.

SoS authorities and leadership.
Evolution in a multi-organizational
environment is a leadership challenge.
The lack of structured control normally
present in a CS requires alternatives to
provide coherence and direction, such

as influence and incentives.

SoS authority must be earned from
the consent of CS developers. SoS
leadership must acknowledge that
this consent is not through authority
but through shared interest to address

SoS needs.

An environment of shared interest for
SoS-level outcomes must be created
by leadership who may not have
positional authority in the CS. This
cross-organizational leadership must
be clearly defined and individuals
incentivized to join in SoS-level

outcomes.

Limited to no holistic visibility. The
socio-technical barriers between the
CS teams create situations where
neither SoS-level roles nor the CS level
roles can ever assume having full,
timely, or permanent visibility on all of
the aspects related to the SoS or its full

environment.

Testing, validation, and learning.
CS which are independent of the SoS
challenge end-to-end SoS testing.
Need a clear understanding of SoS-
level expectations and measures,
with authority and funding, or it can
be very difficult to assess SoS level of
performance. CS change cycles may
be asynchronous. Full end-to-end
testing with every change in every CS
would be cost prohibitive. This is often

a learning process.

What is good for me should be good
for the organization. Individuals
working across CS and SoS
capabilities must be allowed to learn
and improve beyond the bounds of
their CS responsibilities. This creates

loyalty to the SoS outcomes.

Collaboration opportunities between
CS teams and individuals must be
explicitly created by leaders with either
SoS responsibility or accountability, in
order to create the visibility of SoS level
concerns and outcomes across CS
teams. This is a multi-organizational

communication challenge.

Limited to no holistic control. No
party, even if elected to manage
the SoS-level considerations, can
assume having any overarching or
direct control over the constituents or
their evolution processes. SoS-level
leadership can only negotiate with

rather than control.

Constituent Systems’ perspectives.
Someone must technically address
issues which arise from the fact that
the systems identified for the SoS may
be limited in the degree to which they

can support the SoS.

Managing empty spaces. CS
teams and individuals live within two
concentric circles of responsibility,
where the inner circle is the core of
their responsibility and the outer is the
limit of their authority. The in-between
is the area of discretion where SoS

capabilities are evolved.

SoS responsibilities and accountability
must be negotiated formally into
CS-level contracts or informally into
shared business models. The formal
and informal negotiated relationships
may be very complex, especially if

there is no central SoS authority.

More potential for incompatibility
and conflicts. When a responsible
party in one CS sees a SoS, a
responsible party from a different CS
may be seeing a different SoS or no
SoS at all. This could be pure lack
of visibility or bias. It is difficult to
introduce evolutionary change without

causing inconsistencies.

Capabilities and requirements.
SoS needs evolve independently of
individual CS needs, often requiring
CS to take on new requirements or
to replace participating CS with other
participating CS. These relationships
must be formally documented,
through standards, requirements, etc.
These may not all be known up front.

CS responsibilities. These CS
developers must “sign their work,”
they must account formally for their
responsibilities to complete work
necessary to the SoS. This must be
communicated to other CS teams to

manage inconsistencies.

In practice, some SoS-level
accountable structure must be in
place to oversee (if not govern)
individual CS responsibilities and
create documented communication of
agreements. This may not be present
in initial SoS development but must
evolve as stability of the SoS becomes
normalized. This often occurs by
moving CS under SoS common

authority.

Table 2. Challenges in SoS evolution.

165

4. METHODS TO GUIDE EVOLUTION
IN SOS
For engineered systems, there is some authority
that serves to advance the emergent goals of the
SoS, and also a set of stakeholders who have task-
oriented responsibility at both the CS and SoS level
to create, manage, and sustain the SoS in its states of
evolution. With SoS, authorities tend to evolve across
the lifecycle but those responsible for tasks tend to
persist. The Wave model views this as a systems
engineering process where intentional analysis and
planning of the next state of evolution can be done.
The transition management model views this as an
innovation process where these states of evolution
must be guided but cannot be discretely planned.
In practice, both models are relevant. Based on
the summary challenges in Table 1, analysis of the
next state of evolution must reflect not only how this
evolution will occur, but also who will enable and
create the changes.

4.1. Organizing for SoS evolution

The RACI model [26] is a useful organizational
framework for clarity of agreements in SoS evolution and
can be used to classify where SoS leadership can be
most effectively applied. The RACI acronym stands for
Responsible, Accountable, Consulted, and Informed.
SoS evolution actually occurs from individuals or
teams in the “responsible” category (those who
complete tasks necessary for SoS evolution), not
the “accountable” category (the authority, or the one
person ultimately responsible for SoS outcomes). In
some SoS, there is no one accountable authority. The
“consulted” are those whose opinions are sought in
order to aid evolution, often subject matter experts,
with whom the responsible and accountable must
engage in 2-way communication. This collaboration
process must be enabled between CS responsible
and accountable stakeholders. Finally, the “informed”
are those that need to be kept up to date on evolution,
particularly task completion. One might consider
this as a way that the details of current SoS state are
transferred across all the CS. Even this can be difficult
in a SoS as the individual CS may have competitive
reasons to protect the details of their current state [25].

Summary Challenge
Change Practice in

SoS Evolution

1. A strategy must be developed
to connect and promote SoS
level evolutionary outcomes
across CS-level teams. This is via
tasks associated with role, not
organizational structure. This adds
complexity to the management of
both CS and SoS. There may not
be an entity with authority to define

and manage this strategy.

There might not be a central authority
for SoS evolution. There will be one or
more leaders who are accountable for
SoS outcomes and may have variable
levels of control or influence over
CS-level tasks that lead to CS-level
evolution. The strategies to create and
maintain SoS capabilities and outcomes
will evolve with SoS evolution, and the
accountable leaders may evolve with
them. The direction of SoS evolution
must be informed by a strategy. This
can be thought of as an enterprise

transformation process [26].

2. An environment of shared
interest for SoS-level outcomes
must be created by leadership who
may not have positional authority in
the CS. This cross-organizational
leadership must be clearly defined
and individuals incentivized to join

in SoS-level outcomes.

SoS must be built on shared interests and/
or concerns. Efforts from a stakeholder
who has a leadership position must be
spent to establish and maintain shared
interest. Leaders must find actionable
shared interest between CS teams and
communicate it across a large and
possibly remote set of responsible teams

[23].

3. Collaboration opportunities
between CS teams and individuals
must be explicitly created
by leaders with either SoS
responsibility or accountability,
in order to create the visibility of
SoS level concerns and outcomes
across CS teams. This is a multi-
organizational communication

challenge.

A person who has a leadership position
with respect to the SoS, which can
be either responsible or accountable,
must create an environment where CS-
level relationships can form and where
responsible task owners can collaborate
and become interdependent with
respect to their task responsibilities. This
interdependence serves to distribute
power across CS and must be an active
process when SoS capabilities are
being updated or evolved. This includes
engaging with consultants on behalf of
the CS and keeping other stakeholders

informed.

4. SoS responsibilities and
accountability must be negotiated
formally into CS-level contracts or
informally into shared business
models. The formal and informal
negotiated relationships may be
very complex, especially if there is

no central SoS authority.

Shared interests are necessary but
insufficient to succeed at SoS work tasks
when CS level priorities interfere with SoS
work responsibilities. Incentives for SoS
level work must be applied and captured
into documented agreements that are
negotiated between CS, whether formal
contracts or other more indirect business
relationships. These incentives may be
economic, partnership-based, defined in

policy, etc. [23].

Applying RACI to the summary challenges of Table 2, we can
suggest the practices in Table 3:

166

Summary Challenge
Change Practice in

SoS Evolution

5. In practice, some SoS-level
accountable structure must be in
place to oversee (if not govern)
individual CS responsibilities and
create documented communication
of agreements. This may not be
present in initial SoS development
but must evolve as stability of the
SoS becomes normalized. This
often occurs by moving CS under

SoS common authority.

This is the most difficult practice to define,
as there are many means to create
accountability for SoS capabilities and
outcomes. The most straightforward is
to become more directed, using explicit
contracts with CS for SoS requirements.
The danger with this approach is that
these contracts are difficult to change as
SoS capabilities emerge and their value
are learned, suggesting these contracts
should also evolve and be flexible in
early stages of the SoS. The trend in
commercial SoS is for the organization
that gains the most value from the SoS to
gradually grow its authority by moving CS
under its authority, often by mergers and
acquisitions. This is a more evolutionary
process. There is also opportunity to
harness network effects, which are
often formed around policy, standards,
or common economic interest (such as

regulations) [23].

Table 3. SoS evolution challenges and associated change practices.

Table 3 emphasizes that analysis of SoS stakeholder relationships is
often more important than SoS capability relationships when planning
SoS evolution. Practices to evolve these stakeholder relationships
are not well covered in existing SoS literature but can be derived from
innovation systems literature and enterprise systems literature. SoS
leaders are accountable for SoS evolution but only sometimes have
authority to enforce change. Summarizing Table 3 from a leadership
perspective, SoS leaders must expend efforts to:

	• Define and communicate strategies for SoS evolution.

	• Define and create actionable areas of shared interest across
multiple CS teams.

	• Create an environment where CS-level relationships can form
and where responsible task owners can collaborate.

	• Define and apply incentives for SoS-level work and negotiate
these into CS agreements.

	• Evolve business models and relationships that make CS
accountable for SoS-level outcomes.

At a high level, these change practices imply those
that are responsible for tasks are:

	• Aware of the structure of the SoS and the
associated context or external drivers, as well as
strategies for SoS evolution.

	• Know the predominant stakeholders across
at least the CS level teams where there are
interdependencies, with whom they might share
interest.

	• Know sufficiently the SoS-level stakeholders that
should be consulted with and kept informed.

	• Respond to SoS-level change goals and strategies
with defined work tasks that are negotiated into
agreements.

	• Accept responsibility for implementation (sign
their work).

Generally, for those that are responsible, these are
technical interests and concerns. Those that are
accountable (even if they lack authority) must be
concerned with the SoS as an enterprise with technical,
business, and other mission goals. These include
sociotechnical concerns. Those who are consulted
have an important role in creating knowledge across
all the sociotechnical dimensions of the SoS.

4.2. Preparing for SoS evolution

The value of the Wave model, at least as a strategy, is
it defines “SoS analysis” as an active ongoing process
at the SoS level. Based on the I-SoS framework and
additional research on enterprise transformation [26],
we recommend those that are accountable to SoS-
level change goals regularly conduct analysis of
SoS evolution in four dimensions: SoS definition, SoS
actors, SoS change goals, and SoS implementation.

1.	 SoS definition: When analyzing SoS evolution
paths, one should start with clearly defining the
current state of the SoS of interest, including the
context (or current environment) that constitutes
the sociotechnical context the current SoS is
operating in. Note from Figure 3 this includes the
stakeholder needs it satisfies, the current set of
assets it uses (likely not just a list of CS but also
the details of how each contribute to SoS), and
the enablers and barriers to SoS change (a very
important aspect that is often neglected).

167

2.	 SoS actors: Those accountable for SoS change goals
must define all of the actors at each CS/SoS layer and
“what they bring with them” – their business models,
resources, networks, institutions, etc. This should also
include knowledge if available about what other programs
are driving CS level change.

3.	 SoS change goals: This should capture the desired
end state of the SoS evolution in terms of new desired
capabilities, who would use them, and what the priority
of each is. The goal of this analysis is to identify primary
performance measures of the current SoS and of the desired
evolution, and who would be tasked to achieve these.

4.	 SoS implementation: The implementation dimension
serves to build a model of all dimensions considering new
SoS outcomes (or goals), and the interactions that cause
them. It is likely that the desired end state will not happen
all at once, so dividing these into transition periods will help
the planning process for the evolution. The implementation
dimension should include estimates of schedule and cost,
and where the resources might come from. Note from Figure
3 we call this an “intervention” into the current SoS and the
implementation dimension must use resources from the
innovation system to create the desired changes in the SoS.

It is important to clearly define what is emergent in an SoS
independent of its CS. We cannot usually predict exactly what
emerges, but one can look at change trends and events that
are precipitating change as signals of how new emergent
capabilities should occur in the SoS. For example, what
emerges in the SoS context related to self-driving vehicles,
independent of vehicles as systems? In one Waymo business
case, it is a new kind of taxi service that operates without taxi
drivers. What are the independent CS that make up a self-
driving taxi service? What are their relative cost, performance,
availability, user interfaces, etc.? Who are the independent
organizations that contribute to this SoS? How has it evolved?

To plan for SoS evolution, the SoS accountable leads should
assess [27]:

	• What is the current state of the SoS? (The SoS of Interest
per Figure 3).

	• What are the new desired SoS capabilities? (Figure 3
describes these as the Interventions).

	• What is the priority of each desired capability?

	• What resources exist that we can work with? (This is the
resources in the Innovation System).

	• When do we want to introduce these capabilities?

	• What will be the resulting business model?

The desired analysis framework that captures all
stakeholder intentions would then represent all components
of the related SoS’, distinguished by societal layer and by
an interrelationship model that considers enablers and
barriers, actors, interactions, and outcomes of the desired
SoS evolution. This interrelationship model can be mapped
and visualized as a tool to gain stakeholder consensus
on SoS structure and performance goals, and to further
computationally model the system [28, 29]. We will propose
two qualitative tool frameworks in the next section. These
are both holistic tools, since [10]: “a system of systems is
best viewed not as a hierarchy built of component systems
but as an environment within which other systems operate
and which can support the addition of new systems that
build on systems already in the environment. Furthermore,
to fully understand a system of systems not only must it be
viewed as an environment for other systems, but it must
also be understood in terms of the larger environment
within which it and its participating systems exist. In other
words, a system of systems perspective requires one to
look outward from a system rather than inwards towards the
system’s hierarchical components.”

4.3. Two tools for analyzing the paths of SoS
evolution

Returning to the three systems model, most systems
analyses separate or avoid the complexity of these three
systems all together when designing an intervention or
evaluating a project’s feasibility. Having a toolset that
supports a SoS approach, bringing the three systems
together for integrated analysis, provides a novel approach
in the field of systems of systems engineering and complex
adaptive systems. A toolset that is designed to consider
these three systems in their entirety provides analysis of
the interactions, relationships, and evolution between and
within these systems to offer an unparalleled vantage point
from which to gauge the potential for innovation-fueled
impact [8].

SoS analysis is a systems thinking challenge. The tools at
least initially are qualitative and designed to encourage
holistic thinking about the three systems at play. In traditional
social systems analysis, we are encouraged to view an SoS
at three levels: the macro (societal, institutional), meso
(groups, organizations), and micro (individuals). The SoS
must be viewed as a multi-level enterprise system with four
layered phenomena: social layer, institutional/economic
layer, physical/process layer, and human layer [29]. Figure

168

5 shows the value of this type of analysis in both SoS Wave
model planning and in transition management planning,
which follow a similar layered set of changes. Implementation
of SoS evolution is at the human and physical layers, while
planning and execution are sociotechnical and socio-
economic processes of the institutions that participate in the
SoS. The multi-layer view directly supports both top-down
and bottoms-up analysis of the phenomena that drive SoS
evolution, particularly the human aspects of effective SoS
accountability and responsibility.

With this in mind, we present two systems thinking tools that
together aid in SoS analysis: the context analysis tool and the
multi-level SoS evolution planning tool.

4.3.1. Context analysis tool

The context analysis tool in Table 4 [30] can be used
to organize essential information reflecting desired SoS
evolution outputs/outcomes, actors and institutions who will
lead/oppose the evolution, activities they perform and how
will they interact to affect evolution, and the enablers and
barriers to the evolution process. These are each organized
into the four multi-layer phenomena of Figure 5. The value
of this tool is to institutionalize thinking about the multi-layer
nature of SoS and the importance of analyzing enablers and
barriers to change.

The additional value of the context analysis tool is its holistic
collection of contributing factors to SoS evolution. It can serve
as a running database of information useful in SoS evolutionary
planning. It can capture important perspectives like “shared
interests” (as enablers) and business relationships (as flows)
in a form that is simple to use and maintain. To use this tool:

1.	 SoS outcomes represent value drivers to the stakeholders
of the system derived from desired new SoS capabilities.
Start with the outcomes column and list the outcomes of
the SoS evolution at each level. This should focus on the
new desired capabilities of the SoS and appropriate CS
and their economic value at the “institutions” level. Above
that in the table are any new outcomes expected of the
domain. Below that in the table are any process level or
human level outcomes that describe the evolution of the
SoS.

2.	 Go back and capture the stakeholders who would support
or oppose these outcomes as actors, and the enablers
or barriers to evolution of the SoS. These would include
accountable, responsible, consultant, or just informed
stakeholders.

Figure 5. Multi-layer phenomena of SoS evolution.

169

3.	 Identify the interactions between stakeholders
and “what they bring with them” (technologies,
resources, etc.) and the activities that need to
be accomplished to produce the desired SoS
evolution. This column looks at processes,
activities, and behaviors. Focus on statements
that describe transformations that occur
between entities in the system. For example,
“making lower cost sensors” and “millions
of miles of simulated driving” represent two
phenomena helping to bring self-driving
vehicles to the market. The first is a process and
the second is a set of activities. Brainstorming
and consultation with experts helps in this step.

It normally takes several stakeholder workshops to complete this tool.
These are good opportunities to bring CS level stakeholders together
to create shared interest around SoS evolution. Keep this table at
a summary level, as it is conceived as a communications tool, and
update it regularly and as needed to plan SoS evolution strategies.

The intent of this tool is to aid in planning all holistic aspects of SoS
evolution, which must consider all aspects of the three-systems
model and the sociotechnical and socio-economic multi-layer nature
of large enterprises. Even if not actively using the tool, consider Table
4 as a useful guide to all of the types of phenomena that drive SoS
evolution.

Enablers and
Barriers

Actors
(and what they bring)

Interactions/
Activities

Outcomes

S
oc

ia
l D

om
ai

n Governmental
regulations, law,

policy, infrastructure,
environment,

geography, economic
conditions, security,

global/national/regional
investment strategies

Governments, nation-
states, regions,
infrastructure
management
organizations,

cooperatives, non-
government movements

Economic trends,
demographic

trends, shifts in
governance, network
attributes, ideologies,

market trends

Buy-in and acceptance,
employment shifts

(macro), goal
attainment, policy

changes, new
infrastructures,
growth (macro),
change (macro)

In
st

itu
tio

ns
 &

E

co
no

m
ic

s Ownership, production
environment/capacity,
distribution networks,

logistics capacity,
import/export

controls, standards

Government
organizations,
commercial

organizations,
universities, research

institutions, lobby groups,
standards organizations,

unions, incubators

Market access &
control, resource

access, access to
credit, technology

transfer and patents,
organizational

relationships, ventures

Capacities, disruption
and continuity,

resilience, efficiency,
change measures,

strategies, product lines
& systems, processes

P
hy

si
ca

l P
he

no
m

en
a,

P

ro
ce

ss
es

 &
 F

lo
w

s

Legal structures,
demand, pricing

constraints, process
constraints, standards,

agreements,
contracts, technology

readiness/maturity

Leadership, work
practices, organizational

management
structures, training,

innovation practices,
development practices,

marketing practices,
employment practices

Information flows,
resource flows,

knowledge transfer,
financial flows,

manufacturing flows,
work activities,
organizational

interactions, customer
interactions, market

interactions

Products, buying,
selling, technology

uptake, market share/
leadership, innovations,

collaborations,
performance metrics

P
eo

pl
e

&

A
ss

et
s

Culture, networks,
community structures,
access to information,
proximity to resources

and others, rights
to property

People (individuals &
classes), entrepreneurs,

leaders, executives,
skills, competencies,
health, technologies,
material resources,

financial capital

Production,
consumption/

purchasing, work
automation, income,

membership,
teaming, learning

Use cases, tools &
apps, employment,

work roles, work
outcomes, inclusion,
health, standard of

living, education, trust

Table 4. Context analysis tool [29].

170

4.3.2. Multi-level SoS evolution planning tool

The multi-level SoS evolution planning tool in Table 5 is a
means to visualize the details of transition management
processes [31]. The tool integrates the primary
decision information from all aspects of SoS analysis
into a single framework that allows the team to visualize
manageable transition paths in the broader SoS from
lower-level CS organizations and systems. These paths
are based on the desired changes sought within the
problem space and the potential for innovation in the
context of interest. The top half of the map outlines the
SoS evolution context in terms of macro-level trends,
events, and signals of change. The bottom half defines
a SoS evolution in terms of possible innovations and
relevant enablers and barriers of change, described at
the CS level of the SoS.

As with the context analysis tool, using Table 5 starts
with identifying the new desired SoS capabilities in the
right-most column. This analysis is much less focused
on the general context of the three-systems model
and much more focused on the specific new desired
capabilities (and priorities) of the SoS evolution.

The new desired capabilities (and priorities) of the SoS
evolution are best described initially as a narrative that
captures an “event” that deploys the new capabilities
to the using community and the impact these changes
will have to that capability. This is the “macro” view
of the SoS outcomes. This event-based narrative is
backed up by the SoS level and CS level trends that
drive this narrative.

Each SoS evolutionary period starts with a current
state, goes through an iteration period where the
new capabilities “re-emerge” (there are often multiple
iterations), and arrive at the desired end-state. It is
these iterations that will provide the insight into SoS
evolutionary pathways and help to organize the actual
implementation of the new capabilities. These should
be described first at the SoS (macro) level. There will
be multiple iterations or “transitions” in SoS evolution,
even though the table only represents one due to
space constraints.

Starting at the bottom of the table, one then lists the
individual CS-level change programs and actors in
the current state, iterations, and desired end-state.
Then moving up a row, the focus is on the institutions
or organizations involved and the representative

authorities and business models that would support SoS level
change. A unique aspect of this table is the next two rows
up, which capture enablers and barriers to SoS-level change.
Because SoS leaders are accountable but may not have direct
authority over CS updates, they typically can only enable them
to happen or provide barriers to CS-level change that can have
negative impact on the SoS-level performance.

4.4. Revisiting layers: Socio-economic focus of SoS
evolution

When using these tools to conduct SoS analysis, it is important
to apply a socio-economic frame of reference as opposed to
a technical frame of reference. This implies one should focus
on the Institutions and Economics related factors (and rows)
in these tools. While SoS often exist in the Acknowledged
and Collaborative categories, there must always be a lead
organization that realizes economic value from the SoS
capabilities and becomes the de facto change leader. As noted
in Section 2.2, SoS develop and evolve in layers: technology,
applications, information, and business.

One should also adopt a socio-economic layering of SoS [32]:

1.	 The set of organizations and independent individuals
functioning as part of the SoS and how they are influenced.
These live in the Institutions and Economics layer of the
Context Analysis tool.

2.	 The infrastructure environment represented by various
SoS-level technical foundations, institutions, regulations,
procedures, and mechanisms. These live in the Social
Domain layer of the tool.

3.	 The communication and logistics systems that provide the
processes of interaction of the organizational components of
the system. These live in the Physical Phenomena, Processes
& Flows layer of the tool.

4.	 The innovation system: the set of activities, each of which
is localized in space and in time, aimed at adapting the
ecosystem to changes in the external environment. These
live in the People and Assets layer of the tool.

What does this mean for SoS leadership and for leading
implementation of SoS evolution? First, the implementation must
start with the organizations involved and the economic value of
the changes. From Table 5: “describe in detail the current SoS
and CS level organizations as well as others in the context of use
with descriptions of importance.”

171

Current State Signals of Change Iteration Period Desired End State
S

oS
 L

ev
el

E

ve
nt

s List any past events
that presented

opportunities for
SoS evolution.

What events signal
to us that the SoS
should change?

Describe the plan for deployment of these
changes and how they will be evaluated.

Provide a narrative
of how these SoS
capabilities were

introduced and what
impact they will have.

S
oS

 L
ev

el
 T

re
nd

s What outcomes
does the SoS
provide and to

whom? What CS
level changes
are currently in
development or
contemplated?

What are the current
trends that signal new
SoS capabilities are
needed or becoming

opportunities for
evolution?

Describe how you will integrate,
test, deploy, and measure user

adoption of the planned evolution.

What new outcomes
should the SoS provide?

What are the desired
new capabilities? What
CS need to be added,
removed, or changed?

How would you prioritize
these capabilities?

Current SoS primary capability Capabilities evaluated in the iteration
Desired SoS

primary capability

E
n

ab
le

rs

List enabling
policy, technology,

processes,
organizations, etc.
from the Context
Analysis table.

What are the current
trends that signal

changes in an SoS
enabler or barrier?

New regulation,
economic landscape,

threat landscape,
policy changes, etc.

Expected changes
to enabling policy,

technology,
processes,

organizations, etc.
from the Context
Analysis table.

Did the transition
period indicate

additional enablers
of barriers would

need to be
addressed?

What changes to
enabling policy,

technology, processes,
organizations, etc. are
necessary to reach this
desired state - from the
Context Analysis table?

B
ar

ri
er

s List current potential
barriers to evolution

from the Context
Analysis table.

Expected changes
to potential barriers

to evolution from
the Context

Analysis table.

What barriers need
to be overcome to
reach this desired

state - from the Context
Analysis table?

In
st

itu
ti

o
n

al
/

O
rg

an
iz

at
io

n
al

 Describe in detail
the current SoS

and CS level
organizations as
well as others in

the context of use
with descriptions
of importance. What are some new

operational use
concepts that the SoS

could provide and
who would be able
to provide them?

What new SoS
and CS level

organizations will
be involved? Who
in the operational
use concept will

be involved? How would
you measure
successful

transition of the
desired new SoS

capabilities?

What are the new
use cases for the

desired capabilities
and who will be able

to provide them?

E
xa

m
p

le
 P

ro
g

ra
m

s
an

d
 In

vo
lv

ed
 A

ct
o

rs

Describe in detail
the current SoS and

CS level actors/
stakeholders and
what you know

about their work.

What CS level
change programs

or programs
that produce

new CS that you
will integrate in

this period?

What CS level change
programs or programs
that produce new CS

would you plan to
integrate and deploy

in this end state?

Table 5. Multi-level SoS evolution planning tool [31].

172

Then move to the innovation system: “what CS level change
programs or programs that produce new CS will you integrate
in this period? Who produces them?” From there the leader
must move to the leadership methods of Table 3: “what effort
must be spent to establish and maintain actionable shared
interest between CS teams and how will I communicate it
across a large and possibly remote set of responsible teams?”

Third, evaluate or reevaluate the communications and
logistics systems. This is where the enablers and barriers
analysis of Tables 4 and 5 becomes most useful. As noted in
Table 3: “a leader must create an environment where CS-level
relationships can form and where responsible task owners
can collaborate and become interdependent with respect to
their task responsibilities.”

The infrastructure environment is a primary developmental
concern for new unprecedented SoS but is likely to be stable
in evolution of a sustained SoS. Changes to the infrastructure
environment should be discussed in the Trends and Events
rows of Table 5 and where they are enablers or barriers to
change, should be noted in those rows.

5. LEADERSHIP COMPETENCIES FOR
SOS MANAGEMENT
When a new SoS is being created or an existing SoS is
undergoing significant evolution, success will depend on
the qualities of leadership. A framework for leadership in
megaprojects and mega-systems that can apply well in
the context of SoS evolution [33]. Four essential leadership
capabilities are:

	• Coordinating across diverse stakeholders toward
shared outcomes.

	• Addressing system complexity and uncertainty through
learning.

	• Creating flexibility in evolutionary strategies.

	• Managing risk to SoS capabilities.

Management strategies tend to be more transactional
and supported by transactional processes like “Plan-Do-
Check-Act” (PDCA). In stability periods much of the SoS
level change involves planning, implementing, checking
results, and acting upon findings (the Wave model).
In evolutionary periods, leadership can be described
as more transformational. The Bass transformational
leadership model defined two transactional and four
transformational characteristics that contribute to high
performance in leadership [34]. Figure 5 depicts how
these six characteristics come together in a project setting.

While transformational leadership motivates and
inspires followers, transactional leadership is more
focused on “exchanges” between leader and follower
in terms of work tasks, penalties, and rewards [35]. This
framework is important to accountable SoS leadership
because both transactional (project management) and
transformational (influence and followership) leadership
skills are necessary. The two transactional characteristics
are more related to PDCA and include: management by
exception (deal with misaligned CS level behaviors, plan
and conduct SoS integrations, stabilize negotiated SoS
relationships) and contingent reward (funds, incentives).
The four transformational characteristics are more
motivational and include: individualized consideration
(coaching, delegation, training opportunities), idealized
influence (model expected behaviors, use charismatic
communication), inspirational commitment (gain
commitment to the work and the SoS, teamwork), and
intellectual stimulation (ensure the need for change,

173

provide a strategy, build internal support, ensure external
support, provide resources if needed, institutionalize
changes) [35]. Transformational aspects of leadership are
required to motivate responsible CS stakeholders to achieve
SoS-level outcomes and to perform beyond their CS-level
expected taskings.

In all the SoS case studies we reviewed, the creation and
evolutionary periods of SoS had leaders with strong technical
backgrounds in the SoS domain of interest, combined with
experience sorting out difficult situations across complex
supply chains. Critical skills for SoS leaders include [36]:

	• Highly open to new experience, self-disciplined,
engaging, stable, and test high in emotional intelligence.

	• Project management remains important but in the context
of cooperation and not in transactional methods (as it is
usually employed).

	• Preference for spending time on people management,
alignment, and communications over work processes.

	• Highly aware of their own abilities for learning.

Applying this model to the change practices of Table 3, we
can characterize the leadership abilities of those that are
accountable for SoS level outcomes:

Figure 6. Bass transformational leadership model [33].

Change Practice in SoS Evolution Leadership skills [33]

There might not be a central authority for SoS
evolution. There will be one or more leaders who
are accountable for SoS outcomes and may have
variable levels of control or influence over CS-
level tasks that lead to CS-level evolution. The
strategies to create and maintain SoS capabilities
and outcomes will evolve with SoS evolution, and
the accountable leaders may evolve with them.
The direction of SoS evolution must be informed

by a strategy.

	• SoS leaders exhibit political savvy: the ability to exhibit confidence and professional
diplomacy, while effectively relating to people at all levels internally and externally.

	• SoS leaders anticipate future situations, leaders with foresight can better plan for
long-term outcomes and adapt to evolving project environments.

	• SoS leaders embrace uncertainty and ambiguity.

	• They are self-aware and self-motivated: they continually reassess their own judgment
and decisions, while showing enthusiasm, passion, and a strong commitment to
SoS goals.

	• They are open-minded: they are willing to revise their plans based on new
information in order to achieve better SoS outcomes.

	• They are courageous and willing to make tough decisions, address
underperformance, and challenge unrealistic expectations or assumptions.

174

Change Practice in SoS Evolution Leadership skills [33]

SoS must be built on shared interests and/or
concerns. Efforts from a stakeholder that has a
leadership position must be spent to establish
and maintain shared interest. Leaders must find
actionable shared interest between CS teams
and communicate it across a large and possibly

remote set of responsible teams.

	• Leaders with strong technical and domain skills in the SoS are needed for creating
shared interest.

	• SoS leaders must be willing to learn along with CS responsible stakeholders.

	• SoS leaders must be trustworthy and establish strong leader-follower relationships
along lines or shared interests.

	• Strategic thinking is required for setting realistic goals, and ensuring alignment
between SoS and CS objectives.

	• Vision/Goal Setting: a clear vision is crucial for guiding decision-making and
maintaining stakeholder alignment.

	• SoS leaders master all aspects of effective communication and make it a focus
of their work. Communication must be at a higher, more visionary level in SoS
leadership.

A person that has a leadership position with
respect to the SoS, who can be either responsible
or accountable, must create an environment
where CS-level relationships can form and where
responsible task owners can collaborate and
become interdependent with respect to their task
responsibilities. This interdependence serves
to distribute power across CS and must be an
active process when SoS capabilities are being
updated or evolved. This includes engaging with
consultants on behalf of the CS and keeping

other stakeholders informed.

	• SoS leaders encourage a culture of openness and communication and are
themselves open to new ideas and perspectives.

	• SoS leaders build cultures of collaboration across CS-level teams.

	• SoS leaders create an environment that actively shows they believe responsible
task owners act in good faith and do their best to help the SoS achieve its goals.

	• SoS leaders coach and mentor others independent of CS organization; they help
to develop others’ leadership skills, foster collaboration, and enhance trust and
performance.

	• SoS leaders build relationships; they create and maintain connections with people
to create a sense of team.

Shared interests are necessary but insufficient
to succeed at SoS work tasks when CS level
priorities interfere with SoS work responsibilities.
Incentives for SoS level work must be applied and
captured into documented agreements that are
negotiated between CS, whether formal contracts
or other more indirect business relationships.
These incentives may be economic, partnership-

based, defined in policy, etc.

	• There will be conflicts between stakeholders and conflicts of priority within the team.
Managing stakeholders calls for negotiating and diplomatic skills. SoS leaders
need to be able to bring stakeholders together on critical SoS level decisions.

	• SoS are complex, involve a wide variety of stakeholders, and require the integration
of multiple disciplines. SoS leaders help solve complex problems. They understand
knowledge exchange and transfer within and across social networks is critical
and they actively visualize knowledge to develop shared understanding across
stakeholders.

	• SoS leaders create an environment that encourages and prioritizes gaining new
knowledge and skills. Learning is rewarded.

	• They are highly experienced in managing complex supply chains across multiple
CS.

	• They are extremely business savvy. They know when to become more directed,
using explicit contracts with CS for SoS requirements. Yet they create flexibility in
contracts and business relationships that incentivize integration problem solving
over simple cost and schedule factors.

	• They harness network effects, effectively using policy, standards, or common
economic interest [22].

175

6. CONCLUSION
SoS evolution is a leadership challenge that spans two types of SoS phenomena: the emergence of a new SoS and the sustainment
of an existing SoS. One should view this as a sociotechnical and socio-economic process, not just new capabilities arising from an
engineering process. Analysis and implementation of SoS evolution must start with the organizations involved and the economic
value of the changes. From there evolution will arise from the innovation system, which is separate from the SoS of Interest, and
the leaders’ abilities to create shared interest across multiple (primarily engineering) teams. All SoS must be led, although some of
that may be informal. The leader must create an environment where CS-level relationships can form and where responsible task
owners can collaborate and become interdependent with respect to their task responsibilities. Finally, SoS leaders must be holistic
and able to place emerging trends and events that will affect SoS capabilities or business models into a transition plan. There are
a unique set of leadership skills associated with SoS, and individuals with these skills tend to arise in development of new SoS
and should be trusted and nurtured.

176

REFERENCES

1.	 M. Maier, “Architecting Principles for Systems of Systems,” Proc. of the
Sixth Annual International Symposium, International Council on Systems
Engineering, Boston, MA, (1996), pp. 567- 574.

2.	 International Standards Organization (ISO)/ Institute of Electrical and
Electronics Engineers (IEEE), ISO/IEC/IEEE 21840:2019(E) Systems and
software engineering - Guidelines for the utilization of ISO/IEC/IEEE 15288
in the context of system of systems, 2019.

3.	 International Standards Organization (ISO)/ Institute of Electrical and
Electronics Engineers (IEEE), ISO/IEC/IEEE 21839:2019(E) Systems and
software engineering - System of systems (SoS) considerations in life
cycle stages of a system, 2019.

4.	 M. Jamshidi, “System-of-Systems Engineering – a Definition,” IEEE SMC
(October 2005).

5.	 J. Dahmann. 2014. Systems of systems pain points. INCOSE International
Symposium on Systems Engineering, 2014.

6.	 C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska,
Systems of Systems Engineering: Basic Concepts, Model-Based
Techniques, and Research Directions. ACM Comput. Surv. 48, (2),
September 2015.

7.	 J.H. Holland (2006). “Studying Complex Adaptive Systems”. Journal of
Systems Science and Complexity. 19 (1): 1–8.

8.	 J. Boardman and B. Sauser, “System of systems - The meaning of ‘of,’”
In 2006 IEEE/SMC International Conference on System of Systems
Engineering. IEEE.

9.	 McDermott, T. and Nadolski, M. 2017. “Emergence as Innovation in
Systems of Systems - a Three Systems Model,” 12th International
Conference on System of Systems Engineering (SoSE), Waikoloa, US-HI.

10.	 R. Abbott, “Open at the top; open at the bottom; and continually (but
slowly) evolving,” In 2006 IEEE/SMC International Conference on System
of Systems Engineering. IEEE.

11.	 Y. Bar-Yam, M. A. Allison, R. Batdorf, H. Chen, H. Generazio, H. Singh, and
S. Tucker. 2004. The characteristics and emerging behaviors of system
of systems. NECSI: Complex Physical, Biological and Social Systems
Project, 1–16.

12.	 Rogers, Everett. Diffusion of Innovations, 5th Edition. Simon and Schuster.
16 August 2003.

13.	 R.M. Henderson, K.B. Clark, “Architectural Innovation: The Reconfiguration
of Existing Product Technologies and the Failure of Established Firms,”
Administrative Science Quarterly, Vol. 35, 1990.

14.	 J. Dahmann, G. Rebovich, J. Lane, R. Lowry and K. Baldwin, “An
implementers’ view of systems engineering for systems of systems,” 2011
IEEE International Systems Conference, Montreal, 2011, pp. 212-217.

15.	 F.W. Geels, “Technological transitions as evolutionary reconfiguration
processes: A multi-level perspective and a case-study,” Research Policy,
December 2002, 31 (8-9), 1257-1274.

177

16.	 J. Rotmans, R. Kemp, & M. van Asselt. “More evolution than revolution:
transition management in public policy,” Foresight 3 (1).

17.	 A. Mostafavi, D. M. Abraham, D. DeLaurentis, & J. Sinfield, “Exploring
the Dimensions of Systems of Innovation Analysis: A System of
Systems Framework,” IEEE Systems Journal, 2011, 5 (2), pp. 256-
265.

18.	 State of California, Senate Bill No. 1298, Chapter 570, Approved
by Governor on Sepember 25, 2012. Retrieved 4/2025 from http://
www.leginfo.ca.gov/pub/11-12/bill/sen/sb_1251-1300/sb_1298_
bill_20120925_chaptered.pdf.

19.	 H. Lawson, A Journey Through the Systems Landscape. London:
College Publications, 2010.

20.	 Gary T. Anderson Opportunities for Innovation in a System of Systems
Framework, Proceedings of the 2009 IEEE International Conference
on Systems, Man, and Cybernetics San Antonio, TX, USA - October
2009.Sage, Andrew P. and Cuppan, Christopher D. ‘On the
Systems Engineering and Management of Systems of Systems and
Federations of Systems ’. 1 Jan. 2001 : 325 – 345. Print.

21.	 Sage, Andrew P. and Cuppan, Christopher D. ‘On the Systems
Engineering and Management of Systems of Systems and
Federations of Systems ’. 1 Jan. 2001 : 325 – 345. Print.

22.	 Waymo. Wikipedia. Retrieved 4/2025 from https://en.wikipedia.org/
wiki/Waymo.

23.	 Mohamed Hichem Fendali, Isabelle Borne, Djamel Meslati, Labiba
Souici-Meslati. “How to steer evolution of a system-of-systems”
Systems Engineering. 2024;1–17. ©2024Wiley Periodicals LLC.

24.	 Project Management Institute (PMI). A Guide to the Project
Management Body of Knowledge (PMBOK Guide) (2004 edition).
Newtown Square, PA: Project Management Institute.

25.	 Smith, Michael L.; Erwin, James. “Role & Responsibility Charting
(RACI)” (PDF). Project Management Institute California Inland Empire
Chapter. p. 5. Archived from the original on 16 September 2022.
Retrieved 18 May 2023.

26.	 Rouse, William B (Ed.). Enterprise Transformation: Understanding
and Enabling Fundamental Change. Wiley 2006.

27.	 J. Lane, Planning for SoS Evolution, presentation to the San Diego
Chapter of INCOSE 23 July 2016. Retrieved 4/2025 from https://
sdincose.org/wp-content/uploads/2016/10/SD-INCOSE-Tutorial-
Planning-for-SoS-Evolution.pdf

28.	 W. B. Rouse, “Policy Flight Simulators For Transforming Large-Scale
Public-Private Enterprises;” Third International Engineering Systems
Symposium CESUN 2012; 18-20 June 2012.

29.	 W. B. Rouse & D. Bodner, Multi-level modeling of complex socio-
technical systems – phase 1, A013 - final technical report, SERC-
2013-TR-020-2, Systems Engineering Research Center.

30.	 McDermott, Tom. “Applying Systems-of-Systems Principles to
Purposeful Design of Human Systems.” 2018 13th Annual Conference
on System of Systems Engineering (SoSE) (2018): 150-156.

31.	 Kemp, Loorbach, & Rotmans; “Transition Management as a model
for managing processes of co-evolution towards sustainable
development;” International Journal of Sustainable Development &
World Ecology 14(2007) 1-15.

32.	 Kleiner, G. “Socio-economic ecosystems in the light of system
paradigm.” System analysis in economics-2018, pp. 4-12. 2018.

33.	 T. McDermott & N. Hutchison, Critical skills for successful leadership
of large complex projects, preprint, 22nd Annual Acquisition
Research Symposium & Innovation Summit, 2025.

34.	 Aarons, G.A. Transformational and transactional leadership:
association with attitudes toward evidence-based practice. Psychiatr
Serv. Aug 2006; 57(8):1162-9.

35.	 Van Wart, M. Evaluating Transformational Leaders: The Challenging
Case of Eric Shinseki and the U.S. Department of Veterans Affairs.
Public Administration Review, 75(5): 760-769. September|October
2015.

36.	 Merrow, E., & Nandurdikar, N. Leading Complex Projects. John Wiley
& Sons. 2018.

178

BIOGRAPHIES

179

MIGUEL ÁNGEL COLL MATAMALAS
Miguel Ángel Coll Matamalas is

a Systems Engineer at Isdefe,

currently supporting the Logistics

Support Command of the Navy

in the development of logistic

doctrine and activities related

to obtaining Integrated Logistic

Support for ongoing Acquisition

Programs. In particular, he is

involved in the development

of the Digital Twin of the F-110

frigates. He also participates

in the NATO Working Group responsible for reviewing the

ALP-10 standard (NATO Guidance for Integrated Life Cycle

Support). Miguel Ángel is a Naval and Oceanic Engineer from

the Universidad Politécnica de Madrid and holds an Executive

MBA from IESE (University of Navarra). In his previous career,

he has occupied several roles associated with maintenance

and asset management, spanning both the maritime industry

and water infrastructure sectors. With the aim of applying this

experience in different areas of Sustainment, Miguel Ángel has

a special interest in improving the supportability of systems

through influence in design; in the development of digital

twins, prescriptive maintenance, and Model-Based Product

Support (MBPS).

TOM MCDERMOTT
Tom McDermott is the Chief

Technology Officer of the

Systems Engineering Research

Center (SERC) and a faculty

member in the School of

Systems and Enterprises at

Stevens Institute of Technology

in Hoboken, NJ. With the SERC

he develops new research

strategies and is leading research

on digital transformation,

education, security, and artificial

intelligence applications. He previously held roles as Faculty

and Director of Research at Georgia Tech Research Institute

and as Director and Integrated Product Team Manager for the

F-22 Raptor Avionics team at Lockheed Martin. Mr. McDermott

teaches system architecture, systems and critical thinking,

and leadership. He provides executive level consulting as a

systems engineering and organizational strategy expert. He

is a fellow of the International Council on Systems Engineering

(INCOSE) and recently completed 3 years as INCOSE Director

of Strategic Integration.

CH
AP

TE
R

9
Novel analysis, modeling, and

simulation methods for SoS

José Luis de Rosario, Isdefe (jlderosario@isdefe.es)
Dr. Paul Grogan, Arizona State University (paul.grogan@asu.edu)

Dr. Alessandro Golkar, Technical University of Munich (golkar@tum.de)
Dr. Amro Farid, Stevens Institute of Technology (amro.farid@stevens.edu)

Dr. Young-Jun Son, Purdue University (yjson@purdue.edu)
Dr. Nil Egin, The Pennsylvania State University (nhe2@psu.edu)

Dr. John Little, Virginia Tech (jcl@vt.edu)

Abstract

This chapter presents a survey of novel analysis and simulation methods that are useful to engineer
SoS, including: coordination of systems, federation of systems, heterofunctional modeling, federated
modeling and simulation, agent-based modeling, and SoS approaches to modeling.

Keywords

Coordination of systems, federation of systems, heterofunctional modeling, federated modeling and
simulation, agent-based modeling.

182

1. INTRODUCTION
As discussed throughout the book, the engineering of Systems
of Systems (SoS) presents a distinct set of challenges that
transcend those faced in traditional systems engineering.
SoS are characterized by the operational and managerial
independence of their constituent systems, evolutionary
development, emergent behavior, and often, heterogeneity in
function, purpose, and design. These characteristics demand
analysis and simulation methods that can accommodate
dynamic interactions, decentralized control, and multiple layers
of abstraction.

This chapter surveys a collection of novel analysis and simulation
methods that have emerged or matured in response to the
specific demands of SoS engineering. These methods provide
engineers with tools to represent, reason about, and test SoS
concepts in ways that traditional approaches cannot support
effectively. The chapter covers approaches that facilitate the
coordination of systems to achieve shared objectives, and those
that support the federation of systems while preserving local
autonomy. It explores heterofunctional modeling techniques that
account for the diversity of roles and interactions among systems,
and presents federated modeling and simulation strategies
that allow independent models to interoperate coherently. The
chapter also covers agent-based modeling, a powerful method
for capturing the behavior of autonomous entities and their
interactions, and broader SoS-specific modeling approaches
that provide tailored abstractions and formalisms to capture the
complexity of these large-scale engineered constructs.

By surveying these methods, this chapter aims to provide SoS
engineers with a roadmap to select, combine, and apply suitable
analysis and simulation techniques throughout the lifecycle of a
SoS.

2. COORDINATION OF SYSTEMS

2.1. Introduction

Systems engineering is traditionally a centrally managed
approach to the successful design, integration, testing,
operation, and retirement of engineered systems. Centralized
approaches help to address system-level objectives by
directing engineering efforts to consider emergent properties
that may not fall within the scope of individual subsystem
teams. Characteristic of this point, recent interest in model-
based systems engineering (MBSE) approaches emphasize
centralized information systems to collect, manage, and share
design knowledge across a design team [1].

SoS challenge conventional concepts of control in
systems engineering because no single system-level actor
possesses complete authority over others. SoS engineering
problems exhibit more decentralized structures, which
influence the type and nature of supporting methods. The
seminal work by Maier describes architecting principles for
SoS, referred more precisely as collaborative systems, that
emphasize more indirect control via stable intermediate
forms, policy triage, leveraging at the interfaces, and
incentives to ensure cooperation [2].

The type and degree of interaction within a SoS spans
a continuum of collective endeavors [3]. Coordination
is a loosely coupled information sharing and planning
paradigm that pursues individual objectives by reducing
conflict. Cooperation is a moderately coupled resource
sharing paradigm that pursues mutual objectives with
shared outcomes. Finally, collaboration is a tightly coupled
united paradigm that pursues a joint objective that
individuals are incapable of achieving alone. Advances in
SoS modeling and analysis techniques seek to promote
design actions leading to mutually desirable collective
outcomes while mitigating undesirable ones.

2.2. Modeling coordination with game theory

Game theory is an economic field that studies strategic
interaction. It builds upon key models and methods of
decision theory, which itself studies individual decision-
making under uncertainty. The key distinction between
game theory and decision theory hinges on the
consideration of interactive decision-making processes
among actors who iteratively consider each other’s
perspectives about the coupled problem when devising
decision-making strategies. Game theory is particularly
applicable to SoS problems because it explicitly considers
decentralized control over actions and multiple, potentially
completing, actor objectives.

Fundamental game theory constructs define the actors,
their available actions, and resulting shared outcomes.
Each actor possesses a utility-based measure of
preference for outcomes. Preferences follow a similar logic
to objective functions in value-driven design [4]; however,
coupled outcomes evaluated by each actor-specific utility
function can lead to conflicting preferences for outcomes.

An actor’s strategy describes the complete process by
which they select an action. Pure strategies select one
action with certainty (thus, actions are also commonly
referred to as strategies) and mixed strategies select
probabilistic combinations of actions. To identify rational
strategies (i.e., those leading to preferred outcomes),
game theory explicitly considers strategic interaction

183

among actors, rather than simply treating other’s actions as
sources of exogeneous uncertainty.

There exist a variety of game theoretical problem formulations
and analysis methods; however, this section presents a basic
one: a normal form game. It is represented by a matrix that
quantifies preference for outcomes (payoffs) for each actor
resulting from simultaneous action combinations, often
over discrete action spaces. Normal form games typically
model single-stage decision problems; however, repeated
games can also study strategy of sequential decisions. Non-
cooperative games focus on the baseline decision-making
dynamics arising from payoff values while cooperative games
allow for within-game agreements to modify such values.

Game theory analysis methods focus on identifying
equilibrium strategies. A Nash equilibrium is a strategy
set where no actor has individual incentive to deviate to a
different strategy. It represents a potential “solution” to a
game because it finds a naturally stable decision point that is
immune to interactive effects. Games may have zero, one, or
many equilibriums and actors may have different preferences
for each equilibrium. The presence of an equilibrium does not
suggest it is mutually desirable to all actors.

Rather than solving realistic day-to-day problems, game theory
strives to anticipate strategic behavior by understanding
the underlying forces that shape actions in more abstract
settings. Many game theory problems consider a small set
of actors and their actions. A surprisingly rich variety of
strategic dynamics emerge from games with two actors and
two actions based on the number and nature of equilibrium
strategies present. For example, the famous prisoner’s
dilemma game is a two-actor, cooperate-or-defect game that
exhibits one equilibrium strategy (both defect), which does
not lead to the most desirable outcome (both cooperate). The
tension between individual and collective benefits helps to
understand the strategic dynamics behind many collective
endeavors.

In addition to identifying equilibrium strategies, game theory
methods also provide comparative analysis of strategies
within or across related games. For example, a stag hunt
is a two-actor, collaborate-or-defect game that exhibits a
bistability dynamic where the two equilibrium strategies
(both collaborate or both defect) trade sources of risk and
reward. Game theory analysis of risk dominance evaluates
comparative attractiveness of the two strategies by measuring
the relative stability of collaboration, which helps to identify
and pursue robust collaboration opportunities [5].

Broader applications of mechanism design leverage game
theory analysis to propose structural game changes that are
anticipated to result in more collectively desirable outcomes.
In this setting, cooperative game theory allows enforceable
agreements within actor coalitions to shift focus away from

maximizing individual payoffs to sharing collective payoffs.
As in most design problems, mechanism design operates
within a vast space of creative design solutions that balance
competing factors such as economic efficiency and equity.

2.3. Illustrative example: satellite coordination

Consider an example SoS coordination problem with
two independent space agencies: Red and Blue. Red
operates a small research satellite and Blue operates a
large meteorological satellite. As an example of bilateral
coordination, the agencies must decide on actions to
mitigate the threat of a collision in response to a hazardous
conjunction event.

Both actors have two available actions: do nothing or
maneuver their satellite, leading to four possible outcomes.
Table 1 illustrates the normal form representation of this
coordination game using notional utility (payoff) values. Note
that the mixed strategy has been added as an additional
row and column to aid discussion. Utilities quantify the
expected utility for each outcome which itself may compose a
distribution of events (e.g., the outcome where both actors do
nothing may only probabilistically lead to a collision). Financial
units (e.g., USD $M) provide a relatively unbiased proxy for
utility despite being affected by variable human risk attitudes.
For simplicity, this example assumes risk-neutral decision-
making. The outcome where both actors do nothing results
in severe negative consequences denoted as -$50M for Red
and -$100M for Blue. The other outcomes result in slightly
negative consequences due to propellant consumption that
reduces satellite operational life, shown as -$2M for Red and
-$3M for Blue. Utility values are not generally comparable
between actors due to differences in preferences; however,
the selected quantities are intended to highlight asymmetries
between the two actors.

184

Equilibrium analysis searches for stable strategy sets,
revealing two pure equilibria and one mixed equilibrium. The
first pure equilibrium strategy occurs if Red chooses to do
nothing, and Blue chooses to maneuver. Under this baseline,
Red would not unilaterally choose to maneuver, because
the threat is already mitigated. Similarly, Blue would not
unilaterally choose to do nothing, because it results in a worse
outcome than proceeding with a maneuver. The second pure
equilibrium strategy occurs for the similar scenario where
Red chooses to maneuver, and Blue chooses to do nothing
with the same justification. The mixed equilibrium produces
indifference to strategy selection. In this game, when Red
chooses to maneuver with probability (-100+3)/(-100-0+3-3)
= 0.97, Blue has expected utility -$2M for all outcomes. When
Blue chooses to maneuver with probability (-50-0)/(-50+2-0-
2) = 0.96, Red has expected utility -$3M for all outcomes.

Actors do not have equal preferences for the three equilibrium
solutions. Red prefers the equilibrium where Blue always
maneuvers. Similarly, Blue prefers the equilibrium where Red
always maneuvers. The mixed equilibrium is not preferred

by either actor. Game theory provides little more progress
towards a solution and external factors such as negotiation
or brinksmanship may be required to resolve the strategic
tension. Indeed, this example is an instance of games
variously described as chicken, hawk-dove, or snowdrift that
represent a theoretical model of intrinsic conflict.

Cooperative game theory permits enforcement of agreements
that materially impact outcomes. In the above problem,
it is comparatively less costly for Red to maneuver their
small satellite than Blue; however, Red bears the cost of
maneuvering their own satellite. Mechanism design proposes
incentives to promote efficient solutions. For example,
consider a mechanism where Blue agrees to compensate Red
for maneuvering their smaller satellite to mitigate a potential
collision, regardless of Blue’s action. Table 2 represents
the value exchange as a deduction of Y from Blue and an
addition of X to Red. Note that X and Y may not be equal if
Red and Blue differently value the resource being exchanged
or if transactional friction erodes a part of the value.

Blue Agency 4% Do Nothing

96% ManeuverDo Nothing Maneuver

Red Agency

Do Nothing
-50

-100

0

-3

-2

-6.88

Maneuver
-2

0

-2

-3

-2

-2.88

3% Do Nothing, 97% Maneuver
-3.44

-3

-1.94

-3

-2

-3

Table 1. Satellite collision coordination problem (Utilities in USD $M).

Blue Agency

Do Nothing Maneuver

Red Agency

Do Nothing
-50

-100

0

-3

Maneuver
X-2

0-Y

X-2

-3-Y

Table 2. Satellite collision coordination problem with incentives.

185

For values X > $2M, only one equilibrium strategy remains
where Red always chooses to maneuver and Blue always
chooses to do nothing. Compared to the original game,
this solution is better than Red’s best-case equilibrium and
better than Blue’s worst-case equilibrium for values Y < $3M.
Additionally, this solution avoids the strategic uncertainty
associated with multiple equilibriums. However, a new
potential problem arises: Red now has a perverse incentive
to benefit from collision hazards as a source of additional
revenue. An expanded system scope and additional analysis
will be required to devise coordinated SoS solutions that resist
exploitation.

3. FEDERATION OF SYSTEMS

3.1. Introduction

Federations of Systems (FoS) are a class of SoS that may
operate during their life cycle independently or may voluntarily
cooperate with each other with the intent of obtaining mutual
benefits. Unlike hierarchical or tightly integrated systems,
federations are a class of distributed systems that maintain
the management, operational, and goal independence of their
constituent systems. At the same time, they are designed in
such a way as to promote collaboration among them. The FoS
paradigm is particularly relevant in scenarios where resource
sharing can improve value delivery while addressing cost and
complexity challenges-particularly for systems characterized
by high capital costs and/or high recurring operating costs.

The characteristics defining FoS are outlined in Table 3. The
motivation behind FoSs lies in the potential for improved
resource utilization, and the possibility of providing added
value by promoting collaboration among traditionally isolated
systems. Collaboration between systems is particularly
important in exploiting opportunities arising from the
underutilization of resources.

SoS employ mechanisms structured to ensure integration when
required. Such integration is implemented through centralized
communication protocols. Governance frameworks are
also possible to enable flexible collaborations, often of an
opportunistic nature.

One instance of system federations is represented by the
Federated Satellite Systems (FSS) paradigm [7]. Satellites in
FSS cooperate to exploit resources that would otherwise go
unused because they are not needed at particular points
in their operational life. Examples of resources that can be
shared in a federation include bandwidth, data storage, as well
as computational capacity. Participation in a federation makes
it possible to reduce operational inefficiencies and thus make
better use of the capacity in orbit –an equally important goal
for sustainable and responsible space. One of the problems
that arise in implementing the idea of federations in orbit is
that of the mechanisms necessary for their operations. In other
words, it is necessary to define operational arrangements
and incentives of an economic or utilitarian nature that
enable satellites to operate efficiently while maintaining their
autonomy. One of the mechanisms considered for this purpose
is that of constrained– bid reverse auctions [8]. This approach
enables the creation of a commercial ecosystem of in-orbit
space assets, therefore generating opportunities for innovation
and improvement in the capabilities available to individual
satellites.

The study of system federations is interdisciplinary in nature
and is not limited to the space sector alone. We can easily
postulate other examples of possible federations in different
industrial fields. For example, in the energy sector, it is
possible to conceive of federations of energy systems such
as wind turbines and solar farms, as well as battery storage
units. In this case, electricity and its storage are the resources
made available. The objective of the federation thus becomes
to make excess energy available, promoting the balancing
of the grid as well as the pricing dynamics between supply
and demand. Further impacts of such an approach include
the possible reduction of operating costs and minimization of

Defining the characteristics of system federations

Voluntary cooperation:
Participation based

on mutual agreement,
incentivized by the

individual goals of the
systems involved.

Mutual benefits: federations
motivated by the emergence

of mutual benefits from
collaboration. Examples of

mutual benefits are improved
performance, reduced costs,

or enhanced capacity.

Independent management:
Limiting collaboration
between systems to

areas of mutual interest,
leaving each system

with its own autonomy.

Alignment of operational
goals: maximizing the

federation’s group goals,
subject to operational
independence and the

pursuit of individual goals.

Table3 Characteristics of Federations of Systems (FoS).

186

environmental impact through efficient utilization in terms of
energy storage, transportation, and distribution. An additional
area of interest for federations is the telecommunications
sector. In the latter, federated wireless networks can enable
independent service providers to share their resources, such
as base stations and bandwidth, in order, for example, to
expand coverage and improve service reliability.

The motivation behind the idea of system federations is the
need for resource efficiencies in the face of constraints of
technical complexity and economics that are often difficult for
complex systems such as those in high capital cost industries.
Through the promotion of collaboration among independent
entities, system federations allow the capabilities of individual
systems to be increased at a lower marginal cost than would
be possible in the absence of collaborative opportunities.
This approach also enables the reduction of operational costs
and the balancing of resource utilization when designed
within a sharing network. In this chapter, we will explore the
basic principles, challenges, and practical applications of
system federations. We will use federated satellite systems
as a case study of FoS. The goal of the chapter is to provide
a comprehensive discussion on the potential for system
federations have to be a viable approach to optimizing the
efficiency of systems operating in networks, as well as an
approach to promoting scalability and sustainability in resource
utilization.

3.2. Fundamental concepts of federations

The concept of synergy is central to the value proposition of
system federations. In this context, synergy is defined as the
aggregate benefit resulting from the cooperation of systems
operating within a federation. Synergy is defined as the
mutual benefit resulting from the cooperation of independent
systems. Such cooperation enables the participating systems
to collectively achieve greater results than could be achieved
in isolation [9]. Mathematically, synergy is defined as follows:

187

is that Hubble Space Telescope, which was designed
with modular components to enable regular maintenance
missions. The telescope’s design allowed astronauts to
repair defects, such as the initial spherical aberration of the
primary mirror, and to upgrade instruments and subsystems,
significantly extending its operational lifetime and scientific
utility [17]. However, traditionally on-orbit maintenance has
entailed significant costs that are justifiable only for flagship
space missions of Hubble’s caliber, and thus not affordable
for the majority of space missions. This may change in the
near future thanks to reduced launch costs and advances
in in-orbit servicing technology [18]. An additional challenge
to satellite interfacing is the regulatory constraints and
heterogeneity of communication protocols between satellites.
Careful evaluation of these challenges is needed to determine
whether the costs and risks of retrofitting existing satellites
outweigh the expected benefits.

Indirect modifications, such as the use of negotiator nodes,
offer a more feasible approach to enabling interoperability
[14]. Negotiators act as intermediaries that facilitate
resource sharing and communication between satellites,
such as through the use of Software Defined Radio (SDR)
technologies. The work presented in [14] evaluates the
concept of hosted payloads or independent negotiator
satellites equipped with reconfigurable antennas and SDR.
These digital technologies allow dynamic adaptation to
different communication protocols and frequencies, thus
addressing the heterogeneity of systems in a federation.
However, even with this approach, the trade-off between the
added complexity introduced by negotiators and the benefits
of increased collaboration must be carefully analyzed.

The case of federated satellite systems shows that, given
the right operational and economic conditions, interface
integration can unlock significant synergies, enabling
systems to achieve collective goals that exceed their
individual capabilities [7].

3.3. Challenges and opportunities in system
federations

Federated engineering systems face challenges arising from
their decentralized nature and the inherent independence
of constituent systems. These challenges include trust and
security. These are particularly critical as they affect the
willingness of stakeholders to participate in and maintain
federation. Trust issues in FoS stem from problems with
data authentication, integrity, and confidentiality. Without
robust mechanisms to address these issues, the risk of
data tampering, unauthorized access, and misinformation
increases, potentially undermining the collaboration
necessary for a successful federation.

Tradespace exploration is an established approach used
for performance analysis of system federations. This
methodological approach evaluates the space of possible
solutions in order to identify system architectures with optimal
tradeoffs between cost, performance, and other decision
variables of interest [11, 12]. The exploration of tradespace
allows systems that are part of (or candidates to be part of)
a federation to explore the value added by their participation
in the pooled resource collective. For example, in FSS,
tradespace analysis is used to assess the cost-benefit sharing
of bandwidth and data processing capabilities. This purely
analytical approach allows for a quantitative assessment of
the conditions under which federations are most beneficial
and identifies scenarios in which they may not provide the
expected benefits.

Not in all cases can system federations be considered
beneficial. Indeed, they also present unique challenges at
the system architecture level. One of the main challenges is
interoperability among the independent systems that make
up the federation [13]. Interoperability requires algorithms,
hardware, and software, the complexity of which may outweigh
the possible benefits of collaboration. Examples of elements
needed for interoperability include communication protocols,
as well as standardization of data formats and interfaces.
Standardization itself is an expensive and complex process
of coordination among heterogeneous entities. In addition,
the decentralized nature of FoS complicates the creation
of universal standards, as individual systems may prioritize
local optimization over global compatibility.

Another architectural challenge is to assess the scalability
potential of federated systems. The number of possible
interactions and dependencies among federated systems
increases exponentially as the number of systems
participating in the federation increases. For this reason,
offering performance or reliability guarantees becomes
particularly challenging, particularly in the face of the
operational uncertainties that such systems face. A critical
consideration in this regard is the balance between the costs
of creating and maintaining interfaces and the expected
benefits of cooperation. The management of interfaces that
enable the interaction of federated systems is a key issue
that has been addressed in the context of federated satellite
systems [9]. The two main strategies considered are direct
changes, such as replacing or adding interfaces, and indirect
changes, involving middleware or negotiator nodes [14]

Direct interface modifications often require physical access
to satellites, which is highly impractical for spacecraft not
specifically designed for in-orbit maintenance [15]. The
latter issue has raised particular interest in recent years,
especially in the context of modular approaches to space
system design [16]. The challenge of in-orbit maintenance of
satellites is not new and has been addressed several times
during the evolution of the space industry. One example

188

One proposed solution to these challenges is the adoption of
blockchain systems [19]. Blockchain ledgers together with
data encryption are a potential solution to manage exchange
of data and metadata, through transparent mechanisms that
are able to ensure data privacy when necessary. Another
useful feature of blockchain in this context is its tamper-proof
nature that allows for providing proofs on data sources and
transactions. As a result, stakeholders have trust guarantees
and in the context of FSS, blockchain can be used to securely
record resource sharing transactions, such as bandwidth or
data processing exchanges, ensuring that all parties have a
verifiable record of agreements and deliveries.

A complementary approach to blockcahin is represented
by of Public Key Infrastructure (PKI) protocols. PKI enables
secure communication by leveraging cryptographic keys for
authentication and encryption. In the context of federations,
this approach allows for establishing a secure trust basis by
allowing stakeholders to verify the identity of communicating
parties and ensure the integrity of shared data. For example,
in federated satellite systems, PKI can facilitate secure inter-
satellite communication by ensuring that only authenticated
parties participate in resource sharing operations and that
exchanged data remains confidential and untampered with
[20].

In addition to trust and security, federated systems face
the challenge of dynamic network topologies and uncertain
demand and supply for resources since nodes can give
and revoke their sharing availability on an individual basis.
Membership in a federation can be uncertain, and therefore
volatile. This volatility poses challenges for coordinating,
balancing, and optimizing operations. One potential solution
to this issue is represented by Markov decision processes
(MDPs). MDPs are a tool for modeling system operations
under conditions of uncertainty [21] and can be used
for predicting and optimizing federation behavior under
uncertainty. Operators can analyze the possible states of
the system using MDPs, evaluate the transition probabilities
between these states, and determine the optimal strategies
for resource allocation and cooperation. For example,
in FSS, MDPs can be used to model scenarios in which
satellites dynamically allocate bandwidth based on changing
operational demands and state membership.

3.4. FoS case study: Federated satellite systems.

Unlike other distributed satellite systems (DSS), which
may involve constellations, clusters or swarms designed
for integrated operations under centralized control, FSS
involve voluntary cooperation between independently owned
spacecraft that collaborate on an opportunistic basis [22]. This
distinction differentiates FSS from other DSS architectures by
introducing opportunism to resource sharing. Satellites act as
both customers and resource providers, depending on their
operational status and capabilities, enabling more dynamic
and cost-effective missions.

The International Space Station (ISS) has been considered
as a provider of satellite resources such as computing power
[22] – a concept that was later explored for a cloud computing
infrastructure aboard the ISS [23]. In the ISS scenario, the
Station contributes resources such as downlink bandwidth,
data storage, and computing power to a network of client
spacecraft. The study shows that incorporating the ISS into
a federated system can help offset the high operational and
lifecycle costs of manned space programs, which often
exceed hundreds of billions. The federation value assessment
synergy combines technical and economic analyses to
identify potential customers, rank them by affordability, and
assess the financial feasibility of FSS operations. The results
show that FSS not only improves the sustainability of space
missions but also creates scalable commercial markets for
in-orbit resource sharing.

Differing from other distributed satellite architectures,
federated satellites also offer advantages in addressing
inefficiencies related to underutilized satellite resources. For
instance, each satellite experiences idle periods during its
operations where available bandwidth or processing power
goes unused. FSS enables the sharing of these resources
that would be wasted otherwise. This capability has particular
impact in orbital environments featuring natural variability of
resource supply – such intermittent ground station coverage
in Low Earth Orbit (LEO), which often results in latency and
resource bottlenecks. By taking advantage of the cooperative
structure of the FSS, satellites can cross-link data through
peers with more immediate access to ground stations,
thereby reducing latency and improving overall mission
responsiveness [22].

The distinction between federated satellite systems and
other distributed is in their focus on mutual benefits and
decentralized control. While constellations optimize global
coverage and revisit times through centralized coordination,
federations prioritize flexibility and economic efficiency

189

by dynamically matching supply and demand of in-orbit
resources. Swarms, which often rely on self-organization and
autonomous assignment of tasks, differ from FSS in that they
lack explicit economic frameworks for resource sharing [22].

4. A CONCEPTUAL INTRODUCTION TO
HETERO-FUNCTIONAL GRAPH THEORY1

4.1. Introduction

Hetero-functional Graph Theory (HFGT) leverages MBSE and
network science to capture heterogeneous phenomena in
heterogeneous systems within a common modeling paradigm
[24]. HFGT can be used to model an arbitrary number of
networked systems of arbitrary topology connected arbitrarily
[24]. More specifically, HFGT utilizes multiple graph-based
data structures to support a matrix-based quantitative
analysis, inheriting the heterogeneity of conceptual and
ontological constructs found in MBSE including system form,
system function, and system concept [24]. Furthermore, it
can be used to reconcile and subsequently generalize both
multi-layer networks [25, 54], axiomatic design models [52,
56], system dynamics models [40], bond graph models, and
linear graph models [39]. This ability to reconcile system
models from disparate disciplinary sources, as well as the
ability to model SoS of arbitrary topology, allows HFGT
to conduct novel structural analyses [57, 58], dynamic
simulations [59], and optimal decision problems [60].

The modeling process abstracts a “real world” system and
represents the abstraction with a model. The model refers to
the real-world system, but this reference is always indirect,
as an abstraction is always made in the modeling process.
Although the abstraction of the real-world system may be
either conceptual or linguistic, it is important to distinguish
between a conceptual abstraction, residing in the mind, and
a linguistic abstraction, residing within a predefined language
usually associated ontologically with a real-world knowledge
domain. Hetero-functional graph model(s) are the abstracted
model of the real-world system, while hetero-functional graph
theory provides the means of representing ontologically
heterogeneous real-world domain conceptualizations in a
common mathematical and computational language.

1. This section abridges several previously published works into a qualitative introduction to
hetero-functional graph theory [24, 25].

HFGT has been applied to SoS in numerous application
domains individually, including multi-modal electrified
transportation systems [50, 65, 66], microgrid-enabled
production systems [49], personalized healthcare delivery
systems [48, 59, 67], hydrogen-natural gas systems [60],
the energy-water-nexus [68], and the American multi-modal
energy system [58].

4.2. Instantiated, reference, and meta-
architectures for Systems of Systems

To gain a better understanding of the convergence challenge
associated with complex SoS, including societal challenges
of the Anthropocene, consider what happens when the real-
world system is a system of ontologically heterogeneous
systems: the real domain is a real-domain-of-real-domains that
unites the individual domains into one. For example, the study
of the food-energy-water nexus in general (rather than for a
specific region) may constitute such a real-domain-of-real-
domains. It needs to be abstracted by humans, in the mind, in
a domain-conceptualization-of-domain-conceptualizations.
Similarly, that must be referred to using a language-of-
languages. Several convergence challenges immediately
arise. First, humans are typically trained in a single domain
conceptualization, rather than multiple knowledge domains.
Indeed, it is far from clear that there even exists a single
human (let alone many) who has sufficient knowledge of the
domain-conceptualization-of-domain-conceptualizations.
In the absence of such an individual, a group of individuals
–each with their own individual domain conceptualizations–
must somehow collaborate to discuss the real-domain-of-real-
domains (e.g., the food-energy-water nexus independent of
a specific region). They immediately find that each domain-
conceptualization comes with its associated language and
a language-of-languages emerges. Because each of these
languages was developed entirely independently to address
the needs of its associated real domain, the language-of-
languages is highly divergent and a common, convergent
understanding between languages is difficult to achieve. To
overcome this impasse, it is possible that the language-of-
languages develops a translation capability between each
of the languages pertaining to each real-domain. While this
strategy is relatively straightforward for only two languages
with a single translator, it does not scale when there are N
real-domains that require N(N-1) translators between N
languages. The only alternative is to invest in the development
of a language-of-languages that reconciles the individual
languages into a single common language.
HFGT adopts the latter approach, where a single common

190

language serves as a language-of-languages. The development
of a single common language for a domain-conceptualization-
of-domain-conceptualizations requires three types of system
architectures. As shown in Figure 1, these are the instantiated,
reference, and meta-architectures.

The reference architecture generalizes instantiated
system architectures. Instead of using individual
instances as elements of the physical and functional
architecture, the reference architecture is expressed in
terms of domain-specific classes of these instances.
In this way, the reference architecture captures the
essence of existing instantiated architectures. It also
provides a vision of future needs that can provide
guidance for developing new instantiated system
architectures. Such a reference architecture facilitates
a shared understanding across multiple disciplines or
organizations about the current architecture and its
future evolution. A reference architecture is based on
concepts proven in practice. Most often, preceding
architectures are mined for these proven concepts.
The reference architecture, therefore, generalizes
instantiated system architectures to define an
architecture that is generally applicable in a discipline.
However, the reference architecture does not generalize
beyond the domain conceptualization.

The meta-architecture further generalizes reference
architectures. Instead of domain specific elements,
it is expressed in terms of domain-neutral classes.
A reference architecture is composed of “primitive
elements” that generalize the domain-specific
functional and physical elements into their domain-
neutral equivalents. While no single engineering
system meta-architecture has been developed
for all purposes, several modeling methodologies
have been developed that span several discipline-
specific domains. In the design of dynamic systems,
bond graphs [27-29] and linear graphs [30-34] use
generalized capacitors, resistors, inductors, gyrators
and transformers as primitive elements. In the system
dynamics of business, stocks and flows are often used
as primitives [35, 36]. Finally, formal graph theory [37,
38] introduces nodes and edges as primitive elements.
Each of these domains has their respective sets of
applications. However, their sufficiency must ultimately
be tested by an ontological analysis of soundness,
completeness, lucidity, and laconicity [24]. Hetero-
functional graph theory, as the next section elaborates,
utilizes its own meta-architecture that, in recent years,
has been shown to generalize linear graphs, bond
graphs, system dynamics, and formal graph theory
[25, 39, 40]. Given the importance of ontological clarity,
HFGT has taken special care in the translation of this
meta-architecture from its description in the systems
modeling language (SysML) [41-43] to its mathematical
representation.

Here, we conceive a system architecture as consisting of three
parts: the real-world or physical architecture, the functional
architecture, and the mapping of the latter onto the former in a system
concept (or allocated architecture). The physical architecture is a
description of the decomposed elements of the system without any
specification of the performance characteristics of the physical
resources that comprise each element. The functional architecture
is a description of the system processes in a solution-neutral
way, structured in serial, or parallel, and potentially in hierarchical
arrangements. The system concept as a mapping of the functional
architecture onto the physical architecture completes the system
architecture. For a hetero-functional graph model to be correctly
specified, it is assumed that the entirety of any given process must
be completed by a given resource.

An instantiated systems architecture is a case-specific architecture
that represents a real-world scenario. At this level, the physical
architecture consists of a set of instantiated resources, and the
functional architecture consists of a set of instantiated system
processes. The mapping in the system concept defines which
resources perform what processes.

Figure 1. SysML Block Definition Diagram. Systems architecture can be represented
at three levels of abstraction with instantiated, reference, and meta-architectures.

191

4.3. Essential elements of hetero-functional graph theory

This section introduces the essential elements of hetero-functional graph
theory in terms of its underlying meta-architecture. Unlike other meta-
architectures, hetero-functional graph theory stems from the universal
structure of human language with subjects and predicates and the latter
made up of verbs and objects [24, 25]. A real-world engineering system
includes a set of resources as subjects, a set of system processes as
predicates, and a set of operands as their constituent objects [44-46], where:

	• A system operand is an asset or object that is operated on or consumed
during the execution of a process.

	• A system process is an activity that transforms or transports a predefined
set of input operands into a predefined set of output operands.

	• A system resource is an asset or object that facilitates the execution of a
process. Three types are defined: transformation resources, independent
buffers, and transportation resources.

As shown in Fig. 2, these operands,
processes, and resources are organized
in a meta-architecture [41-43]. Importantly,
operands in the engineering system have
several types including matter, energy, living
organisms, information, and money, which
makes HFT intrinsically cyber-physical [24].
Interestingly, it is understood that operands,
in general, have some sort of state in
time. The evolution of this operand state is
described by an operand net as a type of
Petri net [46]. The relationships between the
different types of system processes and the
resources that can execute them is further
depicted in the hetero-functional graph
theory functional meta-architecture (see Fig.
3).

Figure 2. A SysML block diagram of the HFGT formal meta-architecture.

192

Figure 3. A SysML Activity diagram of the HFGT functional meta-architecture.

Resources are capable of executing one or more system processes
to produce a set of capabilities [24]. Intuitively, a capability is
articulated as a subject + verb + operand sentence of the form
<Resource> <executes> <process>. It is important to recognize
that, while capabilities are their own distinct entities, they are in reality
formed by the allocation of a process to a resource. In Fig. 2, these
capabilities appear as owned behaviors of their respective blocks.
In Fig. 3, these capabilities appear as actions in their respective
swim lanes. At an engineering system level, these allocations are
described in the system concept, which may be captured as a
binary matrix whose elements are equal to one when an action is
available as a system process being executed by a resource. In
other words, the system concept forms a bipartite graph between
the set of system processes and the set of system resources [51].

Once the engineering system’s capabilities have
been defined, there is a need to understand how they
interact with each other. These appear most clearly as
the directed arrows between the actions allocated to
swim lanes in Fig. 3. Mathematically, HFGT describes
these functional interactions with incidence tensors.

4.4. Illustrative example

This highly abridged conceptual introduction to
hetero-functional graph theory can also be explained
graphically through the illustrative example shown in
Fig. 4.

Figure 4. A visual comparison of a formal graph model and a hetero-functional graph model of the same hypothetical system [24].

193

Fig. 4 illustrates the difference between a formal graph
and a hetero-functional graph (HFG). The formal graph in
Fig. 4a shows a system composed of four nodes: a water
treatment facility, a solar PV panel, a house with rooftop
solar, and a work location. These are connected by four
edges: a water pipeline, two power lines and two roads.
In contrast, Fig. 4b shows the associated hetero-functional
graph. Instead of four nodes that represent point-like
facilities, the hetero-functional graph now has 12 nodes
that represent the connected system capabilities. The
water treatment facility, solar PV panel, and work location
appear unchanged between the two graphs because they
each have only one capability. In contrast, the house with
rooftop solar provides four capabilities in the HFG. The
edges in the formal graph now appear as transportation
capabilities in the HFG. Finally, the directed edges in the
HFG indicate the logical sequences of these capabilities
such that if one follows them a “story” of capabilities
emerges. For example, the water treatment facility treats
water (𝝭¹) and then the water pipeline transports the water
from the water treatment facility to the house (𝝭8).

5. FEDERATED MODELING AND
SIMULATION

5.1. Introduction

Most SoS are too complex for mathematical analysis.
Generally, the behavior of the resulting networks of systems
depends on their linkages and their environment, where
scientific reductionism is incapable of fully defining behavior.

Simulation has become one of the most used analysis tools
for large scale systems because it can take randomness
into account and address aggregate as well as very detailed
models. Furthermore, as computing speed has increased
and communication has improved, there has been even
more motivation for using computer simulation for larger
and larger problems, such as a supply chain. Applying
simulation to SoS leads naturally to distributed simulation
(referred to as federations), where existing legacy simulation
models (referred to as federates) are integrated over a
network of multiple computers. The existence of legacy
system models is one driving force for federated modeling
and simulation. Another is to allow each system (e.g., a
supply chain member) to hide any proprietary information in
implementation of the individual simulation but still provide
enough information to analyze SoS (e.g., supply chain) as
a whole.

5.2. Federation of simulation and time synchronization

The design and development of a distributed network of
simulations (i.e., federation) is complex and requires expertise in
several disciplines including domain experts, system design and
specifications, simulation modeling, and distributed computing
and networking. Once system models (e.g., discrete event,
system dynamics, agent-based, or physics-based model)
exist, the time synchronization of multiple system models (i.e.,
federates) and information exchange among them are important
problems.

To illustrate how a federation is constructed and operated given
existing federates, a supply chain is used as an example in this
section. Figure 5 depicts a federation of supply chain, integrating
geographically dispersed federates modeled by commercial
simulation software systems (i.e., Arena for the supplier, ProModel
for the assembly plant, AutoMod for the transporter).

Figure 5: Supply chain federation using IEEE Std 1516-2010 framework [69].

Given existing federates, we first need a server (e.g., RTI in
Figure 5) which will communicate with the federates. Second, to
enable such communications, each federate needs an interface
(e.g., Adapter in Figure 5), which will send/receive messages
to/from the server (see Figure 6). The major responsibilities of
the server are time synchronization and information exchanges
among the federates.

194

As shown in Figure 6, each federate has two types of events:
(1) internal events (continuous models need to be discretized
to create internal events), and (2) interaction events. Internal
events are the events that do not influence other federates
in the federation [70]. An interaction event is defined as an
event which influences the behavior of another federate(s).
Information concerning interaction events along with the
corresponding parameters is communicated to the receiving
federates, and the receiving federates adjust their behaviors
accordingly in order to enable the system to run properly. If
a federate receives an interaction event whose time stamp
is earlier than the federate’s current simulation clock, then a
“causality constraint” violation has occurred; if not reconciled,
this violation may invalidate the simulation results. That’s why
time synchronization is important.

Two major classes of approaches have been used for
synchronizing federates – conservative and optimistic. In
the conservative time synchronization approach, federates
determine the time to their immediate next event, and
requests permission from the server to advance to that
time. After obtaining requests from all the federates, the
server determines the lowest time step requested and grants
permission to the federates to move ahead. The federate
executes the next event and requests permission to advance
to the immediate following event, and the cycle continues. In
the conservative approach, no distinction is drawn between
the internal events and the interaction events in terms of time
management. At each interaction event, a message will be
sent from the federate to the server, which then forwards the
message to the corresponding federate.

In the optimistic approach, federates step in parallel at fixed
or variable increments. If an interaction between federates
occurs, they are rolled back to the time where the interaction
occurred. However, it is extremely difficult to implement a roll
back mechanism in simulation.

5.3. Frameworks enabling federation

A number of frameworks are available to enable distributed
simulation in the literature [71-76].

As an example, IEEE Std 1516-2010 describes the framework
and rules of the High-Level Architecture (HLA), which is an
integrated approach to provide a common architecture for
federated simulations. Following a publish and subscribe
architecture, HLA can be applicable to various types of
operating systems, software, applications, and languages.
For example, it allows integration of wide ranges of software:
AnyLogic, Simio, Arena, ProModel, Repast, DynusT (traffic
simulator), hardware (robots, machines, drones), Unity (game
engine), and more.

To maintain or govern models, an open-source Portico
(http://porticoproject.org/) or a commercial RTI (e.g., MAK
Technologies) can be used, and efforts are needed to
develop technical governance. In addition, a governance
structure and agreement need to be established among
sponsors and users.

Figure 6: Event-based conservative time synchronization approach [70].

195

6. AGENT BASED MODELING FOR
SYSTEMS OF SYSTEMS

6.1. Agent-based modeling paradigm

Agent based modeling is a computational technique used to study
and understand the behavior of complex systems. The approach
is characterized as bottom-up by modeling the individual entities
that make up the system and their interactions. These individual
entities referred to as agents can represent individuals, groups,
organizations, or any type of autonomous entity. Such models
are suited to support the analysis and engineering of SoS and
understand their properties as well. ABM gives analyst the
flexibility to model key properties of SoS including autonomy of
its constituent systems, belonging of its constituent systems to
the SoS mission, connectivity among constituent systems, and
diverse properties of its constituent systems [77]. The modeling
methodology also serves as a digital laboratory for exploring
emergent properties and non-intuitive behavior of SoS. This
section introduces agent-based modeling basics and discusses
the value of ABM for SoS analysis and engineering through some
illustrative applications in literature.

Evolution of ABM from theoretical concepts to practical
applications spans several decades in various disciplines.
The fundamental concept of autonomous agents and their
interactions are first proposed by John von Neuman [83],
which laid the foundations for John Conway’s seminal work on
cellular automata, Game of Life, where simple rules applied to
cells on a grid lead to emergence of complex behaviors [84].
This work influenced development of early ABMs of social
simulations such as Thomas Shelling’s segregation model
[85], Joshua Epstein and Robert Axtell’s Sugarscape model
[78], which was an enhanced ABM of Conway’s Game of Life
and Schelling’s segregation model. Other influential models
such as Robert Axelrod’s work on evolution of cooperation [86]
demonstrated the potential strengths of exploring dynamics of
agent interactions, emergence, and complexity in social systems
and economic systems. The methodology expanded into a wide
range of disciplines over the years such as analysis of disease
spread, ecosystem dynamics, simulated market dynamics.
Computational advances accelerated the use of ABM in recent
years. It is now used in a wide range of application domains
including various SoS applications such as infrastructure
modeling, defense systems analysis, or urban planning. This
section first provides a brief snapshot of the modeling paradigm
and how it is constructed. It then discusses the value of ABM for
SoS analysis and engineering with some ABM examples of SoS
engineering problems.

6.2. Modeling agents

While there are different views on the definition of what
constitutes an agent, in practice agents have the following
features in the context of ABM [80]:

	• Autonomy and self-direction: The actions of an
agent are self-directed and independent, both in its
environment and in its interactions with other agents.

	• Identifiable characteristics: Each agent in the model
has identifiable set of characteristics, behavior, and
managerial capabilities.

	• Interaction with other agents: Agents have a set
of rules that determine how they interact with other
agents.

Other additional properties that may be considered when
modeling agents include:

	• Situated in an environment: Agents may act and
interact within an environment where their behavior
depends on the interactions with other agents and with
the environment.

	• Goal driven behavior: Agents may have goals,
which are decision criteria agents use to assess the
effectiveness of their behavior.

	• Ability to learn and adapt: Agent may have the ability
to learn and adapt its behavior based on previous
experiences.

	• Resources: Agents may have resources such as
energy, information, or wealth, which dynamically
change based on the interactions.

Modeling agents in ABM involves, at a minimum,
identifying agent characteristics and identifying agent
behaviors. Agent characteristics define specific attributes
that distinguish an agent from other types of agents. For
example, in a traffic vehicle size/weight is a characteristic
that determines if the vehicle is a motorcycle, car, or
truck. Other attributes of a vehicle could be speed or fuel
consumption. Selection of agent characteristics/features
depends on the domain of interest and level of detail
necessary to capture the real-world problem. Each agent
should also have behavior, which is a set of rules agent
acts on when interacting with the environment and with the
other agents. An agent’s behavior can be simple if-then
rules, or it can be described by complex behavioral models
such as cognitive decision models or artificial intelligence
models. The behavioral models may also incorporate
adaptability, where the agent dynamically changes its

196

behavior in response to its experiences. While some of the
agent behavior models are based on empirical data or domain
knowledge, advanced agent behavior models are often based
on theoretical concepts from various disciplines such as game
theory, cognitive science, reinforcement learning, and artificial
intelligence. Selection of the type of agent behavior model
depends on the domain and the ABM’s purpose. For example,
if the model’s purpose is to evaluate the impact of a specific
signaling rule on traffic congestion, modeling agent adaptation
may not be necessary.

The agent model determines the level of abstraction of the real-
world problem as well. While other modeling methodologies
are suitable for a specific level of abstraction, ABM provides
the flexibility to abstract the real-world system at different
levels of detail. Figure 7 compares ABM to other modeling
methodologies. The agent model can represent a macro level
entity such as an organization vs. a lower-level abstraction such
as an engineering design team or at a macro level one can
analyze multi-model transportation dynamics by abstracting rail
carriers, air cargo freight, and truck carrier behavior vs. lower-
level dynamics by modeling individual system dynamics. 6.4. Modeling agent interactions

The interactions between agents can include
communication, competition, cooperation, and resource
sharing. Regardless of the environment model used to
connect the agents, the main point of modeling agent
interactions is to identify the rules of local interactions
among agents and local resource transfer between agents.
This means that agents interact with a limited number of
other agents in the total agent population. The nature of
these interactions often leads to emergent behaviors.

To give an example of how ABM is constructed, consider
Unmanned Air Vehicles (UAV) that are utilized in various
SoS missions such as monitoring large areas to provide
situational data for surveillance and reconnaissance or
locating individuals in distress for search and rescue
missions or delivering goods for delivery services [79]. In
a search and rescue mission, UAVs form an SoS where
each UAV operates autonomously using its sensors and
communicates with other UAVs to avoid overlapping
search areas. If a UAV detects an individual in distress,
it can signal nearby UAVs to send the information to a
central command center. An ABM of UAV can be modeled
to analyze the effective coverage of the search area,
efficient use of the resources, and evaluate the response
time of the SoS. The model simulates the behavior and
interactions of autonomous UAVs. A description of how
ABM may be applied for this SoS mission is provided
below:

Figure 7. Levels of abstraction of ABM compared
to other modeling methods [80].

6.3. Modeling the environment

The environment where agents interact may be modeled in
various ways. Figure 8 illustrates the type of environments that
can be modeled in ABM. This could be a model of a physical
2-D space, a grid structure, a network, or a complex spatial
representation such as a geographic map. It is also possible that
agents interact in an aspatial environment model. Regardless of
the type of model, environment provides the context for agent
interaction.

Figure 8. Modeling the environment [80].

197

	• Define types of agents and their characteristics:
In this context, UAVs are the autonomous agents.
Several UAV attributes may be considered such
as position, velocity, sensor types, or battery
level. Mission objectives may distinguish each
type of UAV as well. For example, some of the
UAVs may be assigned for surveillance, and
others for reconnaissance mission.

	• Model agent behavior: The behaviors for UAV are
defined. UAVs sense their environment using their
sensors, based on their current state and rules
decide which actions to take such as changing
direction or changing speed. Finally, they execute
their decision and update their position and state.
To support sensing and decision making, for
example, collision avoidance algorithms and path
planning algorithms may be incorporated into the
UAV behavior models. Adaptability capabilities
can be incorporated into the behavior model as
well. For example, UAV may adapt its movement
by re-planning its path basedon changes in the
environment and mission objectives.

	• Model the environment: The environment model
captures the airspace in which UAVs operate.
A geographic map of the area with information
on terrain, restricted area zones, or target areas
for the UAVs can be modeled to represent the
operational environment.

	• Model agent interactions: Communication
protocols to share information among UAVs
model the interaction among UAVs. The shared
information includes obstacles and UAV status.
This information helps UAVs to coordinate
movements and avoid collisions. The interaction
model may also incorporate task assignment to
UAVs based on their current state.

	• Define simulation process: Initialize the state
of the UAVs, which includes initial positions,
velocities, and mission objectives as well as
setting up the environment model parameters.
Then the simulation is executed in discrete
time steps. At each time step, each UAV agent
senses, decides, and executes a move to update
its position and state.

	• Analyze system behavior: By simulation, one
may gain insights into the search and rescue
dynamics and possible emergent behaviors
that may arise from the interaction of UAVs over
the simulation time. These observations provide
insights into the dynamics of the system.

To summarize, ABM involves several key steps to

create a dynamic simulation that models the complexity of real-world
systems:

	• Defining types of agents and their characteristics.

	• Modeling agent behavior by defining rules that govern agent
behavior and interactions. This could also include adaptation
behavior where agents adapt their behavior based on experience
and feedback from the environment. Learning algorithms or
simple rules to simulate evolving behaviors may be incorporated
into agent behavior models.

	• Model the environment by selecting a topological model.

	• Model agent interactions by defining rules of agent interaction.

	• Define simulation time by identifying how time progresses in the
simulation. This could be discrete time steps or continuous time.

	• Analyze system behavior: Observe and analyze emergent
behavior that arise from the interaction of agents over the
simulation time. These observations provide insights into the
dynamics of the system.

Figure 9. Elements of Agent-based Modeling.

6.5. Types of SoS problems suitable for ABM

ABM is suitable for analyzing various types of SoS problems
that involve complex interactions and system behaviors. Table 4
provides a sample of SoS domains and problems explored using
ABM. Detailed systematic review of SoS problems can be found
in [82], where ABM of SoS problems is categorized as SoS-
related complex domains, SoS-related social aspects, SoS-related
performance issues, SoS-related optimization approaches, SoS
simulations for policy issues, SoS engineering-related issues, and
SoS theoretical aspects.

198

Type of SoS problem Description

SoS-related Complex Domains:
Air transportation network

ABM is utilized as a decision support tool. An air transportation
network is modeled to investigate how the network performs
over time when behavioral patterns of various agents such

as airports, and governmental agencies change.

SoS-related Complex Domains: Urban
transportation policy analysis

SoS model explores the impact of various urban transportation policies in
a city by modeling the behavior of users in urban transportation systems.

SoS-related Social Aspects:
UAV-human relationship

SoS model explores the level of autonomy for UAVs utilized
for surveillance by analyzing the number of operators, level

of autonomy for UAVs, and performance of the SoS.

SoS-related Social Aspects:
Smart grid demand response

SoS model is designed where power plants, substations, and consumer
agents work together to balance supply and demand. The model

provides insights into the dynamics of smart grid demand response.

SoS- related Optimization
Approaches: Wildfires

A collaborative SoS model is developed to predict the behavior
and effectiveness of various fire-detecting configurations.

SoS related Optimization Approaches:
Naval warfare portfolio optimization

Portfolios of SoS architecture configurations are modeled and evaluated
against capabilities, costs, and operational risks under a naval warfare
scenario. The model analysis support SoS architecture development.

SoS related Performance
issues: Network resiliency

A networked naval warfare scenario is modeled to evaluate the
resiliency of potential architectures under threats and disruptions.

SoS Simulations for Policy
issues: Energy generation

SoS model explores impact of policies for improving energy
generation. The model provides insights for system designers

to understand alternative SoS design options as well.

SoS Engineering-related issues:
SoS engineering communication

A fictious ABM of SoS is developed to analyze the impact of internal
knowledge and communication on SoS performance. Results
reveal that additional internal knowledge and communication
between constituent systems improve the SoS performance.

SoS Engineering-related issues:
SoS development based on Wave

acquisition process model [70]

An ABM for acknowledged SoS development is modeled based on wave
acquisition process model where SoS agent negotiates with individual

systems to acquire desired capabilities for the SoS architecture.

Table 4: ABM of SoS problems.

199

6.6. Value of ABM for SoS engineering

ABM is a valuable tool to support the engineering of SoS as
it provides a comprehensive framework to analyze, design,
and manage SoS. In a way, ABM serves as a test laboratory
to understand how individual system behaviors lead to
emergent behavior in a SoS. This is important for managing
the complex interactions that are not intuitive from studying
the behavior of its individual systems. The simulations may
reveal non-intuitive behavior due to complex interactions
between its constituent systems which is essential for
designing SoS that can adapt and respond to changing
conditions. Engineers can also use ABM to simulate
various architecture configurations of an SoS to evaluate
the impact of architecture alternatives on the overall SoS
performance [81]. ABM can be also used as a decision
support tool to analyze various scenarios including rare or
extreme scenarios. This type of what-if scenario analysis
helps to assess the response of SoS mission effectiveness
under different conditions, providing valuable insights for
systems engineers. Since ABM provides the flexibility to
model different agent types and behaviors, it is useful in
modeling SoS engineering where individual systems have
differing interests and motivations. Thus, ABM provides the
flexibility and adaptability to model all types of SoS including
directed, acknowledged, collaborative, and virtual. Besides
scalable models can be designed by adding new agents to
model large scale SoS.

6.7. Challenges

As with any modeling methodology, ABM has its limitations.
ABM can be computationally demanding in terms of
processing power and memory when simulating large-scale
systems with many agents. Modeling agent behavior requires
complete and consistent data which may not be available for
some application domains. Most importantly, validation of
ABM may be challenging as it requires validating the model
against empirical data which may not be available for some
applications. In addition, the model results are sensitive
to model initial conditions and parameters, and stochastic
nature of agent interactions make it difficult to reproduce
the model results. Despite these challenges, ABM remains a
valuable tool for understanding complex systems including
SoS.

7. AN SOS APPROACH TO MODELING

7.1. Introduction to SoS modeling

SoS modeling usually involves the integration of multiple
system models with multiple levels of abstraction [89, 91].
In contrast to many simpler models of individual systems,
SoS models may need to capture processes that operate
at different scales (e.g., temporal, spatial, organizational),
with exogenous drivers of the individual systems becoming
endogenous, and with multiple feedback mechanisms
among the individual systems included in the system of
systems [89, 91]. In addition, SoS models generally need to
integrate knowledge from several disciplines with exchange
of information among the disciplines occurring in a coherent
and meaningful way. The integration of knowledge is not
limited to the technical coupling of the models by disciplinary
experts, but to integration among the stakeholders who may
be engaged in different systems at different scales. As a result,
scale issues [81, 82] are frequently a core consideration of
SoS modeling.

7.2. Understanding scale

The range of disciplines involved in SoS modeling (e.g., see
[92]) often means that different notions of scale are used
in different ways depending on context [89]. The choice
of scale clearly needs to be consistent with the purpose
of the modeling, and with the spatial and temporal scales
represented in the individual systems. The spatial and
temporal features of a system are usually the primary aspects
around which scale is considered and framed. These define
the time and space of interest including discretization, and
the events and processes that are considered important to
represent [93]. The spatial scales selected may be influenced
by the temporal scales of interest, and vice versa.

Resolution defines the granularity of system representation
and refers to the unit of spatial/temporal scale represented in
each system. Resolution may be spatial or temporal in nature
but extends in other ways such as to social systems (e.g.,
including individuals, groups and communities) and may
therefore represent a semantic or conceptual hierarchy [85].
Choice of resolution is highly dependent on the modeling
context, generally informed by the availability of data,
the needs of the model (including for numerical stability,
sensitivity and model identifiability), and model purpose [89].

200

Hierarchy and levels of organization relate to the
representation of nested relationships among systems [94].
For example, governance systems may co-exist at a range
of scales with separate administrative units. Team-based
organizations may have hierarchical scales, with members
performing a variety of roles within an organization that may
be geographically spread across different time zones.

In SoS modeling, each individual model may operate across
different spatial/temporal scales, hierarchical levels, and
resolutions to incorporate multiple aspects of distinctly
separate (disciplinary or sectoral) domains and modeling
paradigms (e.g., Bayesian networks, agent-based, and
system dynamics [95]).

7.3. Considering scale during the main phases of
the modeling process

As shown in Figure 10, the modeling process can be
represented as occurring in five main phases [90]. These
phases are iterative with activities from multiple phases often
occurring concurrently with decisions made in earlier phases
being revisited. Modeling practice tends to focus on model
formulation and evaluation, but the other phases are equally
important if transparency, coherence and equity is required
[90].

Figure 10: The five main phases of the modeling process with color shading of the iterating circular arrows
illustrating the approximate extent of model and stakeholder support in each phase [90].

201

Each phase requires support from both modeling tools and
stakeholder engagement processes, as indicated in Figure
10. Notably, any or all phases could be politically motivated
for a specific modeling project, due to, for example, an
imbalance of stakeholder representation [96]. This could lead
to biases in the model [9], time-place-funding dependent
variables [98, 99], or a requirement that the model results
should align with specific interests. Thus, appropriate
engagement of stakeholders is critical throughout the five
phases. Stakeholder engagement ensures the model is
fit for purpose, represents multiple perspectives, and is
subsequently used and adopted as intended [100].

There are many decision points throughout the lifecycle of
the modeling process, including: selecting the boundary
of the modeling (i.e., model purpose, problem definition
and system boundaries); the evidence base (what data,
and whose knowledge or perspective); the model features
such as the variables, outputs and scales; the modeling
approach; and the model testing and evaluation methods
[100]. Different choices at any one of these decision points
can result in different modeling pathways, leading to different
models and modeling outcomes [101, 102]. This highlights
the inherent subjectivity of modeling practices [103], and
the need for ongoing reflexivity during the modeling cycle
[104].

The sections below are consistent with the five modeling
phases [90]. In each section, the first paragraph in each
section provides a brief overview of typical actions
undertaken in each modeling phase [90]. The remaining
paragraphs in each section provide an overview of some
considerations related to scale issues [89].

7.4. Problem scoping

The initial problem scoping phase involves defining the
problem to be addressed and its scope, including the function
or purpose of the modeling, the system boundaries, the
issues or questions to be addressed, and the stakeholders
to be engaged. This planning phase should also clarify
the end-user context covering both user and management
needs, problem context including nature of the problem and
how well it is understood, and project context which includes
resources available such as time, funding, skills and data
[100]. This is a critical phase because it determines which
interests are addressed and who is allowed to be involved
in the formulation of the problem.

While the overarching purpose of the SoS model may
be known, the specifics may be less clear at the outset.
Development of a consistent and shared view of the scales
to be considered involves communication of the scope and
interactions across the individual systems. This process
can aid in identifying and addressing areas that require
reconciliation of different views that often exist among
stakeholders. Awareness of the scale issues will likely
evolve as the modeling progresses through the iterations.
The choice of modeling pathways and methodological
framework employed is heavily informed by this awareness
[105].

Involvement of stakeholders, including domain experts,
through participatory processes can inform the identification
of relevant scales in the face of uncertainty and (poor) data
availability [106, 107]. Stakeholders can also play a role in
selecting and combining data and aid in developing the model
purpose.

The purpose and use of individual models may be mismatched
if conflicting perspectives over the scope of the modeling are
not addressed. Modelers with different goals in mind may
only consider scales relevant to their immediate (and often
discipline-specific) concerns, leading to an improper selection
of individual models. There is potential for a high degree of
mismatch between individual models even if modelers
coordinate their efforts. Unexpected cascades of effects
through scales are commonplace in systems of complex
systems [108].

Change in scale may also occur during the modeling
process due to new information that triggers a necessary
change in model context. The scale of model interactions to
be represented can also influence the number and type of
individual models included and overall system complexity.
The choices regarding scale have implications for how well
interactions among systems can be represented with respect
to the model purpose. Scope creep, wherein the scale of
the modeling is continually extended to cover contexts not
originally envisioned, may eventually compromise modeling
efforts, as available resources get stretched too thinly to
achieve meaningful progress [109].

Choice of scales is further compounded in cases where
system boundaries cannot be clearly defined. Coastal zones,
atmospheric systems, and natural resource management
systems are examples of systems with ambiguous system
boundaries. Social systems and their dynamic structures are
another example that do not have clear boundaries yet place
important constraints on system behavior.

202

Generally, participatory approaches aim to bring together the
multiple goals, issues, and concerns of interest from multiple
scales and governance systems by developing a mutually
beneficial relationship among stakeholders [110]. Thoughtful
consideration of transparency, traceability, and governance
issues in engagement and participatory processes [111,
112] will be essential for optimizing saliency, legitimacy, and
credibility of the SoS modeling [113].

The participation of a higher diversity of stakeholders in
such processes allows for a more holistic representation to
be developed, covering potential blind spots in the system
conceptualization and avoiding the “siloing” of knowledge
[114, 115]. However, including further perspectives may
increase the complexity of the modeling and requires
careful management of individual expectations and biases
[116]. Management of an SoS may at times be predicated
on effective management of stakeholders and their level of
involvement [94].

Increases in the variety of perspectives also increases
potential for conflict between teams, team members, and/or
stakeholders. On the one hand, there is evidence that conflict
plays a positive role in learning and effective teamwork
[117]. Such positive benefits, however, may only occur
in cases where there are high levels of pre-existing trust
within the group, and when the conflict is task-related rather
than interpersonal [118]. Power dynamics within modeling
teams and stakeholders therefore need to be considered.
Identification and focus on objectives that require participants
to work together is an identified foundation towards project
success and may additionally help in avoiding conflict [117].
Careful design and management of interactions between
teams and stakeholders requires explicit consideration of
how the multiple, and at times contradictory, objectives
might align or connect. Approaches to conflict resolution and
prevention are promising, but still under-utilized techniques.
Overall, plans for stakeholder engagement for SoS modeling
should explicitly consider the scaling challenges, and devise
strategies to deal with these.

7.5. Problem conceptualization

The problem conceptualization phase involves building the
evidence base (e.g., expert and stakeholder knowledge,
and relevant literature, data, models, and hypotheses)
to conceptualize the problem or system, generally in a
qualitative sense. This includes identifying key variables,
indicators, processes, relationships, entities, and scales, as
well as metrics related to model performance [119].

In describing and capturing the essence of the system,
development of the conceptual model helps with the design
of the subsequent computational model as well as making
concrete the model purpose. Two scale-specific aspects
to be considered are the approach used for conceptual
model development and the formal representation (e.g.,
equations and technical specifications). The processes that
are included or excluded based on perceptions, priorities,
beliefs, and values will inevitably influence the data leveraged,
the properties of the computational model, and therefore the
paths taken.

If differences in conceptual understanding of the scales
and their interactions cannot be reconciled, it is possible to
create multiple alternative models representing the different
hypotheses that can be tested in later stages of the modeling
process. Such an approach can also assist in assessing
uncertainty rooted in model building choices, as the treatment
of scale may affect model outputs and outcomes. Although
conceptual diagrams can be developed without specifying
the scales involved, explicit consideration of scale is valuable
for avoiding misinterpretation of the conceptualization and
ensuring key variables and processes are included. A useful
exercise, not usually reported but aiding transparency, is
to identify what alternative approaches were considered,
or could have been considered, and how these may have
affected results and outcomes, if adopted.

7.6. Model formulation and evaluation

The model formulation and evaluation phase is typically the
main focus of the model development process as it includes
the formal description of the model, its implementation in
the form of computer software, and the software testing.
This phase includes selection of the modeling approach
(i.e., the types of individual model used [95]), construction
of the model structure, calibration of parameters, uncertainty
analysis, and model testing and evaluation.

Transparency in the data collection process and approval
from those involved in the modeling are necessary to ensure
that collected data remains conceptually relevant across
scales. Furthermore, transparency in the context of data
collection and usage is a key factor to develop trust among
stakeholders and model users, and future adoption of the
individual models [120]. Data may need to be transformed
to be fully relevant for the context of its intended use, such
as up-or-downscaling to ensure compatibility with other
processes. Ideally, metadata would include information on
the data collection, uncertainty and transformation process,

203

which aids in determining the appropriateness of data for
the SoS model. Explicit descriptors of both input and output
data can assist in identifying the commensurate level of data
collection with respect to available resources.

Modeler bias can have a compounding effect because
the choice of data collected, as well as the metadata that
describes the data, influences how system interactions are
perceived, and thus conceptualized. What may be considered
irrelevant in one discipline may dictate modeling pathways in
another. In an SoS setting, there are many more participants
involved and there is a high degree of uncertainty stemming
from the decisions made as a result.

Construction of computational SoS models requires the
integration of domain expertise from across the various
disciplines involved with technical software development
knowledge. While the overarching context may be well-
defined within the scoping phase, it is during construction
that the individual models, and the scales they represent, are
developed, coupled, tested, and validated. Here, existing
models may be repurposed or new models developed.
The specifics of their initialization, interoperation, method of
execution and management of the data involved are to be
determined and prototyped in this phase.

Conceptual integration of individual models can benefit from
requiring that they be mechanistic as opposed to black boxes.
When a model is implemented as a black box, it becomes
difficult to evaluate and understand. SoS modeling may
make use of pre-existing individual models which constitutes
re-purposing, potentially implying the transference of the
model assumptions, limitations, and scale to a new context.
Model suitability within its original context is not necessarily
applicable to the new context. Availability of code alone, for
example, does not imply transparency. What is important is
the contextual information that is necessary to assess the
suitability of the model purpose and functionality.

Technical integration refers to the correctness of model
interactions, recognizing the distinction between conceptual
or abstract representation and its implementation as software.
Successful technical integration of computational models
requires the necessary engineering expertise to be available.
Crucial considerations are that individual models interact
and accordingly that errors will propagate, and that each
individual model may undergo its own separate development
cycle which invariably necessitates continual adjustments to
be made.

Calibration is the process of tuning parameters or altering
the functional forms of equations or relations to achieve
desired model behavior. In SoS modeling, issues such as
non-identifiability and equifinality, curse of dimensionality,
computational burden, and data representativeness may all
be amplified [90].

Model calibration within the SoS paradigm [81] can take
three general approaches: (1) calibration of each individual
model independently before integration, (2) calibration of
all models together after integration, or (3) a combination
thereof. The first approach is the simplest and most
straightforward as each individual model would be calibrated
within its own domain. While pragmatic, it ignores the effect
of representing different scales across the represented SoS
and system-system interactions, which in turn affects model
behavior and performance of the individual models. The
second approach is seemingly the most comprehensive
approach to model calibration, as every possible interaction
between models could be present in the process of model
calibration. Interdisciplinary knowledge is leveraged to
ensure calibrated values are both reasonable for the
expanded operationalization. The approach, however, has
the following major barriers: (1) The search space for
model calibration will be excessively large. In addition,
new (possibly erroneous) interaction effects might emerge
between the parameters of one model with those of another
model, especially with different scales of information, which
makes the response surface extremely complex for model
calibration. The calibration process might then become
computationally cumbersome and/or infeasible. (2) The
available data with different scales may not be sufficient to
properly constrain the model in the process of calibration, as
it is not identifiable from the data. There is a risk of overfitting
as well, as the available data might be insufficient to produce
a generalized model that covers the integrated domain. (3)
Expert knowledge for each model may have scale constraints
and may not be easily transferable to the full SoS domain.
In the third approach, models are integrated one-at-a-time,
incrementally adding complexity so that the influence of each
individual model can be directly attributed, and subsequent
issues can be addressed. While this approach may be as
pragmatic as the first, and perhaps as comprehensive as the
second, the disadvantage is the time and computational cost
to perform sequential coupling and calibration.

SoS models often target large problem domains (e.g., [4])
that necessitate complex models for their assessment and by
their nature have a high degree of uncertainty. Quantitative
approaches aim to measure the effect of uncertainty in a
specific parameter, input, or assumption on an output and

204

allow the numerical characterization of the output distribution
and therefore model behavior [121, 122]. Qualitative
uncertainty, however, cannot be characterized with a value
and arises from sources such as the biases and subjective
beliefs of human actors [115]. Qualitative uncertainty can
also arise from the modelers’ subjective judgment, linguistic
imprecision and disagreement among those involved [124,
125].

One commonly suggested approach to restricting model
complexity (and possibly runtime) is to screen for insensitive
parameters [126]. Such parameters are said to have
negligible influence on model output and may be “fixed” or
made static in subsequent analyses or otherwise removed
from the model. Another is to “tie” related parameters so
that they may be represented by a single “hyperparameter”
[127]. Reducing the number of parameters, however, does
not necessarily equate to a reduction in uncertainty. Rather,
it may simply mean that consideration of an uncertainty
source is determined to be unimportant for a given context
or purpose [126] and doing so may trade off model fidelity
under new unseen conditions.

Use of an individual model within an SoS model as opposed
to its individual operation, or its modification or simplification
through parameter screening and tying, constitutes a change
in context. Therefore, parameters initially found to be influential
might become inactive and non-influential (and vice versa),
or the relationships that led to parameters being tied may
change. The change of context also changes the relevance
of the assumptions and objectives, and what constitutes an
appropriate uncertainty analysis [128]. Uncertainty analysis
conducted in one context is not valid across all scales.
Thus, premature model simplification may ultimately affect
the appropriateness of the SoS model for its overarching
purpose. A comprehensive sensitivity analysis under current
and possibly alternative conditions can provide valuable
insights into a key question: “when and how does uncertainty
matter?” [129]. An alternate view is that, given the likelihood
of limited computational resources, efforts to characterize
and communicate uncertainties to stakeholders may be more
beneficial than an exhaustive sensitivity analysis [130].

Testing and evaluation can assist in the assessment of the
ramifications of scale choice. In this step, reasonableness
of model structure and interpretability of relationships within
models are assessed along with the traditional analysis of
model behavior. Not all outputs produced by the individual
models may be relevant for the SoS model purpose and
the validity of their outputs is affected due to the integrated
nature of SoS modeling. For any evaluation to be effective,

the specific model outputs of interest that are relevant for
the model purpose must be well understood. Outputs may
be at a particular spatio-temporal scale, for instance a long-
term average of a model output over a large spatial domain
or an extreme event at a specific point location. Issues may
also stem from the conceptual suitability of individual models
as uncertainty may be propagated throughout and may
compound as more models are integrated [131]. Thus, the
first step in testing and evaluation involves attempting to refute
aspects of SoS model structure and functional relationships
within the model based on their lack of correspondence with
the represented system and the model outputs. Stakeholders
could be leveraged to evaluate the conceptual alignment and
appropriateness of the SoS representation at the selected
scales.

Evaluation of the behavioral relationships at the integrated SoS
level is similar to scientific hypothesis testing or “conceptual
testing” [132], wherein functional relationships within the SoS
model are examined. Such tests may be especially useful in
cases where the internal workings of a model are inaccessible
or otherwise unknown but expected behavior of the individual
model in the integrated context can be characterized [132].
These approaches can be used to identify impossible or
implausible aspects of the SoS model output. If any aspect
of model structure or any functional relationship within the
model can be shown to be an inadequate representation
of the corresponding aspects of the real system, then that
portion of the model is refuted [133].

The next step focuses more specifically on the correspondence
between model projections and observed data. Strictly
speaking, data used in model testing and evaluation must
be independent of data used to develop the model [127]. A
variety of visual, statistical, and machine learning methods are
widely used to evaluate SoS models. The choice of method,
however, should be based on the fundamental questions of
what scenarios and observations to use in the evaluation.
Evaluation of models under the range of conditions similar to
those of interest can aid in identifying limitations of the model.

Sensitivity analysis is now regarded as standard practice
in modeling [126, 134, 135]. The sensitivity of SoS model
behavior to changes to its individual models and their
interactions is the target of the assessment. An issue
stemming from the likely overparameterization of individual
models is equifinality and the lack of identifiability. Equifinality
refers to the phenomenon of different implementations or
combinations of model structure, parameter values, and
their interactions producing equally acceptable results [90].
Identifiability refers to the ability to attribute the influence

205

on model outputs to unique model parameters or structure
[136]. Therefore, the greater the number of parameters, the
less identifiable the model becomes.

Sensitivities are assessed as part of identifiability analysis,
typically by ranking parameters based on their influence
on outputs which can aid in determining what parameters
require focused efforts to reduce uncertainty or improve
identifiability. Information from sensitivity and identifiability
analysis can aid in simplifying the model. Naively applying
sensitivity and identifiability analysis without consideration of
the SoS context may adversely affect modeling outcomes.

Assessment of sensitivities ideally relies on global, rather than
local analyses. Use of global sensitivity analyses in model
assessment has seen increasing use, despite the lack of
uptake or reported use of available software tools to conduct
such analyses [137].

7.7. Model application

The model application phase involves experimenting with or
running the model using, for example, scenarios of interest,
followed by analyzing the model outputs and results. This
phase also includes communicating and interpreting model
insights to the end users.

A critical aspect in the application of SoS models is
that individual models typically evolve independently.
Development of each individual model, by necessity, is led by
disciplinary experts and undergoes separate, asynchronous,
development cycles. As each model may come from
different modeling paradigms and sources of knowledge, the
implementation may be adjusted over time or even replaced
in response to newly acquired knowledge. Advancing
towards trial model applications using the expected type
and volume of data as early, quickly, and often as possible
allows modelers to encounter issues in the model application
earlier in the process. Experience gained with each iteration
subsequently serves to rectify and protect against future
application challenges. Application of the model then
requires monitoring and scrutinizing to ensure the underlying
models (including their metadata, represented knowledge,
and application context) remain current and appropriate.

In cases of long runtime, replacing the most computationally
expensive individual models with metamodels may be a
viable option. Metamodels approximate the input-output
behavior of the original model [138-140] and therefore
provide simplified representation(s) of more complex models

[141]. Metamodels leverage the emergent simplicity of
complex systems and although there are a variety of methods
available to accomplish this, generally metamodels require
the complex models (i.e., the original individual models) to
be available beforehand. Metamodels, being approximations
of an original model’s response surface, are most relevant
to the conditions existing in the datasets upon which they
are tuned, so care needs to be taken if using them under
conditions that transcend those extant in the data. System
forcing data beyond that experienced are of particular
concern. If possible, simply allocating more computational
resources (e.g., supercomputers) may be the most pragmatic
and resource efficient alternative, especially considering the
time taken to investigate and implement the options.

In the management context, where SoS models are typically
applied, there is a need to adequately describe the level of
uncertainties in the SoS model and its predictions. Individual
stakeholders may react differently to uncertainties and levels
of uncertainty [103]. Presenting scenario results relative to
the modeled baseline neatly reduces the inherent biases
that come with relying on stakeholder preferences to inform
desirable thresholds, as would usually occur in multi-criteria
or multi-objective analysis approaches [142, 143]. With such
an approach, the acceptability of a (possible) maximum or
minimum relative change becomes the focus of stakeholder
discussion.

A common requirement shared with tooling for conducting
analyses (e.g., for sensitivity and uncertainty analysis, and
exploratory modeling) is the provision and definition of
parameter values. These may consist of a “default” value, a
range within which values may vary, whether these values
are categorical, scalar, or regarded as constants (examples
may be found in [129, 144, 145]). Categorical values may
indicate substitution with other data types or a collection of
data types. Such information may be the minimum necessary
to conduct appropriate analyses, to reproduce and replicate
results, and to support later automation of these activities.
Parameter values in effect represent dimensions of scale and
the inappropriate selection of their values and ranges may
result in misleading results [146, 147].

206

7.8. Model perpetuation

The final model perpetuation phase is relevant for models that
will be used to support ongoing decision making or operational
processes to ensure continuous improvement and their long-term
adoption. It involves providing documentation to users in running
the model and interpreting its outputs, as well as ensuring that
plans and mechanisms are in place for appropriately monitoring,
maintaining and updating the model. The iterative revision of
the model is achieved through ongoing collaboration between
modelers and end users.

Where SoS models are used by external stakeholders, some
amount of technical support is expected. Without this, use of the
model and thus its impact is likely to be minimal. Computational
models are software in that they are made of code, and so
continued use comes with a baseline cost to cover maintenance,
improvements, and updating of documentation. Such capacity is
crucial in contexts where long-term management and decision
support is an acknowledged requirement. In such cases the
design, implementation and documentation of the model should
plan for these long-term activities from the beginning. In the SoS
context this implies retaining the interdisciplinary knowledge within
a team or organization (e.g., [89, 103]).

Documentation is a conduit through which information and
knowledge are propagated and provides the necessary context
for model evaluation [111]. Without sufficient documentation, it is
difficult to understand the context that led to any specific issue,
including mismatches between individual models. Lack of context
affects the perceived validity of the model conceptualization,
restricts model use, rendering the model inappropriate or invalid
for its purpose.

The act of documentation itself allows for reflexive and transparent
communication and for new insights to be gained. Undocumented
assumptions regarding scale and their influence may compromise
other individual models, thus holistic awareness of the SoS
issues can be obstructed by a lack of documentation. Long-term
maintenance and use of the model may also be impeded. No
individual holds the knowledge and awareness of the modeling
details in their entirety, let alone the effects of interactions among
models. It is therefore important to recognize that writing and
maintaining documentation should be a team effort, and a culture to
support this should be fostered. In practice, there are few incentives
for documenting models to such an extent. A key problem in SoS
model documentation is that details of the individual models
important for the SoS team may be considered unnecessary for the
teams developing the individual models. Once again, this stems
from potential disconnects between the purpose of the SoS model
and the original objectives of each individual model.

Process evaluation in SoS focuses on two facets:
achievement of goals and longevity of the models.
In terms of goal achievement, process evaluation
considers whether the goals of the SoS model were
supported by its individual models and, where
applicable, whether individual models achieved
their own goals. Although satisfying the goals of
the individual models may seem an indirect path to
satisfying the goals of the SoS model, this interpretation
is misleading. An SoS approach to modeling, instead
of simply a multi-modeling approach, leverages the
autonomy and independence of the individual models.
Individual models still need to be capable of yielding
their own outcomes, regardless of how those models
are used in the context of the SoS model [148].

Evaluation of the longevity of the SoS model, referring
to the ability to leverage or reuse the SoS model over
time, requires the development and assessment of
a targeted plan for its sustainment that includes: (1)
monitoring the evolution of the individual models; (2)
identifying alternatives for models that may cease their
validity, availability or accessibility during the lifetime
of the SoS model; (3) establishing a strategy for the
continued evolution of the SoS model, including the
development of potential transformation frameworks
and implementations; and (4) identifying opportunities
to facilitate the sustainment of individual systems
aligned with the sustainment of the SoS model.

207

8. CONCLUSIONS
This study employed a range of methodologies to achieve its research objectives. The qualitative analysis provided deep insights
into user behaviors and preferences, allowing for a comprehensive understanding of the underlying factors influencing decision-
making processes. Quantitative modeling was utilized to predict outcomes with high accuracy, offering a robust framework for
analyzing complex data sets. Additionally, case studies were conducted to illustrate practical applications and validate theoretical
models, bridging the gap between theory and practice.

The combination of these methodologies enabled a holistic approach to the research, ensuring that findings were both reliable
and applicable in real-world scenarios. The qualitative analysis highlighted the importance of context and individual experiences,
while the quantitative models offered generalizable results that could be applied across different settings. The case studies
provided concrete examples that demonstrated the practical implications of the research, reinforcing the validity of the theoretical
constructs.

208

REFERENCES

1.	 A.M. Madni and M. Sievers (2018). “Model-based systems engineering:
Motivation, current status, and research opportunities.” Systems
Engineering, vol. 21, no. 3, pp. 172-190. doi: 10.1002/sys.21438

2.	 M.W. Maier (1998). “Architecting principles for Systems of Systems.”
Systems Engineering, vol. 1, no. 4, pp. 267-284. doi: 10.1002/(SICI)1520-
6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D

3.	 S.C-Y. Lu, W., Elmaraghy, G. Schuh, and R. Wilhelm (2007). “A Scientific
Foundation of Collaborative Engineering,” CIRP Annals, vol. 56, no. 2, pp.
605-634. doi: 10.1016/j.cirp.2007.10.010

4.	 P.D. Collopy and P.M. Hollingsworth (2011). “Value-Driven Design.”
Journal of Aircraft, vol. 48, no. 3, pp. 749-759. doi: 10.2514/1.C000311

5.	 P.T. Grogan and A. Valencia-Romero (2019). “Strategic Risk Dominance in
Collective Systems Design,” Design Science, vol. 5, no. e24. doi: 10.1017/
dsj.2019.23

6.	 M. Maier, “Architecting Principles for Systems of Systems,” Systems
Engineering, vol. 1, no. 4, p. 267, 1999.

7.	 A. Golkar and I. Lluch i Cruz, “The Federated Satellite Systems
paradigm: Concept and business case evaluation,” Acta Astronautica,
vol. 111, no. 0, pp. 230-248, 6// 2015, doi: http://dx.doi.org/10.1016/j.
actaastro.2015.02.009.

8.	 U. Pica and A. Golkar, “Sealed-Bid Reverse Auction Pricing Mechanisms
for Federated Satellite Systems,” Systems Engineering, vol. 20, no. 5, pp.
432-446, 2017, doi: 10.1002/sys.21395.

9.	 I. Lluch and A. Golkar, “Architecting federations of systems: A framework
for capturing synergy,” Systems Engineering, vol. 22, no. 4, pp. 295-312,
2019/07/01 2019, doi: https://doi.org/10.1002/sys.21482.

10.	 I. Lluch, “A framework for architecting federations of engineering systems,”
PhD, Space Center, Skolkovo Institute of Science and Technology,
Moscow, Russia, 2017.

11.	 A. M. Ross and D. E. Hastings, “The Tradespace Exploration Paradigm,”
in INCOSE 2005 International Symposium, Rochester, NY, July, 2005
2005.

12.	 A. M. Ross, D. E. Hastings, J. M. Warmkessel, and N. P. Diller, “Multi-
Attribute Tradespace Exploration as Front End for Effective Space System
Design,” Journal of Spacecraft and Rockets, vol. 41, no. 1, pp. 20-28,
2004/01/01 2004, doi: 10.2514/1.9204.

13.	 M. Kasunic and W. Anderson, “Measuring systems interoperability:
Challenges and opportunities,” Software engineering measurement and
analysis initiative, 2004.

14.	 R. Akhtyamov, R. Vingerhoeds, and A. Golkar, “Identifying Retrofitting
Opportunities for Federated Satellite Systems,” Journal of Spacecraft and
Rockets, vol. 56, no. 3, pp. 620-629, 2019, doi: 10.2514/1.A34196.

15.	 E. Stoll et al., “On-orbit servicing,” IEEE Robotics & Automation Magazine,
vol. 16, no. 4, pp. 29-33, 2009, doi: 10.1109/MRA.2009.934819.

209

16.	 M. E. Sosa, S. D. Eppinger, and C. M. Rowles, “Designing Modular
and Integrative Systems,” 2000. [Online]. Available: https://doi.
org/10.1115/DETC2000/DTM-14571.

17.	 D. E. Hastings and C. Joppin, “On-Orbit Upgrade and Repair:
The Hubble Space Telescope Example,” Journal of Spacecraft
and Rockets, vol. 43, no. 3, pp. 614-625, 2006/05/01 2006, doi:
10.2514/1.15496.

18.	 B. Ma, Z. Jiang, Y. Liu, and Z. Xie, “Advances in Space Robots for
On-Orbit Servicing: A Comprehensive Review,” Advanced Intelligent
Systems, vol. 5, no. 8, p. 2200397, 2023/08/01 2023, doi: https://doi.
org/10.1002/aisy.202200397.

19.	 Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: a survey,” International Journal of Web
and Grid Services, vol. 14, no. 4, pp. 352-375, 2018/01/01 2018, doi:
10.1504/IJWGS.2018.095647.

20.	 O. von Maurich and A. Golkar, “Data authentication, integrity and
confidentiality mechanisms for federated satellite systems,” Acta
Astronautica, vol. 149, pp. 61-76, 2018/08/01/ 2018, doi: https://doi.
org/10.1016/j.actaastro.2018.05.003.

21.	 F. Garcia and E. Rachelson, “Markov Decision Processes,” in Markov
Decision Processes in Artificial Intelligence, 2013, pp. 1-38.

22.	 D. Selva, A. Golkar, O. Korobova, I. L. i. Cruz, P. Collopy, and O. L. de
Weck, “Distributed Earth Satellite Systems: What Is Needed to Move
Forward?,” Journal of Aerospace Information Systems, vol. 14, no. 8,
pp. 412-438, 2017/08/01 2017, doi: 10.2514/1.I010497.

23.	 S. Briatore, N. Garzaniti, and A. Golkar, “Towards the Internet
for Space: bringing cloud computing to space systems,” 36th
International Satellite Communications Systems Conference (ICSSC
2018), doi: doi:10.1049/cp.2018.1719

24.	 Schoonenberg, W.C.H., I.S. Khayal, and A.M. Farid, A Hetero-
functional Graph Theory for Modeling Interdependent Smart City
Infrastructure. 2019, Berlin, Heidelberg: Springer. 196.

25.	 Farid, A.M., D.J. Thompson, and W. Schoonenberg, A tensor-based
formulation of hetero-functional graph theory. Scientific Reports,
2022. 12(1): p. 18805.

26.	 Little, J.C., R.O. Kaaronen, J.I. Hukkinen, S. Xiao, T. Sharpee, A.M.
Farid, R. Nilchiani, and C.M. Barton, Earth Systems to Anthropocene
Systems: An Evolutionary, System-of-Systems, Convergence
Paradigm for Interdependent Societal Challenges. Environmental
Science & Technology, 2023. 57(14): p. 5504-5520.

27.	 Brown, F.T., Engineering System Dynamics. 2nd ed. 2007, Boca
Raton, FL: CRC Press, Taylor & Francis Group.

28.	 Karnopp, D., D.L. Margolis, and R.C. Rosenberg, System dynamics:
a unified approach. 2nd ed. 1990, New York, NY: Wiley.

29.	 Paynter, H.M., Analysis and design of engineering systems. 1961:
MIT Press.

30.	 Koenig, H.E., Y. Tokad, and H.K. Kesavan, Analysis of Discrete
Physical Systems. 1967: McGraw-Hill.

31.	 Kuo, B.C., Linear networks and systems. 1967: McGraw-Hill.

32.	 Blackwell, W.A., Mathematical modeling of physical networks. 1968:
Collier-Macmillan.

33.	 Shearer, J.L., A.T. Murphy, and H.H. Richardson, Introduction to
system dynamics. 1967, Reading, UK: Addison-Wesley.

34.	 Chan, S.-P., S.-Y. Chan, and S.-G. Chan, Analysis of linear Networks
and Systems. 1972: Addison-Wesley.

35.	 Forrester, J.W., Industrial Dynamics – A Major Breakthrough for
Decision Makers. Harvard Business Review, 1958. 36(July-August):
p. 37-66.

36.	 Sterman, J.D., Business Dynamics: Systems Thinking and Modeling
for A Complex World. Vol. 19. 2000, Boston, MA, USA: Irwin/McGraw-
Hill.

37.	 Newman, M., Networks: An Introduction. 2009, Oxford, UK: Oxford
University Press.

38.	 Van Steen, M., Graph Theory and Complex Networks: An Introduction.
2010: Maarten van Steen.

39.	 Ghorbanichemazkati, E. and A.M. Farid, Generalizing Linear Graphs
and Bond Graph Models with Hetero-functional Graphs for System-
of-Systems Engineering Applications. 2025 In review.

40.	 Naderi, M.M., M.S. Harris, E. Ghorbanichemazkati, J.C. Little, and A.M.
Farid, Convergent Anthropocene Systems-of-Systems: Overcoming
the Limitations of System Dynamics with Hetero-functional Graph
Theory. Journal of Cleaner Production, 2025 In review.

41.	 Delligatti, L., SysML Distilled - A Brief Guide to the Systems Modeling
Language. 2014, Upper Saddle River, NJ: Addison-Wesley.

42.	 Friedenthal, S., A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language. 2nd ed. 2011, Burlington, MA:
Morgan Kaufmann.

43.	 Weilkiens, T., Systems engineering with SysML/UML modeling,
analysis, design. 2007, Burlington, MA: Morgan Kaufmann.

44.	 Group, S.H.W., Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities. 2015, International Council on
Systems Engineering (INCOSE).

45.	 Hoyle, D., ISO 9000 pocket guide. 1998, Boston, MA: Butterworth-
Heinemann.

46.	 Girault, C. and R. Valk, Petri nets for systems engineering: a guide
to modeling, verification, and applications. 2013: Springer Science
& Business Media.

210

47.	 Farid, A.M., Reconfigurability Measurement in Automated
Manufacturing Systems, in Engineering Department Institute for
Manufacturing. 2007, University of Cambridge.

48.	 Khayal, I.S. and A.M. Farid, Architecting a System Model for
Personalized Healthcare Delivery and Managed Individual Health
Outcomes. Complexity, 2018. 1(1): p. 1-25.

49.	 Schoonenberg, W.C.H. and A.M. Farid, A Dynamic Model for the
Energy Management of Microgrid-Enabled Production Systems.
Journal of Cleaner Production, 2017. 1(1): p. 1-10.

50.	 Farid, A.M., A Hybrid Dynamic System Model for Multi-Modal
Transportation Electrification. IEEE Transactions on Control System
Technology, 2016. PP(99): p. 1-12.

51.	 Farid, A.M., Multi-Agent System Design Principles for Resilient
Coordination & Control of Future Power Systems. Intelligent Industrial
Systems, 2015. 1(3): p. 255-269.

52.	 Farid, A.M., An engineering systems introduction to axiomatic design,
in Axiomatic Design in Large Systems: Complex Products, Buildings
& Manufacturing Systems, A.M. Farid and N.P. Suh, Editors. 2016,
Springer: Berlin, Heidelberg. p. 1-47.

53.	 Viswanath, A., E.E.S. Baca, and A.M. Farid, An Axiomatic Design
Approach to Passenger Itinerary Enumeration in Reconfigurable
Transportation Systems. IEEE Transactions on Intelligent
Transportation Systems, 2014. 15(3): p. 915-924.

54.	 Thompson, D.J. and A.M. Farid. Reconciling Formal, Multi-Layer, and
Hetero-functional Graphs with the Hetero-functional Incidence Tensor.
in 2022 17th Annual System of Systems Engineering Conference
(SOSE). 2022.

55.	 Kivelä, M., A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, and
M.A. Porter, Multilayer networks. Journal of complex networks, 2014.
2(3): p. 203-271.

56.	 Park, G.-J. and A.M. Farid, Design of Large Engineering Systems, in
Design Engineering and Science, N.P. Suh, M. Cavique, and J. Foley,
Editors. 2021, Springer: Berlin, Heidelberg. p. 367-415.

57.	 Thompson, D., W.C.H. Schoonenberg, and A.M. Farid, A Hetero-
functional Graph Resilience Analysis of the Future American Electric
Power System. IEEE Access, 2021. 9: p. 68837-68848.

58.	 Thompson, D.J. and A.M. Farid, A hetero-functional graph structural
analysis of the American Multi-Modal Energy System. Sustainable
Energy, Grids and Networks, 2024. 38: p. 101254.

59.	 Khayal, I.S. and A.M. Farid, A Dynamic System Model for Personalized
Healthcare Delivery and Managed Individual Health Outcomes. IEEE
Access, 2021. 9: p. 1-16.

60.	 Schoonenberg, W.C.H. and A.M. Farid, Hetero-functional network
minimum cost flow optimization: A hydrogen–natural gas network
example. Sustainable Energy, Grids and Networks, 2022. 31: p.
100749.

61.	 Farid, A.M., Measures of reconfigurability and its key characteristics
in intelligent manufacturing systems. Journal of Intelligent
Manufacturing, 2017. 28(2): p. 353-369.

62.	 Farid, A.M. and D.C. McFarlane. A Development of Degrees of
Freedom for Manufacturing Systems. in IMS 2006 5th International
Symposium on Intelligent Manufacturing Systems: Agents and Virtual
Worlds. 2006. Sakarya, Turkey.

63.	 Farid, A.M. and D.C. McFarlane, Production degrees of freedom
as manufacturing system reconfiguration potential measures.
Proceedings of the Institution of Mechanical Engineers, Part B, 2008.
222(10): p. 1301-1314.

64.	 Farid, A.M. and L. Ribeiro, An Axiomatic Design of a Multiagent
Reconfigurable Mechatronic System Architecture. IEEE Transactions
on Industrial Informatics, 2015. 11(5): p. 1142-1155.

65.	 Farid, A.M., Electrified transportation system performance:
Conventional vs. online electric vehicles, in The On-line Electric
Vehicle: Wireless Electric Ground Transportation Systems, N.P. Suh
and D.H. Cho, Editors. 2017, Springer: Berlin, Heidelberg. p. 279-313.

66.	 Van der Wardt, T.J.T. and A.M. Farid A Hybrid Dynamic System
Assessment Methodology for Multi-Modal Transportation-
Electrification. Energies, 2017. 10, DOI: 10.3390/en10050653.

67.	 Khayal, I.S. and A.M. Farid, Axiomatic Design Based Volatility
Assessment of the Abu Dhabi Healthcare Labor Market. Journal of
Enterprise Transformation, 2015. 5(3): p. 162-191.

68.	 Farid, A.M., A Hetero-functional Graph Resilience Analysis for
Convergent Systems-of-Systems. 2025 In review.

69.	 J Venkateswaran, YJ Son, International Journal of Industrial
Engineering. 2004. 11, 151-159

70.	 Rathore, A., Balaraman, B., Zhao, X., Venkateswaran, J., Son, Y.,
and Wysk, R. (2005), “Development and Benchmarking of an Epoch
Time Synchronization Method for Distributed Simulation,” Journal of
Manufacturing Systems, Vol. 24, No. 2, pp. 69–78.

71.	 Salado A, Kannan H., Szajnfarber Z., Rouse W., Son Y., Nirav
Merchant, A Reference Architecture for a Policy Test Laboratory.

72.	 IEEE. (2010). IEEE Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA)-- Framework and Rules. IEEE Std
1516-2010 (Revision of IEEE Std 1516-2000), 1-38. doi:10.1109/
IEEESTD.2010.5553440

73.	 Rouse, W. B. (2019). Computing Possible Futures: Model Based
Explorations of “What if?”. Oxford, UK: Oxford University Press.

74.	 Rouse, W. B. (2022). Transforming Public-Private Ecosystems:
Understanding and Enabling Innovation in Complex Systems.
Oxford, UK: Oxford University Press.

211

75.	 Singh, R., & Mathirajan, M. (2014, 9-12 Dec. 2014). A conceptual
simulation framework for the performance assessment of lot release
policies. Paper presented at the 2014 IEEE International Conference
on Industrial Engineering and Engineering Management.

76.	 Hurt, T., McDonnell, J., & McKelvy, T. (2006, 3-6 Dec. 2006).
The Modeling Architecture for Technology, Research, and
Experimentation. Paper presented at the Proceedings of the 2006
Winter Simulation Conference.

77.	 Iwanaga, T., H.-H. Wang, S.H. Hamilton, V. Grimm, T.E. Koralewski,
A. Salado, S. Elsawah, S. Razavi, J. Yang, P. Glynn, J. Badham,
A. Voinov, M. Chen, W.E. Grant, T.R. Peterson, K. Frank, G. Shenk,
C.M. Barton, A.J. Jakeman, and J.C. Little, Socio-technical scales
in socio-environmental modeling: Managing a system-of-systems
modeling approach. Environmental Modelling & Software, 2021. 135:
p. 104885.

78.	 Jakeman, A.J., S. Elsawah, H.-H. Wang, S.H. Hamilton, L. Melsen,
and V. Grimm, Towards normalizing good practice across the whole
modeling cycle: its instrumentation and future research topics. Socio-
Environmental Systems Modelling, 2024. 6: p. 18755.

79.	 Little, J.C., E.T. Hester, S. Elsawah, G.M. Filz, A. Sandu, C.C. Carey,
T. Iwanaga, and A.J. Jakeman, A tiered, system-of-systems modeling
framework for resolving complex socio-environmental policy issues.
Environmental Modelling & Software, 2019. 112: p. 82-94.

80.	 Little, J.C., R.O. Kaaronen, J.I. Hukkinen, S. Xiao, T. Sharpee, A.M.
Farid, R. Nilchiani, and C.M. Barton, Earth Systems to Anthropocene
Systems: An Evolutionary, System-of-Systems, Convergence
Paradigm for Interdependent Societal Challenges. Environmental
Science & Technology, 2023. 57(14): p. 5504-5520.

81.	 Cash, D.W., W.N. Adger, F. Berkes, P. Garden, L. Lebel, P. Olsson,
L. Pritchard, and O. Young, Scale and Cross-Scale Dynamics:
Governance and Information in a Multilevel World. Ecology and
Society, 2006. 11(2).

82.	 Ostrom, E., A diagnostic approach for going beyond panaceas.
Proceedings of the National Academy of Sciences, 2007. 104(39):
p. 15181-15187.

83.	 Kelly, R.A., A.J. Jakeman, O. Barreteau, M.E. Borsuk, S. ElSawah,
S.H. Hamilton, H.J. Henriksen, S. Kuikka, H.R. Maier, A.E. Rizzoli,
H. van Delden, and A.A. Voinov, Selecting among five common
modelling approaches for integrated environmental assessment and
management. Environmental Modelling & Software, 2013. 47(0): p.
159-181.

84.	 Macpherson, E., R.I. Cuppari, A. Kagawa-Viviani, H. Brause, W.A.
Brewer, W.E. Grant, N.M. Herman-Mercer, B. Livneh, K.R. Neupane,
T.N. Petach, C.N. Peters, H.-H. Wang, C. Pahl-Wostl, and H. Wheater,
Setting a pluralist agenda for water governance: Why power and
scale matter. WIREs Water, 2024. 11(5).

85.	 Packett, E., N.J. Grigg, J. Wu, S.M. Cuddy, P.J. Wallbrink, and A.J.
Jakeman, Mainstreaming gender into water management modelling
processes. Environmental Modelling & Software, 2020. 127: p.
104683.

86.	 Melsen, L.A., It Takes a Village to Run a Model—The Social Practices
of Hydrological Modeling. Water Resources Research, 2022. 58(2):
p. e2021WR030600.

87.	 Sanz, D., J. Vos, F. Rambags, J. Hoogesteger, E. Cassiraga, and
J.J. Gómez-Alday, The social construction and consequences of
groundwater modelling: insight from the Mancha Oriental aquifer,
Spain. International Journal of Water Resources Development, 2019.
35(5): p. 808-829.

88.	 Hamilton, S.H., C.A. Pollino, D.S. Stratford, B. Fu, and A.J. Jakeman,
Fit-for-purpose environmental modeling: Targeting the intersection of
usability, reliability and feasibility. Environmental Modelling & Software,
2022. 148: p. 105278.

89.	 Grimm, V. and U. Berger, Robustness analysis: Deconstructing
computational models for ecological theory and applications.
Ecological Modelling, 2016. 326: p. 162-167.

90.	 Lahtinen, T.J., J.H.A. Guillaume, and R.P. Hämäläinen, Why pay
attention to paths in the practice of environmental modelling?
Environmental Modelling & Software, 2017. 92: p. 74-81.

91.	 Voinov, A., R. Seppelt, S. Reis, J.E.M.S. Nabel, and S. Shokravi, Values
in socio-environmental modelling: Persuasion for action or excuse for
inaction. Environmental Modelling & Software, 2014. 53: p. 207-212.

92.	 Zare, F., J.H.A. Guillaume, A.J. Jakeman, and O. Torabi, Reflective
communication to improve problem-solving pathways: Key issues
illustrated for an integrated environmental modelling case study.
Environmental Modelling & Software, 2020. 126: p. 104645.

93.	 MacLeod, M. and M. Nagatsu, What does interdisciplinarity look like in
practice: Mapping interdisciplinarity and its limits in the environmental
sciences. Studies in History and Philosophy of Science Part A, 2018.
67: p. 74-84.

94.	 Hamilton, S.H., S. ElSawah, J.H.A. Guillaume, A.J. Jakeman, and
S.A. Pierce, Integrated assessment and modelling: Overview and
synthesis of salient dimensions. Environmental Modelling & Software,
2015. 64: p. 215-229.

95.	 Kragt, M.E., B.J. Robson, and C.J.A. Macleod, Modellers’ roles in
structuring integrative research projects. Environmental Modelling &
Software, 2013. 39: p. 322-330.

96.	 Tranquillo, J., An Introduction to Complex Systems: Making Sense of
a Changing World. 2019: Springer Nature.

97.	 Sarosa, S. and A. Tatnall, Failure to Launch: Scope Creep and
Other Causes of Failure from an Actor-Network Theory Perspective.
International Journal of Actor-Network Theory and Technological
Innovation (IJANTTI), 2015. 7(4): p. 1-13.

212

98.	 Thompson, J.L., Building Collective Communication Competence in
Interdisciplinary Research Teams. Journal of Applied Communication
Research, 2009. 37(3): p. 278-297.

99.	 Cockerill, K., P. Glynn, I. Chabay, M. Farooque, R.P. Hämäläinen,
B. Miyamoto, and P. McKay, Records of engagement and decision
making for environmental and socio-ecological challenges. EURO
Journal on decision processes, 2019. 7(3-4): p. 243-265.

100.	 Glynn, P.D., A.A. Voinov, C.D. Shapiro, and P.A. White, From data to
decisions: Processing information, biases, and beliefs for improved
management of natural resources and environments. Earth’s Future,
2017. 5(4): p. 356-378.

101.	 Cash, D.W., W.C. Clark, F. Alcock, N.M. Dickson, N. Eckley,
D.H. Guston, J. Jäger, and R.B. Mitchell, Knowledge systems for
sustainable development. Proceedings of the National Academy of
Sciences, 2003. 100(14): p. 8086-8091.

102.	 Hoekstra, A., B. Chopard, and P. Coveney, Multiscale modelling and
simulation: a position paper. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 2014.
372(2021).

103.	 Hoekstra, A.G., S. Portegies Zwart, and P.V. Coveney, Multiscale
modelling, simulation and computing: from the desktop to the
exascale. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 2019. 377(2142):
p. 20180355.

104.	 Martin, D.M., S.J. Powell, J.A. Webb, S.J. Nichols, and N.L. Poff,
An Objective Method to Prioritize Socio-Environmental Water
Management Tradeoffs Using Multi-Criteria Decision Analysis. River
Research and Applications, 2017. 33(4): p. 586-596.

105.	 Tjosvold, D., C. Hui, D.Z. Ding, and J. Hu, Conflict values and
team relationships: conflict’s contribution to team effectiveness and
citizenship in China. Journal of Organizational Behavior, 2003. 24(1):
p. 69-88.

106.	 De Dreu, C.K.W., The virtue and vice of workplace conflict: food
for (pessimistic) thought. Journal of Organizational Behavior, 2008.
29(1): p. 5-18.

107.	 Bennett, N.D., B.F.W. Croke, G. Guariso, J.H.A. Guillaume, S.H.
Hamilton, A.J. Jakeman, S. Marsili-Libelli, L.T.H. Newham, J.P. Norton,
C. Perrin, S.A. Pierce, B. Robson, R. Seppelt, A.A. Voinov, B.D. Fath,
and V. Andreassian, Characterising performance of environmental
models. Environmental Modelling & Software, 2013. 40(Supplement
C): p. 1-20.

108.	 Barba, L.A., Praxis of Reproducible Computational Science.
Computing in Science & Engineering, 2019. 21(1): p. 73-78.

109.	 Saltelli, A., K. Aleksankina, W. Becker, P. Fennell, F. Ferretti, N. Holst, S.
Li, and Q. Wu, Why so many published sensitivity analyses are false:
A systematic review of sensitivity analysis practices. Environmental
Modelling & Software, 2019. 114: p. 29-39.

110.	Zimmermann, H.J., An application-oriented view of modeling
uncertainty. European Journal of Operational Research, 2000. 122(2):
p. 190-198.

111.	Chen, C.-F., H.-w. Ma, and K.H. Reckhow, Assessment of water
quality management with a systematic qualitative uncertainty
analysis. Science of The Total Environment, 2007. 374(1): p. 13-25.

112.	 Linkov, I. and D. Burmistrov, Model Uncertainty and Choices Made
by Modelers: Lessons Learned from the International Atomic Energy
Agency Model Intercomparisons. Risk Analysis, 2003. 23(6): p. 1297-
1308.

113.	 Refsgaard, J.C., J.P. van der Sluijs, A.L. Højberg, and P.A.
Vanrolleghem, Uncertainty in the environmental modelling process
– A framework and guidance. Environmental Modelling & Software,
2007. 22(11): p. 1543-1556.

114.	 Pianosi, F., K. Beven, J. Freer, J.W. Hall, J. Rougier, D.B. Stephenson,
and T. Wagener, Sensitivity analysis of environmental models: A
systematic review with practical workflow. Environmental Modelling &
Software, 2016. 79: p. 214-232.

115.	 Raick, C., K. Soetaert, and M. Grégoire, Model complexity and
performance: How far can we simplify? Progress in Oceanography,
2006. 70(1): p. 27-57.

116.	 Song, X., J. Zhang, C. Zhan, Y. Xuan, M. Ye, and C. Xu, Global
sensitivity analysis in hydrological modeling: Review of concepts,
methods, theoretical framework, and applications. Journal of
Hydrology, 2015. 523: p. 739-757.

117.	Razavi, S., R. Sheikholeslami, H.V. Gupta, and A. Haghnegahdar,
VARS-TOOL: A toolbox for comprehensive, efficient, and robust
sensitivity and uncertainty analysis. Environmental Modelling &
Software, 2019. 112: p. 95-107.

118.	 Reichert, P., Towards a comprehensive uncertainty assessment in
environmental research and decision support. Water Science and
Technology, 2020. 81(8): p. 1588-1596.

119.	 Dunford, R., P.A. Harrison, and M.D.A. Rounsevell, Exploring scenario
and model uncertainty in cross-sectoral integrated assessment
approaches to climate change impacts. Climatic Change, 2015.
132(3): p. 417-432.

120.	 Iwanaga, T., D. Partington, J. Ticehurst, B.F.W. Croke, and A.J.
Jakeman, A socio-environmental model for exploring sustainable
water management futures: Participatory and collaborative modelling
in the Lower Campaspe catchment. Journal of Hydrology: Regional
Studies, 2020. 28: p. 100669.

121.	 Li, G., Z. Bie, Y. Kou, J. Jiang, and M. Bettinelli, Reliability evaluation
of integrated energy systems based on smart agent communication.
Applied Energy, 2016. 167: p. 397-406.

122.	 Norton, J., An introduction to sensitivity assessment of simulation
models. Environmental Modelling & Software, 2015. 69: p. 166-174.

213

123.	 Razavi, S. and H.V. Gupta, What do we mean by sensitivity analysis?
The need for comprehensive characterization of “global” sensitivity
in Earth and Environmental systems models. Water Resources
Research, 2015. 51(5): p. 3070-3092.

124.	 Guillaume, J.H.A., J.D. Jakeman, S. Marsili-Libelli, M. Asher, P.
Brunner, B. Croke, M.C. Hill, A.J. Jakeman, K.J. Keesman, S. Razavi,
and J.D. Stigter, Introductory overview of identifiability analysis: A
guide to evaluating whether you have the right type of data for your
modeling purpose. Environmental Modelling & Software, 2019. 119:
p. 418-432.

125.	 Douglas-Smith, D., T. Iwanaga, B.F.W. Croke, and A.J. Jakeman,
Certain trends in uncertainty and sensitivity analysis: An overview of
software tools and techniques. Environmental Modelling & Software,
2020. 124: p. 104588.

126.	 Castelletti, A., S. Galelli, M. Ratto, R. Soncini-Sessa, and P.C. Young, A
general framework for Dynamic Emulation Modelling in environmental
problems. Environmental Modelling & Software, 2012. 34: p. 5-18.

127.	 Christelis, V. and A.G. Hughes, Metamodel-assisted analysis of an
integrated model composition: An example using linked surface
water – groundwater models. Environmental Modelling & Software,
2018. 107: p. 298-306.

128.	 Pietzsch, B., S. Fiedler, K.G. Mertens, M. Richter, C. Scherer, eacute,
dric, K. Widyastuti, M.-C. Wimmler, L. Zakharova, and U. Berger,
Metamodels for Evaluating, Calibrating and Applying Agent-Based
Models: A Review. Journal of Artificial Societies and Social Simulation,
2020. 23(2): p. 9.

129.	 Asher, M.J., B.F.W. Croke, A.J. Jakeman, and L.J.M. Peeters, A review
of surrogate models and their application to groundwater modeling.
Water Resources Research, 2015. 51(8): p. 5957-5973.

130.	 Maier, H.R., J.H.A. Guillaume, H. van Delden, G.A. Riddell, M.
Haasnoot, and J.H. Kwakkel, An uncertain future, deep uncertainty,
scenarios, robustness and adaptation: How do they fit together?
Environmental Modelling & Software, 2016. 81: p. 154-164.

131.	 Reichert, P. and M.E. Borsuk, Does high forecast uncertainty
preclude effective decision support? Environmental Modelling &
Software, 2005. 20(8): p. 991-1001.

132.	 Kwakkel, J.H., The Exploratory Modeling Workbench: An open
source toolkit for exploratory modeling, scenario discovery, and
(multi-objective) robust decision making. Environmental Modelling &
Software, 2017. 96: p. 239-250.

133.	 Pianosi, F., F. Sarrazin, and T. Wagener, A Matlab toolbox for Global
Sensitivity Analysis. Environmental Modelling & Software, 2015. 70:
p. 80-85.

134.	 Shin, M.-J., J.H.A. Guillaume, B.F.W. Croke, and A.J. Jakeman,
Addressing ten questions about conceptual rainfall–runoff models
with global sensitivity analyses in R. Journal of Hydrology, 2013. 503:
p. 135-152.

135.	 Wagener, T. and F. Pianosi, What has Global Sensitivity Analysis ever
done for us? A systematic review to support scientific advancement
and to inform policy-making in earth system modelling. Earth-Science
Reviews, 2019. 194: p. 1-18.

136.	 Salado, A. Abandonment: A natural consequence of autonomy and
belonging in Systems of Systems. in 2015 10th System of Systems
Engineering Conference (SoSE). 2015.

137.	 Baldwin C., Sauser B., and Cloutier R., “Simulation Approaches for
System of Systems: Event-based versus Agent Based Modeling,
Procedia Computer Science, 44, pp. 363-372, 2015.

138.	 Acheson P., Dagli C., and Kilicay-Ergin N., “Model Based Systems
Engineering for System of Systems Using Agent-Based Modeling”
Procedia Computer Science, 16, pp. 11-19, 2013.

139.	 Wei Y., and Madey G., “Agent-based Simulation for UAV Swarm
Mission Planning and Execution”, Proceedings of the Agent-Directed
Simulation Symposium, Society for Computer Simulation International,
2013.

140.	 Macal C., and North M., “Agent-based Modeling and Simulation”
Proceedings of the 2009 Winter Simulation Conference, pp. 86-98,
2009.

141.	 Mour A., Kenley R., Davendralingam N., and DeLaurentis D., “Agent-
based Modeling for Systems of Systems” INCOSE International
Symposium, pp. 973-976

142.	 Silva R., and Braga R. “Simulating System-of-Systems with Agent-
based Modeling: A Systematic Literature Review” IEEE Systems
Journal, Vol. 14, No. 3, pp. 3609-3617, 2020.

143.	 Von Neumann, John. Theory of Self-Reproducing Automata. Ed.
Arthur W. Burks. Urbana: University of Illinois Press, 1966.

144.	 Games, M., (1970) The fantastic combinations of John Conway’s
new solitaire game “life” by Martin Gardner. Scientific American, 223,
pp.120–123.

145.	 Schelling, T. C. (1971). “Dynamic models of segregation”. The
Journal of Mathematical Sociology. 1 (2), pp. 143- 186.

146.	 Epstein J., and Axtell R., Growing Artificial Societies: Social Science
from the Bottom Up, Brookings Institution Press, 1996.

147.	 Axelrod R., The Evolution of Cooperation, New York: Basic Books,
1984.

148.	 Borshchev A. and Filippov A., “From System Dynamics and Discrete
Event to Practical Agent Based Modeling: Reasons, Techniques,
Tools” The 22nd International Conference of the System Dynamics
Society, July 25-29, 2004, Oxford, England.

214

BIOGRAPHIES

JOSÉ LUIS DE ROSARIO SÁNCHEZ-SIMÓN
José Luis de Rosario Sánchez-Simón is

a Mining Engineer specializing in Energy

and Fuels from the Universidad Politécnica

de Madrid. He also holds an Executive

MBA from Instituto de Empresa. Currently,

he is an adjunct professor at Universidad

Europea de Madrid, teaching Operations

Management in the Master’s programs for

Industrial Engineering and Engineering

Organization, Project Management, and

Business.

He works also at Isdefe as a Systems Engineer specializing in strategy,

process improvement, and quality assurance systems. He was the winner

of the R&D&I competition for his balanced scorecard project. Previously,

he worked at ING as a business analyst responsible for Spain operations

reporting. At IBM, he was a finance controller for France and Italy,

managing revenue, expenditure, and profit analysis for each business

line. At Fundación ONCE, he led quality assurance. He implemented

RFID-based warehouse management systems at LTR. At STEF He was

the quality assurance and logistics specialist for Procter & Gamble in

Madrid, Barcelona, Lisbon, and Canary Islands platforms. He is also

committed to supporting people with disabilities, sharing his experience

through talks at hospitals, universities, and associations.

215

DR. PAUL GROGAN
Dr. Paul Grogan is an associate

professor with the School of

Computing and Augmented

Intelligence at Arizona State

University. He holds a Ph.D.

in engineering systems and

a S.M. degree in aeronautics

and astronautics from the

Massachusetts Institute of

Technology and a B.S. degree

in engineering mechanics and

astronautics from the University

of Wisconsin. He leads the Collective Design Lab, which

develops and studies the use of information-based methods

and tools for engineering design of Earth and space systems

having distributed or decentralized architectures.

DR. ALESSANDRO GOLKAR
Dr. Alessandro Golkar is a

Professor at the Technical

University of Munich, Chair of

Spacecraft Systems, within

the Department of Aerospace

Engineering and Geodesy.

Dr. Golkar focuses on space

systems engineering, technology

management, and space

entrepreneurship. He previously

covered roles across industry

and academia including as

Vice President in the Technology Planning and Roadmapping

organization of the AIRBUS CTO (Toulouse, France), and

Space Center Director at Skoltech (Moscow, Russia). He is the

lead author of the New Space Economy online course of MIT

Professional Education in the US, where he serves as a Visiting

Senior Instructor. Dr. Golkar holds a Ph.D. in Aeronautics and

Astronautics from MIT, an Executive MBA from Quantic Institute of

Technology, and Master’s and Bachelor’s degrees in aerospace

engineering from the University of Rome “La Sapienza”.

216

DR. AMRO M. FARID
Dr. Amro M. Farid is the

Alexander Crombie Humphreys

Chair Professor in Economics of

Engineering at the Department

of Systems and Enterprises at the

Stevens Institute of Technology.

He is the Principal Systems

Scientist at National Energy

Analysis Centre at CSIRO –

Australia’s National Science

Agency. He is also a Visiting

Scientist at MIT Mechanical

Engineering and CEO of Engineering Systems Analytics LLC.

At Stevens, he leads the Laboratory for Intelligent Integrated

Networks of Engineering Systems (LIINES) and has authored

over 165 peer reviewed publications in Smart Power Grids,

Hydrogen-Energy-Water Nexus, Electrified Transportation

Systems, Industrial Production & Supply Chain Energy

Management, Smart Cities, Regions, & Nations

DR. YOUNG-JUN SON
Dr. Young-Jun Son is the James

J. Solberg Head and Ransburg

Professor of Edwardson School

of Industrial Engineering at

Purdue University. Prior to this

position, he was the Department

Head and Professor of Systems

and Industrial Engineering at

the University of Arizona. His

research focuses on a data-

driven, multi-scale, simulation

and decision model needed

for design and control in various applications, including

extended manufacturing enterprise, renewable energy

and storage network, homeland security, transportation,

and social network. He has authored/co-authored over 110

journal papers and 100 conference papers. He is a Fellow of

the Institute of Industrial and Systems Engineers (IISE), and

has received the Society of Manufacturing Engineers (SME)

2004 Outstanding Young ME Award, the IIE 2005 Outstanding

Young IE Award, the IISE Annual Meeting Best Paper Awards

(2005, 2008, 2009, 2016, 2018, 2019), and Best Paper of

the Year Award in 2007 from International Journal of IE. His

research activities have been funded by NSF, AFOSR, DOT/

FHWA, US Department of Energy/AZ Commerce Authority,

USDA, NIST, Sandia National Lab, Science Foundation of

Arizona, Boeing, Samsung, Motorola, Raytheon, Tucson

Electric Power, Microsoft, and several application software

companies. He is a Department Editor for IISE Transactions,

on the editorial board for seven additional journals. He was

the vice chair and secretary for the SISO Core Manufacturing

Simulation Data (CMSD) Standard Product Development

Group. He currently serves on 1) the board of Winter

Simulation Conference, and has served on 2) the board of

IISE as the Vice President of Continuing Education and 3) as

a member of INFORMS Meetings Committee. He has served

as co-Program Chair for ISERC 2007, the General Chair for

INFORMS Annual Meeting 2018, and the General Chair for

Winter Simulation Conference 2019.

217

DR. NIL H. ERGIN
Dr. Nil H. Ergin is the Professor-

in-charge of the Systems

Engineering and Engineering

Management Programs at the

Pennsylvania State University

and Associate Professor of

Systems Engineering at Penn

State Great Valley School of

Graduate Professional Studies.

She earned her Ph.D. in

systems engineering, M.S. in

engineering management from

the University of Missouri-Rolla (currently known as Missouri

University of Science & Technology), and B.S. degree in

environmental engineering from Istanbul Technical University.

Prior to joining Penn State University, Dr. Ergin worked within

the Research Institute for Manufacturing and Engineering

Systems (RIMES) at the University of Texas at El Paso where

she served on industry funded research contracts and taught

for the systems engineering graduate program. Dr. Ergin’s

research integrates key principles from systems science,

problem-solving theories, multi-agent models, and knowledge

models to the analysis of wicked problems in applications of

system of systems and complex adaptive systems. She is a

senior member of IEEE and member of INCOSE.

DR. JOHN LITTLE
Dr. John Little received a

BS in Chemical Engineering

from the University of Cape

Town and an MS and PhD in

Environmental Engineering

from the University of California,

Berkeley. After completing a

Postdoc at Lawrence Berkeley

National Laboratory, he joined

the Department of Civil and

Environmental Engineering at

Virginia Tech, and is currently

Charles E. Via, Jr. Professor. John’s research previously

focused on process dynamics in environmental systems

(building and indoor environment, and water quality in

lakes and reservoirs) but has now broadened to process

dynamics in Anthropocene systems. Because Anthropocene

systems are highly interdependent and dynamically evolving,

often with accelerating rates of cultural and technological

evolution, the ensuing family of societal challenges (e.g.,

climate change, renewable energy, adaptive infrastructure,

disasters, pandemics, food insecurity, biodiversity loss,

sustainable development, resilience and equity) are also

highly interdependent and need to be framed and addressed

in a holistic fashion. To catalyze the required societal

transformations at local, urban, regional and global scales,

an evolutionary, system-of-systems convergence paradigm

is needed. Dr. Little received a National Science Foundation

Career Award in 1996, was elected to the International Society

of Indoor Air Quality and Climate Academy of Fellows in 2008,

received the Association of Environmental Engineering and

Science Professors Outstanding Doctoral Dissertation Award

in 2011, and the North American Lake Management Society

Technical Merit Research Award in 2014. Dr. Little has been

a visiting professor at University of Sydney, Australia; Swiss

Federal Institute for Aquatic Science and Technology (Eawag),

Switzerland; Tsinghua University, China; National Cheng

Kung University, Taiwan; University of Granada, Spain; Centre

Scientifique et Technique du Bâtiment, France; and University

of La Rochelle, France.

Isdefe
C/ Beatriz de Bobadilla, 3

28040 Madrid
Tel.: +34 91 411 50 11

Email: general@isdefe.es
www.isdefe.es

