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"The greatest danger in times of turbulence is not the turbulence; it is to act with yesterday’s logic."

Peter Drucker





We live in a convulsive world. The global instability 
and uncertainty of our living environment, 
since the fall of the Berlin Wall, are catalyzed by 
the technological revolution in which we are 
immersed. Emerging technologies are bringing 
about profound changes in the way we think and 
act and are accelerating the transition of our 
society towards the digital age. 

We are facing unknown futures, enormous 
security and technological challenges, that we 
can only overcome by creating agile structures, 
in permanent adaptation to the rapid evolution of 
the environment, and developing more flexible 
and resilient organizations, which allow us to 
survive and operate in an increasingly volatile and 
complex environment. Our Armed Forces, which are an integral part of society, 
are immersed in a process of digital transformation that is changing the art of 
war. A digitized, hyper-connected battlefield, in which operations are carried out 
in a network by well-equipped combatants who serve as nodes in the warfighting 
network with a widespread use of unmanned vehicles, autonomous systems, 
drones, armed robots -acting individually or collaboratively- are already a reality 
that is substantially modifying current operational concepts.FO
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A clear example is the conflict in Ukraine1. Russia’s illegal invasion 
of Ukraine seems to have brought us to a high-intensity conventional 
conflict although with certain exceptions: both parties are making 
extensive use of specific emerging and disruptive technologies 
(EDT), characteristic of modern conflicts; there is also a clear 
confrontation in the grey zone between Russia and the West; and, 
all this, against the backdrop of the nuclear threat. Operations are 
being carried out in the multi-domain which integrates both the 
physical -land, sea and air, including outer space- and the non-
physical -cyberspace and cognitive space-, domains established by 
the Spanish doctrine. On the other hand, some fundamental changes 
in battle, associated with digitalization, have been identified, with the 
massive use of drones standing out.

From this terrible and highly attritional conflict, and focusing on 
military capabilities, we can draw the following lessons learned: that 
intelligence, surveillance, reconnaissance and target acquisition 
capabilities are key to superiority in operations; that it is critical to 
have on the battlefield precise and long-range fires to hit targets 
minimizing collateral damage; that heavy firepower is needed to 
saturate the adversary; that the battlefield is becoming digital; that 
it is now evident that in order for network operations to be possible, 
we need to ensure the interconnection of sensors and combat 
systems with management centers and fire -or effects- producing 
elements; and, finally, that in order to ensure this interconnection, it 
is essential to have robust, redundant and highly mobile command 
and control systems, as well as electronic warfare capabilities 
to operate in the electromagnetic spectrum with the necessary 
superiority, to guarantee operability in degraded environments and 
freedom of action in the five operational domains. 

Ukraine has also highlighted how a combat situation spurs ingenuity 
and the ability to innovate and how the threat changes and evolves 
at a dizzying pace. That is why it is important that, in order to provide 
our Armed Forces with these new military capabilities, the defense 
industry is able to manufacture, in a short time, the appropriate 
weapons systems to face the changing threats. To this end, it will 
have to implement agile development methodologies, using the 
possibilities of digitalization, in the development and maturation of the 
EDT that are bursting onto the battlefield. 

In this sense, our Armed Forces must have powerful electronic 
warfare systems prepared for navigation warfare (NAVWAR) so 
that the superiority of the PNT (position, navigation and timing) 
information can be ensured, protecting our own navigation systems 
and degrading the adversary’s PNT information. The development 
of anti-drone technologies has become an absolute priority. To 
guarantee the safety of any operation, a wide range of technologies 
must be available for the location, identification and monitoring of 
the threat, as well as for its neutralization, either with soft kill means 
1. “Conclusiones iniciales de la guerra en Ucrania”. Centro Conjunto de Desarrollo de Conceptos. Estado 
Mayor Conjunto, marzo 2023.



(jamming or spoofing) or with hard kill means – destruction kinetic 
effectors (projectiles, rockets, or active protection systems), nets, 
electromagnetic pulse, laser weapons, etc. Likewise, technological 
development in the fields of robotics and autonomous vehicles 
is essential to automate legacy systems (drive-by-wire), to develop 
advanced driver-vehicle interfaces and technologies for UGV-UA 
interaction, etc. Other fundamental technologies to be developed and 
made available will be those associated with industry 4.0 (AI, cyber-
physical systems, machine learning, digital twins, cloud systems, 
Big Data, etc.) that will allow to complete the transformation of the 
logistics structures of the armies, evolving from reactive-preventive 
logistics to predictive logistics. Finally, the use of AI and Big 
Data will be a priority for the predictive maintenance of platforms, 
the automatic and intelligent analysis of large volumes of data from 
weapons system sensors and the intelligent analysis of information 
sources in support of decision-making. Thus, AI will be essential, 
among others, for the complete simulation of the battle environment, 
C-UAS comprehensive combat management systems, sensor fusion, 
precise positioning in complex environments, autonomous navigation 
in unstructured environments; automation algorithms development; 
planning of itineraries, etc.

With regard to the financing of these EDT, we can say that geopolitical 
uncertainty and instability, together with the weakening of the 
transatlantic link, are forcing the growth of defense investments in order 
to achieve European strategic autonomy and meet NATO commitments. 
In this regard, the Spanish government has recently published the 
Industrial and Technological Plan for Security and Defense2 
with the aim of guaranteeing Spain’s security and consolidating 
Spain as a central and reliable member of the European Union and 
NATO. The plan also aims to promote a new wave of innovation and 
reindustrialization of companies around dual-use technologies. 
Industrial investments will focus on developing, manufacturing and 
acquiring new telecommunications and cybersecurity capabilities, as 
well as on the manufacture and purchase of new defense equipment. 

It is clear that we are aware of the security challenges and the 
military capabilities needed to meet them, that we are aware of the 
technological challenges and industrial capabilities essential to the 
development of key EDT, and that we have the economic and financial 
tools to obtain the most technically advanced weapons systems 
that provide a clear operational advantage to our combatants. And 
it is in this procurement process that systems engineering plays a 
fundamental role. 

Traditional systems engineering (SE) had been applied in defense 
since the early 1990s. In 1992, the Systems Sub-Directorate was 
created within the Army Logistics Support Command. Colonel Torrón 
introduced the SE’s vocabulary into the military field, evidencing the 
lack of culture that we had, at the time, regarding the important role 
2. https://www.lamoncloa.gob.es/consejodeministros/resumenes/Documents/2025/230425-plan-industrial-
y-tecnologico-para-la-seguridad-y-la-defensa.pdf



that SE plays in the life cycle of weapons systems. Isdefe responded 
to the challenge of filling this gap by producing Isdefe’s first series 
of systems engineering publications, initiated in 1995, the famous 
blue books written by great specialists in the field (Blanchard, Sarabia, 
Aracil, ...) In 2002, with a certain level of awareness, MALE began 
to work on the PRISMA Program (MALE Systems Reengineering 
Program), with Colonel Orts as program head. In 2003, it was officially 
launched with the contracting of technical assistance to Isdefe for the 
period 2003-2005. During this period, an incredible effort was made, 
both by the company and by the MALE, to achieve its implementation 
in 2005. PRISMA was born with a double objective:

a)	 To adopt the NATO methodology for the systems life cycle and

b)	 to provide a common working methodology, to all sections of 
the MALE regarding the weapons systems acquisition and 
maintenance process. 

With a unique, well-defined vocabulary, PRISMA served as a guide 
to the program managers and technical directors in their relations 
with the awarded companies and with the official quality services. In 
turn, it served to “educate” companies in SE. In short, it was a set of 
guidelines for the proper management of weapons systems’ life cycle. 

However, when we analyze the current reality of the battlefield and its 
evolution – network operations, combat cloud, cyber defense, anti-
drone systems, collaborative autonomous systems, AI, predictive 
logistics, quantum and photonic communications, etc. – we see that 
the traditional concept of a weapon system is changing.  Modern 
systems are very complex. They are made up of independent systems 
interconnected with each other (radars, satellites, unmanned vehicles, 
communications systems, etc.) and integrated into a coordinated 
architecture that acts more efficiently in the fulfilment of the mission. 
These complex systems, characterized by a distributed governance, 
are called systems of systems (SoS), also known, depending on the 
application domain, as supersystems. 

In the first monograph of this group of notebooks “Introduction to 
systems engineering in the 21st century”, the new types of systems - 
cyber-physical systems, systems based on learning or systems with 
distributed governance (system of systems) - were already described 
in detail, for which traditional methods of systems engineering may 
be ineffective which is why the need to evolve and adapt traditional 
systems engineering methodologies to SoS was also analyzed. 
Therefore, we move from systems engineering to systems of systems 
engineering, case which is discussed in this notebook and whose 
content is presented in the preface.

From what has been said so far, we see that current operations in 
multi-domain are inconceivable without SoS. From a military point of 
view, SoS are relevant to: 



a)	 ensure interoperability, allowing different systems -operating in 
different domains- to work together sharing real-time information 
and coordinating actions;

b)	 improve strategic decision-making, integrating multiple sources 
of information that provide a global view of the field of operations 
and greater situational awareness;

c)	 ensure the resilience and adaptability, since, if one system fails, 
another can replace its function, keeping the operation running;

d)	 promote scalability and technological evolution through the 
incorporation of new technologies, without having to redesign 
the entire system from scratch, which is essential in a constantly 
changing technological and security (threat) environment; and

e)	 facilitate multinational coordination, allowing the integration 
of systems from different countries, with different protocols and 
technologies, in joint operations with other allies. 

Given the complexity of SoS and the fact that SoS Engineering 
methodologies are still in the development phase, it is essential 
to have the right talent. Thus, the personnel of the Army Corp of 
Engineers, within the Secretary of State for Defense and the Logistics 
Support Commands, must be trained, on an ongoing basis, in this 
discipline. The monograph, that the reader has in their hands, 
contributes to alleviating this need. Its excellent content, prepared 
by true international and Isdefe experts in the field, constitutes a 
magnificent reference for all those with responsibilities in the life cycle 
of SoS and for the community of systems engineers in general.

To conclude, I would like to thank Isdefe, the coordinator of the series, 
Lieutenant General García Montaño, and the head of the Innovation 
Area, Ms. Belinda Misiego, for the opportunity they have given me 
to prologue this monograph. It is an honor and a privilege to have 
participated in the writing of this second installment of the series 
“Systems Engineering Notebooks. Cuadernos de Isdefe”.

Jesús Carlos Gómez Pardo.
General de División (R).

Dr. Ingeniero de Armamento.





This monograph presents a comprehensive and 
structured overview of the engineering of Systems 
of Systems (SoS), offering a snapshot of current 
practices and emergent disciplines in this complex and 
increasingly critical domain. It is the second monograph 
in the “blue” series on systems engineering published 
by Isdefe, continuing our effort to provide technically 
sound and accessible resources for practitioners in 
government and industry.

The monograph has been conceived with a specific 
audience in mind: professionals in the Spanish and 
European defense, security, space, energy, and 
transport sectors who are involved in the acquisition, 
development, integration, or operation of SoS. Whether 
acting as suppliers or customers, these professionals 
face the multifaceted challenges of working with systems that are independently 
managed, distributed, evolving, and often only loosely coordinated. The content of 
this monograph aims to support their understanding and decision-making with a firm 
grounding in current practice.

Each chapter has been authored through a unique collaboration between international 
experts and practitioners from Isdefe, ensuring both technical rigor and practical 
relevance. While the chapters can be read individually, the book has been designed as 
a cohesive volume, with each contribution forming part of a broader narrative on SoS 
engineering. Every chapter serves as an introduction to a key concept or activity within 
SoS engineering, providing a launching point for further exploration in the technical 
literature.PR
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The book begins with an introduction to SoS (Chapter 1), 
followed by a discussion of how traditional systems engineering 
must evolve to address SoS challenges (Chapter 2), using ISO 
21840 as a guiding standard. Chapter 3 introduces mission 
engineering as a discipline that prioritizes mission outcomes over 
platform capabilities. Chapter 4 presents a concrete example 
of a mission thread, offering readers a practical application of 
concepts discussed earlier.

Governance, integration, and test and evaluation, core 
processes that require a different mindset when applied to SoS, 
are discussed in Chapters 5 through 7. Chapter 8 challenges the 
traditional notion of system lifecycle by proposing a perspective 
of continuous SoS evolution. The final chapter (Chapter 9) 
presents advanced modeling, simulation, and analysis methods, 
including agent-based modeling, federated approaches, and 
heterofunctional graph theory, among others, to address the 
complex interdependencies of SoS.

Throughout, we have taken care to avoid speculative visions 
of the future, subjective opinions about the state of the field, 
or promotional content unsupported by practice. The result is 
a monograph that is deliberately sober, grounded in current 
capabilities and real-world experience. Yet, it does not ignore 
progress: where promising developments are emerging, they 
are presented in a measured, factual manner.

We recognize that the maturity of organizations in SoS engineering 
varies widely. Some may still be developing capabilities in 
areas long established in traditional systems engineering. This 
monograph should not be read as an unreachable ideal but as 
evidence that structured, methodical progress is possible and 
already underway in some places.

We hope this monograph serves as both a reference and a source 
of inspiration for those working to advance SoS capabilities in 
their own contexts.

On behalf of the authors, the project management team, and 
Isdefe, I hope that you find the reading educative, enjoyable, 
and useful. 

Dr. Alejandro Salado
The University of Arizona
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Systems of Systems: 

An introduction

Dr. Judith Dahmann, The MITRE Corporation (jdahmann@mitre.org)
David Sánchez García, Isdefe (dsanchez@isdefe.es)

Abstract

Systems of systems (SoS) are becoming more and more prevalent, and their fundamental characteristics 
pose challenges for the application of systems engineering. This chapter introduces systems of systems 
(SoS) – their history, their distinctive features, examples, the impact of advanced technology on SoS 
and the future of SoS – as context for the following chapters which address SoS engineering.

Keywords

Systems of Systems, Systems Engineering
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1. A HISTORY OF SYSTEMS OF SYSTEMS TO 
TODAY
The concept of systems of systems (SoS) has been around long 
before the acceptance of the systems of systems terminology. Gorod 
et al [1] provides a detailed walkthrough of the SoS literature, as 
shown in Figure 1, which has been annotated to reflect key features 
of the history of SoS.

The earliest references to SoS [1, 2] include Boulding’s paper on 
general theoretical constructs [3], where he described the concept 
of SoS as “the arrangement of theoretical systems and constructs in 
a hierarchy of complexity”, viewing the SoS is an “open system” that 
can be affected by external events, noting, however, this definition 
is not distinct from how traditional systems have been defined [4]. 
Early on, others characterized urban city planning, systems science 
structures, and biological systems as SoS [5-7]. 

Despite the growing attention to SoS, as late as 2015, there was 
controversy over the definition of SoS [2]:

As might be expected in an emerging field, there is yet no precise 
and widely accepted definition of SoS to which the bulk of the 
literature conforms, making it difficult to bound the field precisely. 
The literature is diverse, and there are many attempts to define and 
characterize SoS. Several reviews have sought to achieve some 
convergence [8-13]. 

Mark Maier in the late nineties provided a seminal perspective that 
has grounded SoS thinking to today [14]. This is discussed in the 
next section

The earliest examples of SoS from an engineering 
viewpoint come from United States (US) Department 
of Defense (DoD) with the US Strategic Defense 
Initiative starting a process of viewing defense 
capabilities as SoS. Admiral W.A. Owens, US 
Navy, introduced SoS to the military domain in “The 
Emerging U.S. System-of-Systems” [15]:

The things which give military forces their fighting 
capability are changing, and these changes point 
toward a qualitative jump in our ability to use military 
force effectively. 

Probably relating to the way we plan, program 
and budget for these things, we are more adept at 
seeing the individual trees than that vast forest of 
military capability (the system-of-systems) which 
the individual systems are building for our fighting 
forces.
 
The system-of-systems depends ultimately on well-
orchestrated contributions of all the military services. 
This assumes a common appreciation of and 
adherence to what we are building. Most importantly, 
it requires joint strategic and operational doctrine 
by which to organize, plan and carry out military 
operations.

The US Air Force [16] and Army [17] began to take 
account of this perspectives, and the publication of 
the US DoD Guide to SoS Engineering [18], took a 
defense-wide engineering perspective on SoS.

In the early 2000s, institutions began to recognize 
systems of systems. The first annual SoS Engineering 
conference was held in Los Angeles in 2006, and 
these conferences continue through today. The 
International Council on Systems Engineering 
(INCOSE) formed a Systems of Systems working 
group in 2011, which provided leadership through 
webinars and publications including the SoS Pain 
Points (2013) [19], SoSE Primer (2018) [20] and 
Guide to SoS Standards (2020) [21]. SoS was 
included as a knowledge area in the SE Body of 
Knowledge in the first release in 2012.

Traditionally, SoS have been viewed as applying 
primarily to defense, largely centered on the United 
States. However, a meta-analysis of 168 IEEE papers 
published between 2020 and 2023 on SoS indicates 
that this is no longer the case [22]. As is shown in 
Table 1, SoS applications in these papers address 
a wide range of domains and less than a fifth of the 

Figure 1: Modern History of Systems of Systems and 
Systems of Systems Engineering [1] with overlay.
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papers address defense applications. Furthermore, the meta-
analysis found that the papers were authored by authors of 
29 countries, showing geographically widespread interest in 
SoS.

on the development of strategic research and engineering 
roadmaps in Systems of Systems Engineering and related 
case studies. These projects seeded interest in SoS across 
European universities and industry.

These actions have shaped the direction and growth of SoS.  
In one of the earliest documents to address engineering 
applied to systems of systems, an “SoS is defined as a set 
or arrangement of systems that results when independent 
and useful systems are integrated into a larger system that 
delivers unique capabilities” [24]. This document notes that 
individual systems and SoS conform to the accepted definition 
of a system in that each consists of parts, relationships, and 
a whole that is greater than the sum of the parts; however, 
although an SoS is a system, not all systems are SoS. It 
also makes clear that simply having multiple systems does 
not make a SoS; a SoS includes the fact that these multiple 
systems result in a new capability not originally anticipated 
and/or intended by the systems alone.

In 2019, the International Standards Organization (ISO) 
adopted the first standards for SoS [25]. An ISO SoS Standards 
study group [26] recognized the increased attention to SoS 
and the value to standards to the maturation of SoSE. These 
include a definition [27] of SoS and constituent systems: 

	• System of Systems (SoS) - Set of systems or system 
elements that interact to provide a unique capability that 
none of the constituent systems can accomplish on its 
own. 

	• Constituent Systems - Constituent systems can be part 
of one or more SoS. Each constituent is a useful system 
by itself, having its own development, management goals 
and resources, but interacts within the SoS to provide the 
unique capability of the SoS.

This established the first widely accepted SoS definition 
and provided grounding for today’s SoS community. Note 
that the definition of system in ISO is essential to interpret 
the definition of SoS. This is because a system (which form 
SoS) must be useful by itself and decides to interact within 
the SoS. For example, a battery powering an engine in a car 
would not be considered a constituent system in this context, 
but an element of the car.

Application Areas # %

Defense 31 18.5%

Transportation 22 13.1%

Health 10 6.0%

IOT/CPS 8 4.8%

Energy 7 4.2%

Emergency/Crisis Mgt 6 3.6%

Space 4 2.4%

Search and Rescue 4 2.4%

Education 3 1.8%

Environment 3 1.8%

Remainder (< 3) 70 41.7%

Table 1: Domain application areas addressed by papers.

In Europe, the European Commission initiated an SoS 
research initiative in 2011 [23]:

“(ICT-2011.3.3) with an objective to increase the 
competitiveness of European industry and enable Europe to 
master and shape future developments in ICT (Information 
and Communication Technologies) so that the future demands 
of its society and economy will be met. Competitiveness 
means, in this context, that Europe will be global leaders in 
SoSE, which will lead to greater Return on Investment (ROI) 
for European industry, greater innovation within the technical 
systems community in government, industry, and academia, 
and long-term economic sustainability of, and through, 
engineering of large complex systems.”

There were four major projects in this initiative: T-AREA-SoS 
(Trans-Atlantic Research and Education Agenda in Systems 
of Systems), with the objective to develop and deliver to 
the European Commission a Strategic Research Agenda 
in Systems of Systems Engineering (SoSE); Designing for 
Adaptability and evolutioN in System of systems Engineering 
(DANSE), focused on the development of new approaches 
to the design and management of the operation of SoS; 
Comprehensive Modelling for Advanced Systems of Systems 
(COMPASS), which developed new modelling technology 
for advanced software; and ROAD2SoS, which focused 
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Transportation

Multiple transportation 
assets and services work 

together to provide integrated 
transportation capabilities.

Air Traffic Management: SES: Single European Sky, SESAR activities and the road to Digital European Sky 
[28], SkyNex iTEC [29], next generation Air Traffic Control System. 

Rail network: Single European Rail Area, European Rail Traffic Management System (ERTMS) and other 
TEN-T [30] projects.

Energy

Smart grid, smart houses, 
and integrated production/

consumption provide energy 
management services.

European Network of Transmission System Operators for Electricity (ENTSO-E) vision on European Power 
System [31].

Health Care 
Regional facilities management, 

emergency services, and 
personal health management.

E-health initiative: connecting health systems in Europe [32].

Defense
Military missions such as missile 

defense, networked sensors, 
command and control.

Joint or Cooperating ISR systems composed of Land, Air, Space, Naval ISR Systems collaborating for 
Joint ISR at national or international level [33].

AFSC: Alliance Future Surveillance and Control [34].

NGWS/FCAS: New Generation Weapon System / Future Combat Air System [35]. Europe’s FCAS will see 
next-generation manned jets flying alongside unmanned remotely piloted carriers of varying sizes. These 
assets will be part of a fully networked ‘system of systems’.

FMN [36]: Federated Mission Networking is a capability aiming to support command and control and 
decision-making in future operations through improved information-sharing. 

Telecommunications
Telecommunications systems 
provide telecommunications 
services to multiple domains.

GNSS/Galileo [37]: Galileo is Europe’s Global Navigation Satellite System (GNSS) provides positioning 
and timing information used in smartphones, and in applications such as railways, aviation, agriculture, 
maritime and more.

Smart Cities [38] with initiatives like ICC [39]: The Intelligent Cities Challenge (ICC) is one of the European 
Commission’s largest initiatives supporting European cities in their green and digital transitions. 
 
The IRIS2 [40] Satellite Constellation is the European Union’s third flagship, addressing   long-term 
challenges of EU’s security, safety and resilience by offering enhanced connectivity services to 
governmental users.

Natural Resource 

Management 

Global environment, regional 
water resources, forestry, and 

recreational resources.

Copernicus [41] Copernicus is the Earth observation component of the European Union’s Space 
programme, looking at our planet and its environment to benefit all European citizens. It offers information 
services that draw from satellite Earth Observation and in-situ (non-space) data.

Security and 

Disaster Response 

Responses to disaster events 
including forest fires, floods, 

terrorist attacks, border control.

European Civil Protection Mechanism and the Emergency Response Coordination Center (ERCC) [42]. 

European Crisis Management Mechanism [43]. The EU might be exposed to a variety of crises and 
disasters (such as those caused by climate change, health threats, terrorist and cyber-attacks, political 
instability and violent conflict, failures in critical infrastructure) and should be capable to respond fast 
and appropriately.

EuroSur/FRONTEX [44] the European Border Surveillance system (EUROSUR) is a framework for 
information exchange and cooperation between Member States and Frontex to improve situational 
awareness and increase reaction capability at the external borders.

Science
Astronomy, computing 

centres, research centers.

Astronomy: Distributed telescopes like LOFAR [45] (Low Frequency Array), European VLBI network [46], 
BOOTES [47], the first worldwide network of robotic telescopes.

CERN. The accelerator complex at CERN [48] is a succession of machines with increasingly higher 
energies.

EuroHPC JU [49], is a joint initiative between the EU, European countries and private partners to develop 
a World Class Supercomputing Ecosystem in Europe.

Table 2: Examples of systems that could be potentially 
considered Systems of Systems.
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2. SYSTEMS OF SYSTEMS CHARACTERISTICS

2.1. Distinguishing Systems of Systems 

As noted above, Maier’s characterization of SoS is foundational 
to our understanding of SoS.  Maier [14] presented five SoS 
characteristics that can be observed in most SoS, although not all 
of them are necessary conditions for something to be considered 
an SoS:

	• Operational independence of constituent systems, 

	• Managerial independence of constituent systems, 

	• Geographical distribution, 

	• Emergent behavior, and 

	• Evolutionary development processes.

Of these, Maier identified operational independence and 
managerial independence as the two principal distinguishing 
characteristics for applying the term ‘systems of systems.’  
He argues that a system without at least one of these two 
characteristics is not considered an SoS regardless of the 
complexity or geographic distribution of its components.

In terms of emergent behavior, “the concept of emergence 
refers to phenomena that occur on a system level without being 
present at the level of elements in the system” [50]. For systems 
of systems this means that there may be results or behavior not 
predicted by the individual constituent systems. As is discussed 
in the Systems Engineering Body of Knowledge [51]:

In the Maier characterization, emergence is noted as a common 
characteristic of SoS particularly in SoS composed of multiple 
large existing systems, based on the challenge (in time and 
resources) of subjecting all possible logical threads across the 
myriad functions, capabilities, and data of the systems in an SoS...
[So] there are risks associated with unexpected or unintended 
behavior resulting from combining systems that have individually 
complex behavior. These become serious in cases which safety, 
for example, is threatened through unintended interactions 
among the functions provided by multiple constituent systems 
in a SoS.

Finally, in terms of geographical distribution, this is just something 
that most of the existing SoS share but it is more a consequence 
of how most systems of systems are deployed than a requirement 
for being a SoS.

These pain points are briefly described in Table 3. 
They are presented in the INCOSE SE Handbook [52], 
with particular attention to the impact they have on the 
application of systems engineering to SoS. 

Figure 2: System of Systems Pain Points [40]. 

2.2. Systems of Systems Pain Points

The characteristics presented in the previous section are 
important because they provide the keys to the particular 
challenges systems engineers face when applying 
systems engineering to SoS. These challenges are 
reflected in the SoS Pain Points (Figure 2), which were 
identified by the INCOSE SoS working group and which 
have been particularly useful in understanding SoS.
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2.3. Systems of Systems taxonomy

The defining characterization of SoS as lacking a top-
level authority is central to the challenges posed by SoS.  
It is this characteristic that provides the driver for the most 
widely accepted taxonomy for SoS. This taxonomy has been 
adopted in ISO/IEC/IEEE 21841. As described in the SoS 
knowledge area of the SE Body of Knowledge [51], in those 
situations where the SoS is recognized and treated as a 
system in its right, an SoS can be described as one of four 
types [14,53,54]:

	• Directed: The SoS is created and managed to fulfill 
specific purposes, and the constituent systems are 
subordinated to the SoS. The constituent systems 
maintain an ability to operate independently; however, 
their normal operational mode is subordinated to the 
central managed purpose. 

	• Acknowledged: The SoS has recognized objectives, 
a designated manager, and resources for the SoS; 
however, the constituent systems retain their independent 
ownership, objectives, funding, and development and 
sustainment approaches. Changes in the systems are 
based on cooperative agreements between the SoS and 
the system.

	• Collaborative: The component systems interact more or 
less voluntarily to fulfill agreed upon central purposes. 
The central players collectively decide how to provide or 
deny service, thereby providing some means of enforcing 
and maintaining standards.

	• Virtual: The SoS lacks a central management authority 
and a centrally agreed upon purpose for the SoS. Large-
scale behavior emerges —and may be desirable— 
but this type of SoS must rely on relatively invisible 
mechanisms to maintain it.

Figure 3 illustrates these four types.

In reality, most actual SoS are a combination of these types.

SoS Authorities

In an SoS, each constituent system 
has an ‘owner’, stakeholders, 

users, business processes, and 
development approach, departing from 
traditional top-down authority over the 

development and operation of the SoS.

Leadership

The lack of common authority 
across an SoS means that decisions 

for the SoS rely less on traditional 
command and control and more on 

influence and persuasion, which can 
be accomplished in several ways, 

one of them being leadership.

Constituent 

Systems’ 

Perspectives

Most SoS are composed of pre-existing 
constituent systems , each bringing 

with them their own perspective, which 
may or may not align with perspectives 

of the other constituent of the SoS. 

Capabilities and 

Requirements

Traditionally a system has a coherent set 
of user capabilities.  SoS are comprised 
of multiple independent systems each 

with their own capabilities, which 
when combined may or may not 

provide coherent SoS capabilities. 

Autonomy, 

Interdependencies 

and Emergence

The independence of constituent 
systems means that a constituent 

system may change independently of 
the SoS, and even leave the SoS, and 
impact other constituent and the SoS 
in unexpected or unpredictable ways. 

Testing, 

Validation, and 

Learning

Since SoS are composed of 
independent constituent systems, 

this poses challenges in conducting 
end-to-end SoS testing as is 
typically done with systems.

SoS Principles

Work is needed to identify and 
articulate the cross-cutting principles 
that apply to SoS in general and to 

developing working examples of the 
application of these principles.  

Table 3. SoS Pain Points.
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Figure 3: SoS Types [55]. 

Figure 4: Scale and scope of SoS [57].

2.4. SoS scale, scope and complexity

SoS can range in scale and scope, as shown in Figure 4, 
which draws examples from the 2011 European Commission 
SoS research initiative discussed above. 

On the one hand, SoS may be composed of purely technical 
systems with the integration of heterogeneous systems 
developed independently into a composite capability. 
The figure illustrates the integration of independently 
developed audiovisual capabilities into an audiovisual home 
entertainment system of systems.

There are broader socio-technical SoS in areas such as 
disaster response, which include interactions among various 
elements in responding to a disaster including fire, public 
safety, volunteer organizations and others.

Finally, SoS may address enterprise-wide issues such 
as counterfeiting in US defense [56], which incorporate 
systems, organizations, policies, and competing efforts.

In each case, there are independent elements –some 
technical, some organizational– which compose the SoS.
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As SoS increase in scope and scale and increasingly 
incorporate non-technical elements, as noted in 
Maier characteristic of SoS emergence, SoS are 
particularly susceptible to complexity [58], which is 
defined according to the SEBOK [59] as:

Opportunities to apply artificial intelligence (AI) and machine 
learning (ML) are growing rapidly particularly with the advent of 
access to large language models. For SoS, these technologies 
provide opportunities to automate complex tasks, to optimize system 
performance, and to make predictive analyses.  With AI and ML, SoS 
can learn and evolve over time, and they enable SoS characteristics 
of evolutionary development and operational independence. These 
potential advantages come with the challenges of the need for 
high computational power and specialized knowledge and added 
unpredictability. In terms of SoS pain points, AI/ML address SoS 
authority challenges with opportunities for intelligent decision 
making and new capability to address capability and requirements 
challenges by providing a means to learn and adapt to changes. 
On the other hand, the opaque nature of some AI/ML models, 
often referred to as the “black box” problem can make it difficult to 
understand and predict system behavior.

Big data analytics offer the opportunity to handle and analyze large 
volumes of data from different systems, providing insights for SoS 
design and operation and enabling data-driven decision making and 
opportunities for overall efficiency and performance. These potential 
opportunities come with the challenges of handling the large volume, 
velocity, and variety of data including data management, storage, 
and analysis and data quality and integrity.  From the perspective 
of SoS pain points, big data analytics can provide insights into 
behavior and performance of systems and opportunities for better 
integration and management of constituent systems.  But the lack 
of cross cutting SoS authority can pose data ownership and privacy 
issues and given the diversity of constituent system perspectives the 
need to integrate and manage large volumes of data from different 
systems.

“A measure of how difficult it is to understand 
how a system will behave or to predict the 
consequences of changing it. It occurs when 
there is no simple relationship between what 
an individual element does and what the 
system as a whole will do, and when the 
system includes some element of adaptation 
or problem solving to achieve its goals in 
different situations. It can be affected by 
objective attributes of a system such as 
by the number, types of and diversity of 
system elements and relationships, or by the 
subjective perceptions of system observers 
due to their experience, knowledge, training, 

or other sociopolitical considerations.”

Using work on complexity by INCOSE as the frame 
of reference [60], SoS by their very nature can be 
shown to exhibit many dimensions of complexity, 
and the guiding principles to complexity thinking 
[61] can be applied to address complexity in SoS.

3. IMPACT OF ADVANCED 
TECHNOLOGIES ON SYSTEMS OF 
SYSTEMS1 

It is recognized that current technological advances 
are impacting systems in a variety of ways.  The 
question addressed here is how technological 
advances are affecting SoS. Figure 5 shows the 
set of technologies that are having an impact on 
systems of systems.

1. Material in this section is based on a panel presentation at the IEEE SoS 
Conference INCOSE Panel presentation in June 2024 in Tacoma, Washington 
(USA) using MChat, the Microsoft Azure OpenAI GPT-4 32K LLM model 
available at MITRE.

Figure 5. Technologies affecting systems of systems.
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5G technology provides high-speed, reliable, and low latency 
communications, which are crucial in many system of systems, 
and as a result can enable enhanced communication and data 
sharing and real-time data sharing and collaboration.  This comes 
with the challenge of significant investment in infrastructure and 
new challenges of security and privacy of data. In terms of the 
autonomy, interdependencies and emergence SoS pain point, 
the advantage of high-speed connectivity/low latency real-
time data sharing and communication among systems comes 
with the challenge of increased complexity and potential for 
interference between systems.

Cybersecurity technologies can help protect systems of 
systems from potential threats and attacks, ensure the security 
and integrity of data, and protect the SoS from potential threats 
and attacks. Yet, SoS continue to face security challenges of 
each constituent system and their impact on the overall system 
of systems. Given the lack of SoS authority, SoS face the 
challenges of ensuring the security and integrity of data across 
systems and building trust among different systems and their 
authorities including the need for coordination and compliance 
with different security protocols and standards across systems.

Blockchain can ensure transparency and security in 
transactions and provide the opportunity to create secure and 
transparent systems, enhance trust among different systems 
and stakeholders, and ensure data integrity and security. 
However, this requires a deep understanding of the technology.

Virtual and augmented reality technologies allow for the 
simulation of real-world scenarios.  This addresses the testing, 
validation, and learning SoS pain point. It employs immersive 
and interactive platforms for testing and validating systems, 
creating the opportunity to establish secure and transparent 
systems and enhance trust among different systems and 
stakeholders.  However, these technologies can be technically 
challenging, requiring specialized knowledge, and areprone to 
unrealistic expectations.

Cloud computing allows for the integration of various 
systems on a common platform that enables interaction and 
collaboration, operational independence, and geographical 
distribution. This enables enhanced integration and 
interoperability of systems and provides a scalable and flexible 
platform that can accommodate the evolving needs of the SoS. 
The challenges of data security and privacy concerns and of 
managing and integrating diverse systems remain, as data 
control becomes distributed across different cloud services 
and issues with data sovereignty, as well as compliance, given 
the lack of a centralized SoS authority.

Internet of Things (IoT) technologies provide 
interconnectivity between different systems, allowing them 
to communicate and share data.  These technologies 
enable geographic distribution, real-time data collection 
and communication, efficient system design and operation, 
and improved adaptability to changing conditions. At 
the same time, they face challenges of data overload, 
management and analysis of distributed data, and security 
of IoT devices, given the complexity resulting from the 
sheer number of devices and systems to be managed and 
coordinated, which introduce new security vulnerabilities.
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4. CONCLUSIONS
It is safe to say that systems of systems are here to stay and if anything, are becoming recognized as a class of systems warranting 
special consideration. With the advent of modularity in systems design, what may have been considered single technical systems, 
now exhibit many of the SoS characteristics, as fewer systems are developed completely from the ground up. System components 
developed by independent organizations are integrated as independent constituent systems of new systems, bringing with them 
the benefits of reuse along with some of the challenges of SoS. As systems engineering continues to apply to larger socio-
technical enterprises, these organizational systems of systems are part and parcel of the future systems landscape and part of 
the remit of systems engineering.

This section has laid the groundwork for the SoS engineering topics addressed in the remainder of this monograph. The history of 
SoS has been reviewed along with the critical characteristics that distinguish this class of system and how these characteristics 
drive SoS complexity. The chapter has shown how SoS are found across a wide range of domains and are the topic of research 
globally.  Advanced technologies are key drivers for SoS which are going to be increasingly important in the future. These provide 
important context for understanding the challenges and approaches to systems of systems engineering.
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From Systems Engineering 
to Systems of Systems 

Engineering: An overview 

Abstract

Engineering Systems of Systems (SoS) presents unique challenges that require a departure 
from traditional systems engineering (SE) practices. While most SE practices provide a structured 
framework for managing system life cycles, their direct application to SoS is limited by the degrees of 
governance, managerial independence, operational independence, and interoperability constraints 
among constituent systems (CS). Unlike traditional systems, where mandates and centralized control 
can ensure compliance, SoS must balance command, negotiation, and influence, depending on 
the autonomy of its components. This chapter provides a summary of the main adaptations that the 
application of systems engineering requires to be effective in the engineering of SoS.
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1. INTRODUCTION
Applying traditional SE principles to SoS is far from 
straightforward. Unlike conventional systems, where 
engineers design and control every element, SoS 
presents a complex, decentralized, and evolving 
landscape, as described in the previous chapter. The 
core challenge is that an SoS is not built from the ground 
up. Instead, it emerges from the interaction of multiple, 
independently operated and managed systems, each 
with its own stakeholders, objectives, and operational 
constraints.

In this environment, the role of systems engineers 
transforms from designers and decision-makers 
to orchestrators and influencers, aligning diverse 
interests, fostering interoperability, and guiding system 
interactions to achieve a greater, emergent capability.

One of the most fundamental shifts in engineering SoS 
is recognizing that traditional SE approaches, which are 
highly prescriptive for SE processes, cannot be applied 
in a one-size-fits-all manner to SoS [1]. For a traditional 
system, most SE standards mandate what must be 
done: requirements must be managed, verification 
and validation must be performed, and all lifecycle 
processes are expected to be executed in a rigorous, 
disciplined manner. There is an implicit assumption 
that there is centralized control, meaning engineers 
can impose processes as needed to ensure system 
success.

However, when working with SoS, almost everything 
depends on the level of governance, managerial, and 
operational independence of its constituent systems 
(CS). Unlike a conventional system, engineers cannot 
assume mandates will be effective across the entire 
SoS. Some systems can be directly controlled, while 
others operate with complete independence, following 
their own priorities and decision-making structures. This 
means that, while in some cases mandates can still be 
used (especially for CS that are internally developed or 
contractually obligated to comply with the SoS structure), 
in other cases mandates are useless (particularly when 
dealing with autonomous systems that exist outside the 
SoS owner’s jurisdiction). Most commonly, however, the 
solution lies somewhere in between, with degrees of 
negotiation, influence, and governance mechanisms 
used to align systems without imposing direct control.

This “it depends” is the essence of SoS engineering (SoSE). The 
degree of governance, managerial, and operational independence 
means that ownership of engineering decisions, whether they 
involve architecture, integration, verification, or sustainment, may 
be distributed because of the specific governance and managerial 
structures of the SoS. The key challenge of SoSE, therefore, is 
not just in applying engineering principles and methods, but in 
understanding where and how they can be applied given the 
autonomy, cooperation, and constraints of the CS involved. 

Despite the increasing prevalence of SoS across industries, the 
methods and practices for engineering SoS are still in their infancy. 
While traditional SE has benefited from decades of refinement, 
with well-established standards, methodologies, and best 
practices [2], SoSE remains an emerging discipline, one where 
fundamental concepts are still evolving, and many challenges 
remain unresolved.

Traditional SE has been and continues to be formalized over time 
through applications in aerospace, defense, automotive, and 
industrial sectors. The processes outlined in standards like ISO/
IEC/IEEE 15288 [3] and the INCOSE SE Handbook [4] provide 
clear guidance on how to approach system design, integration, 
verification, validation, and sustainment. This indicates that these 
methods are deeply ingrained in industry practices and are being 
actively refined through both theoretical research and real-world 
application. 

In contrast, SoSE does not yet have the same level of maturity. 
Although foundational work has been done, particularly in 
defense and large-scale infrastructure, a large corpus of 
consolidated knowledge, concepts, methods, and practices is 
still accumulating. Unlike traditional systems, which have been 
abundant and with various classes of systems of the same kind, 
we not only have a very limited number of SoS, but they are 
inherently heterogeneous and dynamic. In fact, the challenges of 
governance, autonomy, and emergent behavior vary significantly 
across domains, making it difficult to establish clear guidelines 
(as stated earlier, “it depends”). In addition, while SE education 
is growing significantly, SoS are not yet central to the educational 
content. If any, they are treated as a side note or in a dedicated 
course, exemplifying the different depth to which traditional 
systems and SoS are addressed in these programs. The gap is 
amplified by the fact that engineering SoS requires a paradigm 
shift in engineering methods, as core assumptions for engineering 
practices are different: from direct control to coordination, from 
predictability to adaptation, and from closed design of individual 
components to enabling emergent capabilities. These changes 
require methods and approaches that have traditionally being 
foreign to engineering.
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Although SoSE is still in its early stages, progress is being 
made though. Research activity is growing, and several 
frameworks and methodologies are emerging. As of today, 
we can leverage guidelines, principles, and some isolated 
methods that are considered helpful to support SoSE. These 
have been compiled in three international standards:

	• ISO/IEC/IEEE 21839 [5] focuses on critical considerations 
for SoS during life cycle stages of constituent systems, 
aligned with ISO/IEC/IEEE 15288, and addresses the 
interaction and effective operation of constituent systems 
within an SoS.

	• ISO/IEC/IEEE 21840 [6] offers guidelines for applying 
ISO/IEC/IEEE 15288 in the context of SoS, exploring the 
similarities and differences between systems and SoS 
and detailing engineering practices for SoS.

	• ISO/IEC/IEEE 21841 [7] defines a taxonomy for SoS 
to improve understanding and communication among 
stakeholders, which also serves as a basis to characterize 
the SoS at hand to better guide the selection of SoSE 
practices.

We present an overview of such guiding principles in the next 
sections. Particularly, we present three key aspects of SoSE 
in Section 2 that provide an overview of some of the core 
shifts from traditional SE to SoSE, and then follow in Sections 
3 through 6 with overviews of the guidance for applying 
traditional SE processes to SoS according to [6].

Note: Throughout the chapter, the term ‘system’ will be 
sometimes used to refer to traditional systems, different from 
SoS.

2. KEY CONSIDERATIONS OF SOSE
As described earlier, governance, managerial, and operational 
independence are the critical differences that demand a shift 
in SE practices for SoS. They give rise to interoperability, 
predictability, and evolution as key considerations to define 
SoSE practices.

Figure 1. The degree of governance, managerial, and operational independence requires new system 
engineering approaches. (Left: traditional command and control; Right: SoS coordination).
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2.1. Interoperability: A negotiated process, not a 
defined specification

Since SoS are rarely designed as a unified whole, one of 
the biggest challenges is making independently developed 
systems work together. Traditional SE assumes integration 
can be planned upfront, but in SoS, integration is often an 
ongoing and dynamic process.

A fully governed SoS can dictate strict interoperability 
requirements, forcing all CS to comply. However, in an 
SoS with limited governance, engineers must negotiate 
interoperability, sometimes convincing system owners to 
adopt standards or provide data-sharing agreements.

In this environment, traditional SE tools, such as interface 
control documents (ICDs), can still be useful, but they are not 
enough on their own. Engineers can also need to establish 
standards and common frameworks that systems voluntarily 
adopt, use incentives to encourage alignment (e.g., providing 
funding, technical support, or operational advantages), and 
design middleware and adaptive architectures that allow non-
compliant systems to integrate without full standardization.

Therefore, instead of imposing interoperability as a 
requirement, SoS engineers often guide interoperability as a 
process of alignment and adaptation.

2.2. Emergent behavior and the limits of 
predictability

A defining feature of SoS is that capabilities and behaviors 
emerge from system interactions rather than being explicitly 
designed. In a traditional system, engineers carefully define 
what the system will do. In an SoS, capabilities often arise as 
a side effect of system collaboration, sometimes beneficial, 
sometimes problematic.

Because of this unpredictability and because many of their 
CS are operational in real-world environments, SoS cannot 
always be tested as a whole, challenging the adoption of 
traditional system verification and validation (V&V), where 
systems are expected to undergo a rigorous campaign 
through prototyping, simulation, and controlled testing. 
Instead, modeling, simulation, and real-world experimentation 
become essential tools to assess how well the SoS as a whole 
adapts to change, rather than just verifying whether each 
individual CS meets its requirements.

2.3. Engineering for continuous evolution

Unlike traditional systems, which often have clearly defined 
lifecycles, an SoS is always in flux. New systems join, old ones 
leave, and technological advancements constantly reshape 
the environment. The idea of a “finalized” SoS is a myth. 
Instead, engineers must design for continuous evolution.

This means that rigid, sequential development models do 
not work. SoSE requires incremental, adaptive processes 
that allow for change without disrupting existing capabilities. 
To manage this, engineers must think beyond just technical 
solutions. Political, legal, and contractual frameworks must 
also evolve alongside technical systems. Risk management, 
traditionally focused on technical failures, must now 
encompass organizational, economic, and geopolitical 
uncertainties as well.

3. AGREEMENT PROCESSES

3.1. Acquisition process

For a traditional system, the organization that owns the 
system is generally referred to as the acquirer, whereas 
the organizations that provide the system are referred to as 
suppliers. In the context of SoS, terms such as “consumer,” 
“participant,” or “partner” probably better capture the 
essence of their relationship. In the context of SoS, a 
consumer obtains the capabilities of CS, with or without 
explicit agreement, and without actually acquiring the CS that 
produced the capabilities. Unlike with systems, the suppliers 
continue to be managerially independent, and the CS remain 
operationally independent. 

In addition to formal approaches like contracts, less 
formal approaches such as memoranda of agreement 
and memoranda of understanding can be effective in the 
management arrangements for some types of SoS. For some 
types of SoS, though, agreements can be informal, tacit, or 
absent. Accepting terms of use for a product or service is one 
type of agreement. Many SoS operate effectively even in the 
absence of agreements.
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3.2. Supply process

Because CS remain managerially and operationally 
independent, CS already have acquirers for their 
product or service. Some CS can be willing to expand 
or reallocate resources to address the needs of an SoS 
acquirer, or agree to not change CS characteristics 
without notice, but some CS are not. 

Agreements within SoS span a wide spectrum of 
formality, from contracts at one end of the spectrum, 
moving through less formal approaches such 
as memoranda of agreement, to memoranda of 
understanding to no agreements at all. For example, 
using the software can constitute an agreement to 
certain terms and conditions. In SoS where an explicit 
agreement does not exist, the supplier has no direct 
obligations. However, suppliers generally want their 
products and services to be used, so they have some 
motivation to help acquirers find usefulness in them.

4. ORGANIZATIONAL PROJECT-
ENABLING PROCESSES

4.1. Life cycle model management process

CS have their own life cycles and life cycle models, 
and can be at different places within those models 
(ref. Figure 2). The life cycle model of an SoS can 
be different from those of the CS. Effective use of 
life cycle management process provides a context 
for CS joining and leaving the SoS. Organizations 
governing CS could have little insight or interest in the 
policies, procedures, and life cycle models of the SoS 
or another CS. However, responsibility, accountability, 
and authority arrangements with CS should be 
defined and understood. 

Assessment of SoS life cycle models and processes 
for use by the organization should consider that 
SoS concerns, life cycle models, and processes 
could differ from those of the CS. The life cycle 
model and process of the SoS should recognize and 
accommodate the life cycle model and processes 
of the CS. For some SoS type, CS can be unable 
or unwilling to make such adaptations. However, 
adaptation to SoS concerns can include SoS 
roadmaps or broad strategies. SoS process, model, 

and procedure improvements should recognize that improvements 
needed to support the SoS are different from those needed to 
support the CS on its own and that the priorities of the SoS could 
differ from the priorities of the CS.

Figure 2. Each CS has its own life cycle model and can be at different stages.

4.2. Infrastructure management process

Infrastructure requirements for SoS projects can be different from 
infrastructure requirements for CS projects. For example, physical 
facilities such as integration labs and test labs can be needed by 
the SoS for interoperability testing to address SoS concerns. SoS 
can need project infrastructure elements that are not needed by 
any of the CS individually. Developing and acquiring SoS project 
infrastructure elements can be quite different from systems. Because 
SoS and CS can be at different stages within their life cycles, the 
availability, robustness, and resiliency of SoS project infrastructure 
can be of greater concern than with the CS alone.



42

4.3. Portfolio management process

Portfolio management is more complicated for organizations 
involved with SoS. For the SoS, the lack of control over the CS, 
which remain managerially and operationally independent, can 
be especially problematic. Likewise, CS participation in an SoS 
can be problematic due to consumption of resources beyond 
what the CS originally needed to meet its own stakeholder’s 
needs. For some types of SoS, the influence to achieve the SoS 
capabilities can be created through highlighting the mutual 
benefits with the SoS and its stakeholders, as well as with the 
CS and their stakeholders. Disincentives should be addressed 
and minimized where possible.

Depending on the degree of operational and managerial 
independence, additional resources and budgets can be 
needed to support an SoS beyond what was needed for the 
CS. The accounting for these resources and budgets can 
be different from the CS because of their independence. 
SoS organizations should consider that other organizations 
participating in the SoS could choose to sustain or not sustain 
projects regardless of whether agreements and stakeholder 
requirements are being met.

4.4. Human resource management process

Human resources for an SoS address activities/processes that 
are distinct from the CS processes. Because SoSE differs from 
SE, skills required by SoS projects differ from other types of skills 
needed for CS. For example, because CS remain managerially 
independent, skills related to influence instead of direction can 
be especially important. Assessing the return on investment 
in an SoS project is immature, so care should be taken when 
resolving conflicts. 

4.5. Quality management process

A quality management approach may be established for CS as 
well as the SoS. SoS depend on the CS for quality management 
of the CS. There can be variation in the management of quality 
by the CS, ranging from highly prescriptive across all CS to 
completely absent in some CS. Organizations participating in 
an SoS should adjust their policies, objectives, and procedures 
to accommodate these realities. SoS quality evaluation criteria 
should focus on the SoS capabilities which can be different 
from the CS capabilities. SoS organizations should consider 
how to align approaches to achieve the integrated SoS goals in 
the presence of variable quality systems.

4.6. Knowledge management process

Because CS are managerially independent, they have their 
own taxonomies and knowledge assets for their systems. 
It is possible that CS can collaborate with other CS or the 
SoS, but SoS should not assume that they will. SoS may 
use ISO/IEC/IEEE’s knowledge management process, for 
example to define SoS-specific knowledge assets that 
can be needed. SoS knowledge assets should survive 
individual CS, especially when CS enter or leave an SoS. 
Because the CS reside in different organizations, the 
organizational knowledge, skills, and knowledge assets 
can be distributed across different organizations.

5. TECHNICAL MANAGEMENT PROCESSES

5.1. Project planning process

Organizations create projects to meet changing SoS 
objectives or capability shortfalls. Projects can create new 
SoS and SoS elements, leveraging existing CS to fulfil 
capabilities. Planning should recognize that the CS remain 
managerially and operationally independent from the SoS 
and the SoS organization. SoS planning should define the 
roles responsibilities and authorities of the SoS organization 
(if any) as well as CS organizations in the SoS plans. 

5.2. Project assessment and control process

In the context of SoS, assessment is complicated, and control 
is sometimes impossible. Skills related to coordination, 
collaboration, and influencing can be especially important. 
For some SoS, it is not always possible to perform technical 
reviews of some of the CS. However, “proxy” reviews (i.e., 
without the CS owner present) can provide some insight.

Where possible, corrective action should be agreed upon 
between the governing and managing authorities of each 
CS and collaboratively decided and executed instead of 
directed as is common with traditional systems. The use 
of incentives or penalties can be considered for some SoS 
types. SoS plans should be adjusted based on the current 
and planned states of the CS.
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5.3. Decision management process

As with systems, decisions can affect the system as a whole or 
just elements of the system. For SoS, decisions can affect the SoS 
as well as CS, so CS should be engaged in both the decision and 
analysis processes along with the SoS. This is not always possible 
because some CS are not aware of their participation in an SoS. 
Managerial independence of the CS means that the CS manage 
their own decisions, some of which can be contrary to SoS interests.

5.4. Risk management process

Risks faced by the SoS differ from those faced by the CS. Risks to 
the SoS can result from CS that change, join, or leave the SoS or 
do not operate consistently with SoS expectations. Analysis of SoS 
risks can require analysis of the network of interoperating CS as well 
as candidate replacement CS if CS change or leave unexpectedly. 
Given that CS remain operationally and managerially independent, 
CS incentives can be considered to facilitate proper treatment of 
SoS risks. Enforcing risk treatment by CS is not always feasible. 

5.5. Configuration management process

SoS configuration management focuses on system elements that 
specifically relate to the SoS. In contrast, CS retain configuration 
management of their systems. Because SoS functions are allocated 
to the CS, interfaces between each CS should be well defined, 
especially when the SoS does not control them. In the context of 
SoS, “controlled” means monitored and recorded, not that there is 
control exercised into approving/rejecting/implementing the change 
itself.

Baselines for the SoS depend on what, if any, agreements are 
in place. While cooperation from CS is helpful, it is not always 
possible, especially in loosely organized SoS. It can be possible 
to baseline or define compatibility across elements to map system 
features.  Changes to items under configuration management can 
be controlled or uncontrolled from the perspective of another CS or 
the SoS.

Some aspects and attributes of the CS can be related to certification 
of interoperability. These attributes themselves can be leveraged 
to establish a baseline from the SoS point of view. Interface 
specifications can form a part of a baseline. Compatibility should 
be considered when the specifications change. Depending on the 
governance independence of the SoS, formal releases and deliveries 
of SoS capabilities can be infeasible. Instead, they can occur when 
CS capabilities are released and delivered.

5.6. Information management process

The types of information to be managed can relate 
to the SoS itself, the governance of the SoS and the 
CS. SoS information management should be clearly 
defined and agreements made with the CS, where 
possible, to share the needed information. Note that 
for some SoS types, CS can be unaware or unwilling 
to share information. SoS (and other CS) should 
respect CS confidentiality, security, and ownership 
of intellectual property, especially when agreements 
are informal or absent. Some information from CS is 
not always available to SoS stakeholders or other CS 
stakeholders. 

5.7. Measurement process

Informational needs of both the SoS and the CS 
necessary for CS participation in the SoS should be 
identified. The definition of these measures should be 
accompanied by a description of the impact on the 
performance or capability of each CS, if applicable, 
and of the overall SoS. For some SoS types, collection, 
verification, and storage of data is not always 
possible. Where available, alternative approaches 
should be defined. Additional SoS elements can 
also be added to assist the monitoring of the SoS. 
Depending on the governance independence of the 
SoS, information provided by CS can be subjective, 
erroneous or absent. 

5.8. Quality assurance process

Ideally, criteria and methods for quality assurance 
evaluations should be agreed upon. As with systems 
and subsystems, the agreement should identify roles 
and responsibilities as well as information, data, and 
assumptions in relation to the planned evaluations. 
In some cases, quality assurance activities can 
be handled by the SoS, or separately by each CS, 
without agreement between them. For some SoS 
type, CS can be unaware of their participation. If 
possible, problem treatment and definition of priorities 
should be agreed upon between the governing and 
managing authorities of each CS and the SoS.
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6. TECHNICAL PROCESSES

6.1. Business or mission analysis process

Because the problems and opportunities addressed 
by SoS are typically broader and more complex 
than those addressed by systems, business or 
mission analysis can require the use and integration 
of modeling techniques and tools that are more 
heterogeneous than with systems. Ideally, the 
characterization of a solution space for an SoS should 
include the candidate CS, how each CS supports the 
new problem or opportunity, and any constraints these 
CS can impose on the solution space. 

Since CS that are already deployed when the SoS is 
envisioned have existing operational considerations 
and constraints, the SoS can be affected and 
constrained. System approaches that assume the 
ability to change the CS likely will not be effective. 
Depending on the degree of managerial independence, 
different approaches can be necessary. For SoS, 
multiple alternative solutions can be viable. 

6.2. Stakeholder needs and requirements 
definition process

Stakeholder needs and requirements definition 
process for SoS has the same focus as with systems, 
but identification and access to stakeholders can be 
constrained. It is not always possible to identify all 
stakeholders; elicitation of stakeholder needs will likely 
be incomplete and perhaps incorrect. The SoS should 
plan to accommodate emergent stakeholders and their 
needs as well as any constraints that potentially affect 
SoS operation and evolution. For SoS, CS continue to 
have managerial and operational independence as 
well as interdependence. It is important to recognize 
where key CS stakeholder needs align or conflict with 
the SoS objectives. To be successful, SoS should 
avoid infringing on CS objectives.

CS have their own operational concepts and lifecycles 
that evolve independently, so it is important to 
document where each system is within its lifecycle. 
There can be different periods of stability for some CS 
and instability for other CS. CS constraints on the SoS 
should be identified. 

SoS and CS stakeholders should strive for agreement where possible, 
but agreement is not necessarily required of all CS stakeholders 
for effective definition of the SoS. However, care should be taken 
because disagreement can cause CS to exit the SoS or impede SoS 
objectives.

6.3. System requirements definition process

As with systems, the SoS requirements definition process transforms 
the stakeholders’ desired outcomes into SoS requirements, 
characteristics, attributes, functions, and performance that the SoS 
should possess to satisfy the stakeholder requirements. For some 
types of SoS, CS owners can conduct or support SoS requirements 
definition. For other types of SoS, the CS owner can be unwilling to 
disclose this information. As with systems, SoS requirements and 
design constraints can change over time. As CS change, join or 
leave the SoS, the set of available capabilities changes, affecting 
what is feasible for the SoS to provide. Requirements that were 
previously met can be unmet without warning. 

Because CS remain managerially and operationally independent, 
CS do not always accept and implement SoS requirements. 
Consequently, SoS sometimes do meet their objectives. However, 
requirements definition should consider critical performance 
measures for the CS and SoS to facilitate delivery of SoS capabilities 
under various situations. As with systems, SoS stakeholder 
requirements can trace to SoS capability objectives and CS or 
system element requirements. Unfortunately, SoS requirements can 
conflict with existing CS attributes.

Figure 3. CS have their own stakeholders with their own requirements.
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6.4. System architecture definition process

As with systems, the architecture definition of SoS focuses 
on the critical functionality of the elements. With SoS, these 
include CS, system elements, and their interactions. Insight 
into the inside architecture of CS can be unnecessary or 
even impossible. Systems are often decomposed in terms 
of hierarchies; SoS are often described as networks with 
complex interconnections. Consequently, SoS architecture 
can be limited based on partial information from the CS, some 
of which can be unaware of their participation in the SoS. 

The SoS architecture should expect a need to define system 
elements that are not part of any CS. Likewise, CS change, 
join and leave the SoS over time, so the architecture definition 
can remain fluid. As with systems, SoS architectures should 
reflect the needs of the SoS stakeholders for the SoS 
capabilities. However, it is also important to acknowledge 
in the architectures the needs of the CS stakeholders which 
can be affected by CS participation in the SoS. Ideally, 
SoS architectures should address SoS while minimizing or 
avoiding adversely affecting the CS.

6.5. Design definition process

As with systems, an overarching design for the SoS is needed. 
However, unlike systems, the system elements of an SoS can 
be CS that are owned by other organizations and operated for 
their own purposes. However, system approaches as in ISO/
IEC/IEEE 15288 can be applied to specific system elements 
that are not part of any CS. Multiple design definitions can 
be necessary to implement changes into the SoS on a time-
phased basis, especially when CS join or leave the SoS 
unexpectedly. 

SoS Design Definition should acknowledge that desired 
changes to a CS are not possible and that the CS design 
and capabilities must be accepted and accommodated 
as is. To the extent possible, SoS Design Definition should 
consider time phasing of the CS implementations so that CS 
capabilities remain compatible with each other at all points 
in time.

For SoS, design definition emphasizes the selection and 
adaptation of CS or other system elements that can be 
necessary to facilitate interaction of the CS in the SoS. 
Alternative CS should be assessed for viability, not just 
technically, but the implications of their operational and 
managerial independence. A willing participant can 

be advantageous of a technical superior, but unwilling 
participant.

The selection of the set of CS to meet SoS needs is allocates 
systems, not just system elements to SoS requirements. The 
SoS design definition process focuses on assessing the 
ability of CS and system elements, either current or proposed, 
to implement the interfaces to meet SoS needs.

Organizations managing CS can be unwilling to fully 
disclose design information. Fortunately, SoS do not need 
to understand the internal aspects of CS designs, but can 
be more narrowly concerned with the interfaces and external 
characteristics of the CS. That is, in SoS design definition, 
it is important to have just enough CS design information to 
understand their behavior, but without access to the details 
of how CS achieve it. 

6.6. System analysis process

Like systems, SoS system analysis can leverage actual and 
predicted data. Because many CS pre-exist the SoS, actual 
data can be available from their operation, though CS owners 
can be unwilling to share this information. For this reason, 
predictive data separate from the CS can be necessary. 

It is possible that the System Analysis process can be 
performed by each CS owner to support CS-level decision 
management with SoS impacts. However, CS owners 
have different viewpoints and interests from the SoS, so 
their analyses and results can differ from those of the SoS. 
Unfortunately, CS decisions based on their own analyses can 
conflict with SoS interests and requirements. Resolution of 
conflicts can be very challenging or impossible.

SoS analyses should explore and validate assumptions and 
results related to operational and managerial independence 
of the CS. SoS should consider adding measuring points and 
instrumentation to provide the data to validate analyses or 
models. 
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6.7. Implementation process

SoS are typically implemented by composing existing and 
potentially modified CS along with other system elements 
to provide new capabilities. Constraints from existing CS 
influence the requirements, architecture, or design. Like 
systems, the remaining system elements need to be realized 
and the implementation process from ISO/IEC/IEEE 15288 
can be used.

SoS information management and support infrastructure 
can enable the SoS to flourish and develop as needed. Time 
phasing of CS changes should be carefully planned. Ideally, 
each CS should be expected to continue to support its own 
independent capabilities and any changes to the CS are ready 
to support the desired SoS capability. To the extent possible, 
care should be taken to confirm that desired interactions and 
capabilities are not damaged by CS changes.

6.8. Integration process

SoS often consist of existing CS that are integrated to meet 
the requirements of the SoS. Constraints on integration that 
influence SoS requirements, architecture, or design, including 
interfaces, can be extensive. Unlike systems, integration 
for the SoS is often performed with operational CS in an 
operational SoS environment. SoS Integration usually occurs 
within the context of an evolving, continuously operating 
SoS. It can be impossible or impractical to halt operation. 
Consequently, planning for integration should facilitate 
interaction with ongoing CS and SoS operations.

Because CS can change, join or leave an SoS, frequent 
integration can be expected. Frequent checking of the 
interfaces between the CS and implemented system elements 
can be important. 

6.9. Verification process

Verification of SoS requirements is not usually possible to 
a similar degree of certainty and fidelity as is possible with 
other types of systems. However, verification activities can 
still be valuable to assess how well the SoS is meeting 
the requirements to the extent that they are known and 
understood. Unlike many systems, SoS verification almost 
always occurs in the context of operations that are ongoing 
and changing. Verification should be planned and executed 
with ongoing operations in mind. 

For some SoS, CS owners can perform some verification of 
their partial views of the SoS. For others, it can be impossible 
to test some SoS capabilities due to safety, security, or cost. 
SoS Verification can rely on modelling or analysis.  Unlike 
systems, verification of some CS is not guaranteed. Complete 
verification of the SoS and resolution of anomalies can be 
infeasible. 

6.10. Transition process

As with systems, the transition process establishes the 
desired capabilities in an operational environment. For 
some CS, new features and capabilities can be available to 
stakeholders frequently, while other CS make transitions at a 
much slower cadence. Consequently, transition events by CS 
can occur just as frequently for the SoS. Some SoS owners 
can influence the phasing of CS changes, while other CS can 
be unwilling to adapt to the needs of the SoS. To the extent 
possible, transition events should be planned and executed 
to coordinate CS and SoS capabilities.

CS are usually in operation prior to the SoS capability being 
transitioned to operations. It is possible that CS can join and 
leave an SoS unexpectedly. Consequently, delivery of the SoS 
capabilities is not guaranteed. SoS governance can consider 
incentivizing CS to be created in certain areas. 

6.11. Validation process

Validation of the SoS validation can occur as an ongoing 
process throughout operations, rather than a singular event 
as typically happens with systems. Access to objective 
evidence about some SoS objectives or stakeholder 
requirements can be limited or even absent due to safety, 
security, or operational considerations. In such cases, 
planning for SoS validation should consider the availability of 
subjective or ancillary evidence.

As with the validation of system, validation of SoS can 
identify discrepancies between the original requirements 
and the operational capabilities that can be provided. SoS 
stakeholders as well as their CS stakeholders, can have 
conflicting goals. Thus, unlike systems, it can be impossible 
to obtain full stakeholder ratification of the SoS validation. 
For some SoS, CS owners can validate a partial view of the 
SoS that is available to each CS owner, while others can be 
unwilling to support SoS validation. For many SoS, service 
availability of the SoS is not guaranteed. 
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Interestingly, validation of CS can be irrelevant or unnecessary if the stakeholder 
validates the SoS. However, non-validated, strongly independent CS can reject or 
abandon the SoS, posing a risk to the availability of SoS services and capabilities. 

6.12. Operation process

SoS are often assembled or orchestrated from exiting CS that have their own 
operational priorities and constraints. Sometimes it is not possible to feed these 
priorities and constraints to the other processes in a timely manner. Operational 
changes to the CS and their interfaces affect the SoS. Likewise, stakeholder 
feedback on the operation of the SoS can suggest that changes should be made 
to the CS, but the CS can be unwilling to make them because they have their own 
operational interests that can differ from those of the SoS. 

Figure 4. Some CS can validate partial SoS views, but non-
validated CS pose risks to service availability.

6.13. Maintenance process

Maintaining the SoS is particularly 
challenging because organizations that 
own and manage CS can make changes 
to them for their own purposes, potentially 
affecting the SoS and the interfaces to 
other CS. These changes can occur 
without prior warning or coordination 
within the SoS. For some types of SoS, 
organizations managing CS can be 
unwilling to report pending changes 
to address corrective, perfective, or 
adaptive maintenance. Likewise, these 
organizations can be unwilling to share 
data related to failures. Planning for the 
SoS can be constrained by the lack of 
access to data that would typically be 
available within a system. Consequently, 
the ability for an SoS to maintain itself can 
require proactive contingency planning. 

6.14. Disposal process

Because CS within the SoS are 
independently governed and managed, 
it is possible, and perhaps likely, that 
CS can exit the SoS without much 
coordination or planning. An organization 
can decide to dispose of a CS, adversely 
affecting any SoS it was participating in. 
For some type of SoS, the CS can be 
unaware of the participation. Conversely, 
an SoS can be retired and the outcomes 
of the disposal process achieved without 
adversely affecting the CS, which can 
continue to be operated for their own 
purposes. Unlike systems that are not 
SoS, the SoS can simply disconnect 
from the CS rather than disposing of the 
CS. However, if the SoS has enabling 
systems, services, or system elements 
unique to the SoS that are not needed 
by any of the CS, the disposal process 
in ISO/IEC/IEEE 15288, clause 6.4.14 
may be followed and the outcomes of the 
disposal process achieved. 



48

7. CONCLUSIONS
Applying systems engineering to SoS is not just about adapting existing processes, it is about embracing a fundamentally different 
way of thinking. Instead of focusing on control, predictability, and optimization, SoS engineering is about influence, adaptation, 
and resilience. This requires a shift in several areas: 

1)	 The role of systems engineers must evolve from designer to orchestrator. 

2)	 Influence must replace direct control as the primary means of ensuring system alignment.

3)	 Interoperability must become a fundamental requirement, not an afterthought. 

4)	 Emergent behavior is anticipated and managed rather than avoided, and 

5)	 V&V shifts from static, requirement-driven testing to continuous evaluation in real-world contexts. However, it is also important 
to note that the development of dedicated approaches and methods to support this shift are in their infancy. 

Change is necessary but it should be pursued with caution1. 

1. Caution does not mean sticking to traditional systems engineering practices. Caution here means that extra care must be taken when dealing with the engineering of SoS; an SoS is not simply 
a larger system…
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APPENDIX: COMPARISON BETWEEN SYSTEMS ENGINEERING PRACTICES FOR 
SYSTEMS AND SOS

 Processes System SoS

Agreement Processes

Acquisition

A single acquirer manages the 
system and contracts suppliers 

for its development and operation, 
with formal agreements.

There may be no single acquirer; 
CS may remain operationally and 
managerially independent, with 
agreements that may be formal, 
informal, or even nonexistent.

Supply
The acquirer has full managerial 

and operational control over 
the system and its suppliers.

CS may remain independent with 
their own acquirers. Adaptation to 

SoS needs varies, and agreements 
may range from formal contracts 

to none. Suppliers may have 
no direct obligations with SoS 

unless explicitly agreed.

Organizational Project-
enabling Processes

Life cycle model management

Follows a well-defined life 
cycle model managed by the 

acquirer. When different life cycle 
models are used in different 

parts of the system, they are still 
integrated at the system level.

Each CS may have its own life 
cycle model, which may be at 
different stages, and are not 

necessarily integrated towards an 
aggregated life cycle model.

Infrastructure management
Infrastructure requirements 

are defined for a single 
system and its needs.

May require additional infrastructure, 
such as integration and test 

labs, to ensure interoperability. 
Availability and resiliency 

are critical due to potentially 
varying CS life cycle stages.

Portfolio management
Portfolio management is simpler, 

as the organization has full control 
over its system and resources.

Portfolio management may be 
more complex due to the lack 

of control over independent CS, 
which can require additional 

resources and budgets.

Human resource management

Human resources focus on 
activities and processes specific 
to the system, with skills tailored 
to managing the system itself.

Human resources in SoS may 
require different skills, particularly 

related to influence rather 
than direct control, due to the 

managerial independence of CS. 

Quality management
A quality management approach 

is established and managed 
for the system itself.

SoS depends on the quality 
management of the CS, which 

may vary significantly. SoS 
quality evaluation focuses on 
integrated capabilities rather 

than individual CS capabilities. 

Knowledge management Taxonomies and knowledge assets 
are defined for the system itself.

SoS defines its own knowledge 
assets, which must endure across 

CS transitions. Collaboration between 
CS or with the SoS is not guaranteed, 

and knowledge is distributed 
across different organizations.
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Technical Management 
Processes

Project planning
Projects are created to fulfill specific 

system objectives and are fully 
managed within the system's control.

Projects address capability 
shortfalls by leveraging existing 

CS. Planning must account for the 
independence of CS and define 

roles, responsibilities, and authorities 
of both SoS and CS organizations.

Project assessment and control 
Assessment and control are 

straightforward and managed 
directly within the system.

Assessment is complex with 
limited control. Success relies 
on coordination, influence, and 

collaboration. Corrective actions 
are collaborative, and plans should 
adapt to the evolving status of CS.

Decision management 
Decisions impact the system as a 

whole or specific elements, with full 
control over the system’s decisions.

Decisions impact both the SoS and 
CS. CS may not be always aware 

of their role, and their independent 
decisions can conflict with SoS goals.

Risk management Risks are contained within the 
system and are managed directly.

Risks arise from changes, 
departures, or inconsistencies in CS. 
Risk analysis involves understanding 
the network of interoperating CS and 

potential replacements. Enforcing 
risk treatment is not always feasible.

Configuration management 
Configuration management is 
handled internally within the 

system, focusing on its elements.

Configuration management focuses 
on elements related to the SoS, with 
CS retaining control over their own 
systems. Interface specifications 
and compatibility are critical, and 

changes can be uncontrolled 
from the SoS perspective. 

Information management 
Information management is 
focused on the system and 

its internal governance.

Information management involves 
both the SoS and CS, potentially 
requiring clear agreements for 

sharing. CS may be unwilling or 
unaware of the need to share 

information, and confidentiality, 
security, and intellectual property 

must be respected. Some 
information may not be readily 
accessible to all stakeholders.

Measurement
Information needs are clearly 

defined within the system 
for its own performance.

SoS needs to define and manage 
information across both the SoS and 

CS, but data can be incomplete, 
subjective, or unavailable. 

Quality Assurance
Quality assurance criteria 
and methods are clearly 

defined and agreed upon.

Quality assurance can be handled 
by the SoS or independently by 

each CS, sometimes without 
formal agreements. CS can be 

unaware of their participation, and 
priorities and problem treatments 
need to be agreed upon between 

CS and SoS authorities.
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Technical Processes

Business or mission analysis 
Problems are typically simpler, 

and analysis uses more 
homogeneous modeling tools.

Problems are broader and more 
complex, requiring diverse modeling 
tools and integration. CS constraints 

and operational considerations 
affect the SoS, and multiple 

alternative solutions can be viable. 

Stakeholder needs and 
requirements definition 

Stakeholder needs and 
requirements are identified and 
addressed with a clear focus.

Identifying and accessing 
all SoS stakeholders can be 

constrained, and needs can be 
incomplete or incorrect. Emergent 
stakeholders and conflicts with CS 

objectives must be managed.

System requirements definition 

Requirements are defined clearly 
to meet stakeholder outcomes, 

with stable characteristics, 
functions, and performance.

Requirements are subject to change 
as CS join, leave, or change, 

affecting feasibility. CS are not 
obliged to accept or implement SoS 
requirements, and conflicts between 
SoS and CS requirements can occur.

System architecture definition 

System architecture is often 
hierarchical, focused on 
critical functionality and 

internal components.

Architecture is network-based with 
complex interconnections between 

CS and system elements, and can be 
limited by partial information from CS.

Design definition 
Systems require a comprehensive 

design that integrates all components 
and elements within a defined scope.

Design must account for system 
elements (CS) owned and operated 

by different organizations for 
independent purposes. Design 
should consider changes on a 

time-phased basis, acknowledging 
that CS design and capabilities 
cannot be altered. SoS design 

focuses on selecting and adapting 
CS or system elements for 

compatibility and functionality.

System analysis 
System analysis uses both actual 
and predictive data to assess and 

optimize system performance.

SoS analysis uses actual and 
predictive data, but CS can 

be unwilling to share real data. 
SoS analysis should account for 
the operational and managerial 
independence of CS, adding 

measurement points to validate 
assumptions and results.

Implementation

Systems are typically implemented 
by developing and integrating 

new system elements based on 
requirements and designs. 

Implemented by composing existing 
CS, potentially modified, along with 

other system elements to create new 
capabilities. Constraints from existing 

CS impact the SoS requirements, 
architecture, and design.

Integration

Integration is typically performed 
in a controlled environment, where 
new or modified system elements 
are integrated based on a defined 

architecture and design.

Integration involves existing 
CS integrated to meet SoS 

requirements, often within an 
operational environment. Integration 

occurs within a continuously 
operating SoS, and it can be 
impractical to halt operations. 

Verification

Verification is typically performed in 
a controlled environment with a high 
degree of certainty, confirming that 
the system meets its requirements.

Verification is more challenging and 
less certain, often occurring in an 

evolving operational environment. It 
can be impossible to fully verify some 

capabilities due to safety, security, 
or cost constraints. Verification is 

often reliant on modeling, analysis, 
and partial testing of CS. 
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Transition

Transition involves moving a 
system from development to 
an operational environment, 

with a clear focus on ensuring 
it meets desired capabilities.

Transition in SoS involves 
coordinating multiple CS, which 

can have different transition 
cadences.  SoS governance can 
incentivize CS to align with SoS 

goals, but transitions are not 
guaranteed. Frequent planning 
and coordination are required.

Validation

Validation is typically a one-time 
event, ensuring the system meets 

its intended requirements and 
objectives. It involves gathering 
objective evidence to confirm 

the system's capabilities.

Validation is an ongoing process, 
influenced by the operational 
context. Access to objective 

evidence can be restricted, and 
subjective or ancillary evidence 

can be used. Discrepancies 
between requirements and 

operational capabilities can arise. 
Full stakeholder ratification can be 
impossible due to conflicting goals 
between SoS and CS stakeholders.

Operation
Operational changes typically follow 

a planned, centralized process, 
affecting the system as a whole.

CS have their own operational 
priorities and constraints. Operational 

changes to CS and their interfaces 
impact the SoS. CS can resist 

changes suggested by SoS due 
to differing operational interests.

Maintenance

Maintenance is typically 
planned and controlled within 

a closed environment, with 
direct access to data.

Maintenance is challenging due to 
independent CS, who can make 
changes without coordination or 
notification, potentially affecting 
the SoS. Proactive contingency 

planning is necessary.

Disposal

Disposal is managed within a 
controlled environment, and 

systems are typically retired or 
decommissioned according 
to established procedures.

CS can exit the SoS without 
coordination, and the SoS can 

simply disconnect from the 
CS without disposing of it. 
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Mission Engineering

Abstract

Mission Engineering (ME) is emerging as a structured, mission-centric methodology designed to support 
the development and integration of complex Systemsm of Systems (SoS) across operational domains 
considering the mission and the operational expertise as the focus of the discipline. ME provides a 
repeatable and data-driven framework that links engineering rigor to strategic and operational insights, 
enabling capability development that aligns with defined mission outcomes. Using Mission Engineering 
Threads (METs), Effect Webs, and structured frameworks such as DOTMLPF-P or MIRADO-I, ME 
enables decision-makers to map, assess, and evolve the interactions between systems, people, 
and processes critical to mission success. The ME methodology integrates risk-based assessments, 
formal analysis of integration and interoperability, and the generation of mission success criteria—
from strategic intent to tactical performance—creating a common reference architecture that ensures 
alignment across stakeholders, domains, and coalition partners. ME fosters a shift from platform-centric 
optimized acquisition to capability-focused development, enabling resilient, interoperable, and future-
ready mission architectures that support both defense and broader industrial objectives.
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1. INTRODUCTION

Mission Engineering (ME) is a mission-centric approach for 
Systems of Systems (SoS) that require a better understanding 
of the interactions and dependencies between the multitude 
of systems necessary to execute complex, multi-domain 
operational missions. Originally, ME was developed and 
implemented in the United States (US) Department of 
Defense (DoD) as a methodology to pursue the effectiveness 
of collaborating SoS based on overarching mission objectives 
as key to define mission success. In essence, ME provides 
a systematic, quantifiable, and repeatable approach that 
supports strategic decision making across ecosystems, 
supporting a successful transition of platforms and systems 
into SoS capabilities. 

The ME discipline links engineering rigor to operational and 
business insights necessary to identify capability-related 
requirements and solutions in alignment with the mission of 
the overarching organization. Formally, ME has been defined 
as “an interdisciplinary process encompassing the entire 
technical effort to analyze, design, and integrate current 
and emerging operational needs and capabilities to achieve 

desired mission outcomes” [1]. In practice, mission engineers 
plan, analyze, organize, and integrate operational concepts 
for the purpose of evolving the end-to-end operational 
architecture and capability attributes. In a defense context, 
this takes place across the Doctrine, Organization, Training, 
Materiel, Leadership and Education, Personnel, Facilities, 
and Policy (DOTMLPF-P) spectrum (in Spain MIRADO-I, 
Material, Infraestructura, Recursos Humanos, Adiestramiento, 
Doctrina, Organización, e Integration), including adversary 
and competitor behaviors. Despite its specificities regarding 
the application of military force to success in the operational 
arena, ME provides a set of tools and methods to enable 
organizations across industries to take advantage of its 
benefits.

ME analysis integrates authoritative data and a common 
framework to produce SoS architectures and highlighted 
capability attributes that inform requirements and establish 
data driven technical architecture baselines. The ME 
outputs inform stakeholders and decision makers across the 
industrial sector ecosystem, as captured in Figure 1 for the 
US DoD, which shows the methodology from defining the 
problem statement or operational need to the development 
of potential solutions.

Figure 1. OSD R&E ME methodology.
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Institutions such as the Naval Surface Warfare Center 
Dahlgren Division (NSWCDD) have pioneered ME 
implementation within the US. While Europe does not 
currently have an exact counterpart, initiatives within the 
European Defence Agency (EDA) or national organizations 
(e.g., Spain’s DGAM) are beginning to explore similar 
approaches.

Once the mission success is understood with identified 
mission success criteria, the operational capability and 
specific mission can be determined for execution. An 
operational capability can be described from both structural 
and behavioral perspectives. The first is focused on how a 
capability is structured (DOTMLPF-P for USA, DOTMLPF-I 
for EU, MIRADO-I for Spain); the second defines what 
outcomes the capability provides, and therefore, defines 
what operational activities (OA) are fulfilled by this capability. 

This combined SoS behavioral approach and structured 
implementation has demonstrated tremendous success in 
increasing the likelihood of integration and interoperability 
with respect to the total SoS effectiveness, while moving 
away from the optimization of individual systems following a 
platform-centric approach. This is important for any complex 

SoS represented as a mission engineering thread (MET) for 
both the primary path of execution, as well as the alternative 
paths that provide resiliency and redundancy in operations. 
A MET refers to an end-to-end sequence of steps that 
illustrate the technology, people, and resources needed to 
achieve a mission objective under specific conditions. It 
helps engineers understand how different systems interact 
within a SoS to accomplish the overall mission. In general, 
a MET provides insights into the functions, players, and 
interactions involved in a mission, the flow of data and 
decision-making across different systems, the impact of 
environmental factors on mission performance, and the 
resilience and availability of mission-critical systems.

Since the combination of these MET represents the chain of 
operational activities producing effects for certain operational 
capability, they will be referred to as ‘effects webs,’ as 
opposed to for example kill chain, to capture different kinds 
of graduated effects, such as distract or degrade that do 
not necessarily always end with destruction. To deal with 
different taxonomies and ontologies across industrial sectors 
and military services, a common framework or reference 
architecture is employed so that a logical comparison can 
be made across ME products (ref. Figure 2). 

Figure 2. Generic effects web framework providing common terminology [2].
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This operational approach is also valid for business 
applications, where they may define their own desired 
effects and corresponding METs and effect webs.

2. WHY ME AS A NEW APPROACH 
AND DISCIPLINE 
Advances in adversarial (or competitors’) capabilities 
pose a significant challenge to security (or business 
success), as new threats that can range from next-
generation weapon systems and cyber warfare tactics 
to artificial intelligence-driven decision-making (or other 
novel technologies) are fielded. Any of these types of 
technologies, as well as many others, can rapidly shift 
the balance of power (or market). These advancements 
enable adversaries (or competitors) to operate with 
increased competitiveness (like reach, persistence, 
speed, precision, and lethality in defense contexts), 
potentially eroding strategic advantages and creating 
vulnerabilities in critical defense systems (or product/
market portfolio in commercial sectors). 

A broken MET occurs when there are disruptions or failures 
in the sequence of activities and systems required to 
achieve a mission objective. This situation leads to a failure 
in an OA and to a compromised mission effectiveness. This 
eventually translates into a gap or shortfall in capability. 
This breakdown can be caused by various factors, such 
as technical malfunctions, cyber-attacks, inadequate 
integration between systems and processes, logistics 
failures, communication breakdowns, or supply chain 
disruptions. For example, insufficient fuel or ammunition 
delivery, degraded satellite communications, or delays 
in troop movement can all sever critical links in mission 
execution. 

To mitigate the risks associated with broken METs, 
redundancy and resiliency are generally embedded 
into mission planning and execution. Redundancy 
ensures that alternative pathways and backup systems 
are available to perform critical functions to maintain 
the continuity of operations when primary systems fail. 
Resiliency focuses on the capacity to adapt and recover 
quickly from disruptions. It enables missions to withstand 
and bounce back from unexpected challenges. Together, 
redundancy and resilience create a robust operational 
architecture that safeguards mission success even under 
adverse conditions, reinforcing the integrity and reliability 
of METs.

The ME approach prompts us to consider the potential mission 
thread paths using the Effects Web Framework based on the 
execution of defined mission essential tasks (e.g., how the 
force plans to fight in a military context). Defining this framework 
provides a common mechanism to decompose the mission 
into essential functions –also called functional activities (FA) 
in the NATO framework– so that joint/coalition systems can 
be mapped in a logical manner. Otherwise, when all joint/
coalition forces are allowed to bring their own framework 
and terminology to the assessment table, performing a real 
function-to-system mapping across the entire force is highly 
challenging or even infeasible. In the past, this has amounted 
to integration and interoperability problems rendering the 
MET broke and the lack of a SoS capability for specific 
missions coming mainly from the isolated application of FA to 
standalone systems that, in the end, did not completely fulfill 
an operational capability. 

End-to-end mission assessments are performed to grant a 
SoS resistant and resilient. They are based on operational 
evaluations that start with capability and spread OA and 
FA across the entire SoS, while it boosts the integration and 
interoperability of multiple systems to ensure accuracy in 
determining capability gaps. This mission-wide comprehensive 
approach provides data-informed decision-making that is 
not only valid to provide materiel solutions for operational 
gaps or shortfalls but also posits solutions across the whole 
structural capability definition spectrum (DOTMLPF-P for 
USA, DOTMLPF-I for EU, MIRADO for Spain), considering 
both materiel and non-materiel areas. Moreover, even when 
applied only to materiel solutions, the proposed approach 
brings better advantage when holistic technological solutions 
comprising a SoS are required. 

Understanding the structural capability definition spectrum 
is critical when developing a materiel solution because 
it ensures that the solution is not only technologically 
viable but also fully integrated into the broader operational 
framework. A new capability must align with doctrine, be 
supported by organizational structures, incorporate effective 
training programs, and account for personnel requirements, 
infrastructure needs, and policy constraints. Ignoring any of 
these factors can lead to a materiel solution that is ineffective, 
unsustainable, or incompatible with existing systems, 
ultimately reducing mission effectiveness. Understanding 
SoS at this level of detail reduces the risk of fielding broken 
METs as you consider solutions across operational domains 
and industrial sectors. Figure 3 provides an illustration of a 
MET across the defined warfighting or operational domains. 
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In addition, this approach allows us to pay attention to 
resilient alternatives when executing METs while reducing 
unnecessary redundancy within and across the military 
services. Figure 4 represents the case of working across 
warfighting or operational domains while looking at alternative 
paths of mission execution that provide resiliency and 
redundancy. In order to take advantage of the methodology, 
it is important to ensure that formal analysis is done to assess 
the integration and interoperability of SoS required to execute 

mission threads. Formal analysis and assessment of SoS 
integration and interoperability to execute mission threads 
drives the development and implementation of today’s US 
DoD ME approach. Analysis using the Effects Web Framework 
identifies operational gaps, science and technology solution 
insertion points, concepts of employment, and research and 
development requirements for the future solution space and 
“to-be” architecture across mission areas.

Figure 3. Multi-domain Mission Engineering Thread (MET).

Figure 4. Multi-domain Mission Engineering Web.
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Effective mission risk management is critical throughout the 
defense acquisition process to ensure that systems meet 
operational requirements and maintain mission effectiveness. 
This is relevant to any industry deploying critical capabilities or 
business delivering systems that are critical to their operations. 
When assessing mission risk, evaluators must consider the 
mission itself, including the unit equipped within the system, 
the operationally relevant environment, vulnerabilities of the 
system against the full spectrum of expected threats, and their 
combined effects in the context of its intended operational 
missions. In DoD programs, Mission-Based Risk Assessments 
(MBRAs) are being integrated into acquisition planning 
following an ME-based approach to evaluate mission-critical 
functions against potential threat effects in operationally 
representative scenarios (see Figure 5). These assessments 
identify vulnerable system elements and interfaces, informing 
the scope of operational test and evaluation, including live fire 
test and evaluation, to ensure systems can withstand real-world 
threats. By conducting MBRAs, program managers can monitor 
and quantify risks to test objectives, acquisition programs, 
end users, and overall UD DoD operations. This risk-based 
approach ensures that testing strategies are appropriately 
scaled and focused, facilitating informed decision-making 
and enhancing the resilience and effectiveness of defense 
systems in complex operational environments.

When METs break, the resulting rework and loss of 
capabilities can significantly degrade mission readiness 
and national security. Critical assets may need to be 
reallocated, delayed, or entirely redesigned, leading 
to wasted resources, increased costs, and operational 
setbacks. These failures can also create gaps in capability, 
reducing force effectiveness and leaving vulnerabilities that 
adversaries may exploit. The cascading effects of these 
disruptions can hinder strategic objectives, delay response 
times, and ultimately weaken the nation’s ability to project 
power, defend interests, and maintain a technological edge 
in an evolving threat landscape.

Figure 5. Mission-based risk management.
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3. VALUE PROPOSITION
The assessment of US DoD technologies, systems and/
or capabilities requires a SoS approach to analyze the 
impact of making these complex investments across the 
diverse domains of surface, undersea, air, ground, space, 
cyber, and networks as well as coalition force integration. In 
today’s acquisition environment, programs are far too often 
matured independently and SoS integration occurs when 
delivered to the field rather than during early development, 
which increases cost and time to introduce a new 
capability to the end user. Mission engineering emphasizes 
capability-based assessments to produce integrated 
warfighting capabilities that can be translated into specific 
programmatic guidance to translate operational needs into 
SoS and system requirements to drive today’s readiness 
and the future capabilities of the individual military services. 
The approach also provides critical insights into operational 
gaps to help inform stakeholders as well as allows us to 
make sure the right investments are being made across 
relevant organizations.

The complex and now highly integrated machines of 
operations continue to evolve enabling higher precision, 
more effective power projection, and safer defensive 
postures for the military services. The interconnectedness 
of our own social fabric is finding its way into our ships, 
aircraft, submarines, networks, space assets, tanks, and 
the very weapons they deliver. For example, determining 
the right investments for the development of space assets 
and the protection of positioning, navigation, and timing 
applications is extremely complex, requiring this systematic 
approach to identify all the major interfaces and intersection 
points amongst many systems/platforms in a multi-domain, 
multi-functional environment. Understanding SoS at this 
level of detail provides the opportunity to reduce the risk 
of fielding broken mission threads/capabilities as we look 
across warfighting or operational domains and individual 
military services. In addition, this approach allows us to pay 
attention to resilient alternatives for the execution of critical 
mission threads while reducing unnecessary redundancy 
within and across the joint/coalition force based on the way 
our forces plan to fight with integration and interoperability 
factors in mind.

4. ESSENTIAL ASPECTS OF MISSION 
ENGINEERING

4.1. Continuity through established mission 
success criteria

The SoS required to execute operational missions are too 
often ‘stovepipe-optimized’ without sufficient deference 
to total SoS operational utility. ME analyses often leverage 
simulations and other tools to develop Measures of Success 
(MoS), Measures of Effectiveness (MoE), and Measures 
of Performance (MoP) for the constituent systems while 
assessing the mission success criteria for the mission 
essential tasks to achieve overall mission objectives through 
experimentation. Something that is also applicable to 
business. 

Linking mission effectiveness from strategic to operational 
to tactical levels requires a structured approach that aligns 
overarching goals with actionable and measurable criteria at 
each level. At the strategic level, organizations define MoS 
that articulate the desired end state and long-term impact 
of the mission. These high-level criteria serve as guiding 
principles that ensure all subsequent efforts contribute to 
overarching objectives, such as national security or strategic 
autonomy, economic stability, or regional influence. Strategic 
leaders determine MoS by assessing factors like deterrence 
capability, global presence, or force readiness, ensuring 
alignment with policy objectives and broader strategic 
imperatives. 

At the operational level, these strategic success measures 
are translated into MoE that assess how well mission 
essential tasks (often structured as a mission thread) 
contribute to achieving the strategic goals. MoEs provide 
a way to evaluate whether key operational actions are 
contributing to desired outcomes, focusing on effectiveness 
rather than efficiency. For example, in a military context, 
MoEs for an air superiority mission might include sustained 
control of designated airspace, response time to emerging 
threats, or enemy attrition rates. These measures ensure that 
commanders can adjust tactics, resource allocations, and 
mission execution in response to real-time conditions while 
maintaining alignment with strategic intent. 

Lastly, at the tactical level, MoP are established to evaluate 
how well individual systems, personnel, and processes 
function in executing mission essential tasks. MoPs are 
quantitative and focus on system-specific capabilities, 
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such as sortie generation rates for aircraft, readiness state, 
weapon accuracy, or the uptime of critical communication 
systems. These measures provide direct feedback on 
whether the assets and processes at the tactical level are 
performing at the required standards to support operational 
effectiveness. 

In brief, MoEs criteria measure if we are doing the right 
things and the MoPs criteria measure if we are doing the 
things right. By continuously monitoring MoPs, tactical 
units can make necessary adjustments, ensuring their 
performance directly contributes to mission success at 
higher levels. MoPs are traditionally written and referred to 
as Key Performance Parameters and Key System Attributes 
as these are the criteria that are built into requirements 
documents for the design or alteration of systems and where 
the design trade space occurs. The linkage across these 
three levels ensures that strategic goals drive operational 
planning, and operational effectiveness depends on 
tactical execution. By clearly defining MoS, MoE, and MoP, 
organizations create a coherent framework that aligns 
decision-making, resource allocation, and performance 
assessment, ultimately enhancing overall mission success. 

Figure 6 shows a representative mapping of these scoring 
criteria levels which exists to create continuity across all 
levels of operations with the goal of achieving unity of effort 
towards the defined mission success.

Effect Based Operations (EBO) are an example of how the 
indicators and metrics transformed military operations after 
the Gulf War I. Previously, the attrition of adversarial assets 
was the standard. The objective was then to eliminate enemy 
forces in the search for a withdrawal or surrender, but the 
EBO approach relied upon the basis of the analysis of the 
enemies’ Centers of Gravity (CoG) in order to design plans 
to deny those centers under the minimum cost premise. EBO 
are therefore based on effects, and those effects are provided 
by operational activities that in the end, are the more atomic 
functional elements of a capability as defined by the NATO. 
Effects are, hence, sustained by the capabilities, linking the 
entire landscape of the levels of operational execution, from 
strategical to tactical. Since CoG are currently dispersed 
across the entire mission arena, the SoS is the enabler to 
synchronize the achievement of combined effects to make 
them valuable for the operation. ME, follows this approach to 
extend this link to the technical level.

Figure 6. Developing Mission success criteria at all levels of operation.
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In today’s execution of acquisition planning processes, 
systems are designed and developed based on the specific 
need to meet a requirement, not necessarily to support SoS 
effects. This is typical of the acquisition process through the 
Joint Capability Integrated Development System, which is 
designed to develop a system within a specific context rather 
than across a domain or integrated mission-based context. 
The individual systems are not developed with the idea of 
integrating across a SoS architecture to execute operational 
METs. In other words, they are not capability-focused 
programs pursuing the achievement of operational remarkable 
effects at SoS level. Program managers understandably 
optimize product design based on their specific customer 
needs without assessing how the system interacts with other 
deployed systems to collaboratively support the desired 
effects during the execution of critical mission threads. 
This ‘intra-optimal’ stovepipe system design is sub-optimal 
when later evaluated from an ‘inter-optimal’ SoS perspective. 
Unfortunately, considerable amounts of redesign would be 
required to modify the system with respect to inter-optimal 
SoS mission success. Engineering and deploying products 
with SoS mission success in mind during system design is 
the way to avoid integration and interoperability issues across 
the force (see Figure 7). 

An uncontrollable challenge is that the number of analytic 
scenarios required to support robust SoS design increases 
exponentially with the addition of each operational mission, 
performance parameter, design criteria, adversarial threat, 
and environmental factor. This combinatorial explosion 
challenges the use of many traditional processes and tools 

for realistic ME design of complex SoS. There is a need to 
develop the principles, processes, and tools to assess and 
support the design of complex SoS using the ME approach 
to make the design of complex SoS more tractable. With that 
said, the principles and foundations of systems engineering 
are necessary but not sufficient to handle these complexities 
of today.

While JCIDS (Joint Capability Integration and Development 
System) provides a structured acquisition approach within 
the US DoD, no direct equivalent currently exists in Europe. 
Frameworks such as the NATO AAP-20 or national approaches 
(e.g., Spain’s MIRADO-I) are still under development and 
differ substantially in maturity and governance.

A mission-based engineering approach helps ensure the 
system under development will easily integrate with other 
systems while ensuring the capabilities necessary for mission 
success. Further, the acquisition system is not equipped with 
the ability to perform governance across a SoS; this means 
that when ME is performed it is unlikely to remain stable 
for a duration longer than one of the systems’ upgrade or 
maintenance cycles. This opportunistic approach to ME 
does not necessarily provide long term stability to support 
missions but puts the stakeholder on the right vector 
for functional effectiveness from the start. As mentioned 
previously, the acquisition approach to concept, design, and 
experimentation would need to be developed to ensure the 
governance across any SoS could be guaranteed through 
synchronization which is the current direction with capability 
portfolio management.

Figure 7. Aligning operational Mission SoS to defined Mission success criteria.
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4.2. Disciplined approach to field capabilities

The structured outlined approach to ME found in MEG v2.0 
can be enhanced by following the 10-step process introduced 
in this section. This process is mapped to the MEG v2.0 
approach categories as shown in Figure 8. 

This process begins with identifying missions and tasks and 
progresses through defining mission success criteria, critical 
success factors, and associated conditions that impact 
performance. By mapping these conditions to mission tasks 

and developing clear scoring criteria, decision-makers can 
evaluate current capabilities against future needs, creating 
“as-is” and “to-be” mission engineering threads to guide 
improvements. Ongoing ME assessments ensure adaptability 
in dynamic environments, while alignment with DOTMLPF-P 
(DOTMLPF-I in the EU, MIRADO-I in Spain) ensures that ME 
efforts support broader force development. Through this 
structured approach, ME provides a data-driven foundation 
for capability development, risk mitigation, and operational 
effectiveness, ensuring that mission planning and execution 
remain resilient against emerging threats.

Figure 8. ME 10-step process mapped to MEG v2.0.

The order of the 10 ME steps is outlined below starting with 
the prioritization of operational mission areas and ending with 
the continuous management of end-to-end METs to maintain 
the execution health of capabilities.

1)	 Identify missions and tasks.

2)	 Define mission success and desired effect.

3)	 Identify critical mission success factors.

4)	 Identify conditions for each critical mission success factor.

5)	 Map critical mission success conditions to mission tasks.

6)	 Identify critical conditions for each task.

7)	 Define the appropriate scoring criteria for each mission 
or task.

8)	 Create “as-is” and “to-be” mission engineering threads.

9)	 Conduct ongoing mission engineering assessments.

10)	Support DOTMLPF-P (DOTMLPF-I in the EU, MIRADO-I in 
Spain) Mission Engineering Consumers.

The implementation of this process comes with challenges 
associated with governance structure, data availability and 
collection, stakeholder coordination across the US DoD, 
multiple system life cycles due to maturation (legacy to new), 
and workforce/tool development to name a few. However, the 
Effects Web Framework (Figure 2) provides a mechanism to 
translate what the US DoD plans to procure to the resulting 
capability. An example outcome of this process showing the 
potential SoS capability as an assessed MET is illustrated in 
Figure 9.
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Figure 9. Scoring criteria applied for example.

4.3. Opportunity to integrate 
capabilities across nations

Our nations are becoming more complex 
every year as we move towards fielding the 
‘Internet of Things’ and work towards fielding 
‘Digital Twins’ for more connectivity and 
monitoring of performance health. The lack 
of common approaches to analyze these 
complex SoS with new tools and processes 
will continue to cause delays in our ability to 
execute rapid development and fielding of 
capabilities. In fact, the ME approach has 
tremendous promise in bringing together 
the international community of allied 
partners as we prepare to fight as a joint/
coalition force (see Figure 10). This figure 
shows only allied partners who have been 
in involved in recent discussions with the 
US DoD; however, this does not represent 
a bounded state on bringing in other allied 
partners into the discussions to increase 
coordination and collaboration using ME 
principles and processes.

Figure 10. Vertical integration and interoperability across allied partners.
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7. CONCLUSIONS
Mission Engineering provides a strategic approach to designing and managing complex SoS that extend beyond traditional 
defense applications. While critical for national security and strategic autonomy, ME also enhances the ability to address a range 
of mission challenges, including disaster response, humanitarian assistance, infrastructure resilience, and space exploration. By 
leveraging principles such as interoperability, open systems architecture, and risk-informed decision-making, an organization or 
a nation can optimize resources and improve mission outcomes across multiple domains.

The application of ME in civil-military cooperation, emergency management, and technological innovation ensures that an 
organization remains agile in responding to both anticipated and unforeseen challenges. Integrating human systems considerations, 
sustainability factors, and cross-sector collaboration further strengthens the country’s capacity to develop solutions that balance 
operational effectiveness with long-term societal benefits. Ultimately, ME enables an organization to proactively shape its mission 
capabilities in a way that is adaptable, cost-effective, and technologically advanced. By fostering an approach that spans defense, 
security, and broader national priorities, an organization can enhance its strategic resilience while contributing to stability and 
progress on both national and global scales.

While ME is maturing rapidly within the US DoD, European 
institutions such as the European Defence Agency (EDA), 
Spain’s Directorate General of Armament and Materiel 
(DGAM), and national frameworks like MIRADO are 
progressively integrating ME principles into their planning and 
capability development processes. Increased collaboration 
between US and European ME initiatives could help create 
shared methodologies, interoperability standards, and joint 
SoS assessments.
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Abstract

When planning and conducting a Mission Engineering (ME) study, it is important to have a 
comprehensive, accurate, and coherent model of the mission architecture. This chapter explores some 
of the key modeling features and constructs that enable the development of a mission architecture 
model to be used in support of an ME study effort. It discusses extensions being applied to the Unified 
Architecture Framework (UAF) to better support ME activities. 
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1. INTRODUCTION
A mission architecture typically involves multiple enterprises and 
complex relationships between the enterprise entities (including 
the systems of systems, SoS, and individual systems). The Unified 
Architecture Framework (UAF) works well in capturing many of the 
“non-physical” aspects of the relevant systems of systems, since 
it highlights both materiel and non-materiel (such as, doctrine, 
organization, training, leadership, personnel, facilities) solutions 
that are involved in a mission architecture. UAF specifies a set of 
architecture views for describing various aspects of an enterprise 
and major entities in the enterprise [1-3] and provides a modeling 
language (UAFML) that is especially designed for modeling an 
enterprise. As such, it is appropriate for modeling a large and 
complex mission architecture along with its variety of scenarios, 
vignettes, MTs, METs, etc. [4, 5]. Some of the structural model 
elements relevant to mission modeling are illustrated in Figure 1 and 
described in Table 1.

While UAF provides a large number of potential 
architecture views, as shown in Figure 2, mission 
architecture modeling only needs a small subset of 
these views. The Mission Problem definition and the 
Mission Characterization aspects of the mission, along 
with the Mission Thread (MT) elements and views 
to be used in ME, map mainly to the Strategic and 
Operational viewpoints in UAF as illustrated in Figure 
2 [6]. The Mission Engineering Threads (METs) are 
an implementation of the MTs, so these are primarily 
depicted in the Resources viewpoint. However, note 
that there are several other UAF viewpoints and their 
associated modeling views that could be readily 
used in an ME study and in related activities such as 
capability planning, enterprise portfolio management, 
annual budget formulation, program assessment and 
evaluation, system requirements development, etc.

Figure 1. Mission modeling profile view.

Modeling 
Element

Description

Mission
A Mission element is a generalization 

of an Enterprise Phase element 
in the UAF Domain Metamodel.

Actual Mission

An Actual Mission is a 
generalization of an Actual 

Enterprise Phase element in the 
UAF Domain Metamodel.

Actual Mission Phase

An Actual Mission Phase is a 
specialization of an Actual Mission 
providing an instance specification 
of a Mission and a Mission Phase.

Mission Thread
A Mission Thread is a generalization 

of an Operational Activity.

Mission Task

A Mission Task is also a 
generalization of an Operational 

Activity, with Mission Threads 
being made up of other Mission 

Threads or Mission Tasks.

Mission Engineering 
Thread

Mission Engineering Thread is a 
generalization of a Function and 

describes the implementation 
of Actual Mission Phases. 

Traceability between the MET 
and MT uses the standard UAF 

implements relationship.

Table 1. Modeling elements for use in a Mission architecture model.
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To illustrate how the modeling language can be used to 
define a mission architecture, the next sections present the 
application of the ME concepts from the previous chapter on 
a mission exemplar using mission modeling.

2. MISSION EXEMPLAR
The mission exemplar used in this chapter is the Battle of 
Hoth from the second Star Wars movie, “The Empire Strikes 
Back.” This mission is used because it is well known, contains 
a rich source of systems, strategies, missions, and behaviors, 
and illustrates joint operations1. The example, adapted from 
[4, 5], concentrates on the Strategic and Operational views, 
defining the concepts of missions, mission phases, MTs and 
operational architectures, as well as definition of the resource 
and organizational structures and functionality.

The mission is defined as occurring in scenarios and 
vignettes over time, in a sequence of mission phases. The 
operational architecture, which is composed of several 
MTs and associated METs, is defined to satisfy motivational 
factors, such as the Drivers and Enterprise Goals shown in 
Figure 3. The operational architecture is used as the basis for 
operational effectiveness analysis, sometimes accomplished 
using modeling and simulation tools and techniques. 

1. For further background information see [7] or better yet, grab some popcorn and watch 
the movie.

2.1. Mission purpose, stakeholders, concerns, 
goals, and drivers

Measures of Success (MOS), desired effects, and 
capabilities are captured in the mission architecture model, 
with the operational architecture elements tracing back to 
these elements to ensure proper coverage. Measures of 
Effectiveness (MOE) are assigned to the Mission Tasks that 
make up each of the Mission Threads.

Definitions for related key concepts are shown in Table 2 and 
the corresponding mission elements are shown in Figure 
3. The Legion Commander is concerned about his loss of 
position or possibly his life, which typically happens when 
failure occurs in the service of the Empire. He wishes to 
prevent a rebel resurgence and to ensure a decisive victory. 
Darth Sidious and Darth Vader wish to control the Galaxy and 
establish dark side dominance. Darth Vader also wishes to 
protect Luke Skywalker. These Concerns relate directly to 
the mission goals, which then link to the Drivers which have 
forced the Empire to act. These will be discussed further on 
in the chapter. 

Figure 2. Mission engineering views in UAF.
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Figure 3. Hoth summary and overview: Stakeholder concerns and goals.

Concept Description

Concern A matter of relevance or importance to a stakeholder regarding an entity of interest.

Driver Thing that forces to work or act; that which urges you forward.

Challenge A demanding or stimulating situation; a call to engage in a contest or fight.

Enterprise State Condition with respect to circumstances or attributes.

Capability Ability to achieve a desired effect under defined conditions and environments.

Opportunity A possibility due to a favorable combination of circumstances.

Risk A source of danger; a possibility of incurring loss or misfortune.

Effect A phenomenon that follows and is caused by some previous phenomenon.

Outcome Something that happens or is produced as the final consequence or product.

Goal A statement about a state or condition of the enterprise to be brought 
about or sustained through appropriate Means.

Objective A statement of an attainable, time-targeted, and measurable target that 
the enterprise seeks to meet in order to achieve its Goals.

Table 2. Strategic motivation elements.
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2.2. Mission definition

The Empire Mission structure shown in Figure 4 illustrates the 
complexity required to model missions. Empire doctrine proscribes that 
every military mission has two phases to it: Planning and Execution. A 
Planetary Invasion Mission is comprised of separate Scout, Landing, 
and Attack Missions, each with their own Planning and Execution 
Phases. These are all types of Invasion Missions. Each of these has a 
defined Mission Type. The Execution and Planning Phases both inherit 
Mission Tempo and Phase attributes. Mission type attributes have been 
defined for several of the mission types. Scenario and Vignette types 
have been linked to the missions that when instantiated define the 
parameters and context of the mission. These are detailed in the next 
section. Specific MTs can and should be linked to the various missions 
to define the functional aspects.

2.3. Campaign, scenario and vignette

Since mission names can include the mission type (e.g., 
Hoth Campaign, Hoth Scouting Operation, or Hoth 
Ground Battle), and the mission structural hierarchy 
can show what mission is comprised of other missions, 
mission types in Figure 5 are defined in an enumeration 
and modeled as an attribute for the Mission Types in 
Figure 3 instead of defining dedicated stereotypes. 
Values chosen for the Hoth example are shown in Figure 
4.

Figure 4. Mission definitions.

Figure 5. Levels of warfare and mission types [8].

For the concepts of Scenario and Vignette, new 
stereotypes are used to describe the necessary context 
information for the mission(s) being described in the 
model, as shown in Figure 6. Scenarios describe the 
geographical location and time frame of the overall 
conflict. They include information such as threat and 
friendly politico-military contexts and backgrounds, 
assumptions, constraints, limitations, strategic 
objectives, and other planning considerations [8]. 
Vignettes describe narrow and specific ordered sets of 
events, behaviors, and interactions for a specific set of 
systems to include blue capabilities and red threats within 
the operational environment. Vignettes can represent 
small, ideally self-contained parts of a scenario [8].
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Since both concepts describe a set of information relative to 
a mission, the most useful stereotype to extend is a Condition, 
with each of them having their own elements that relate to the 
contextual information described in the MEG. Modelers can 
then create Actual Conditions that have specific values for the 
appropriate Scenario and Vignette, as well as the thresholds 
for determining success, and then apply them to the specific 
Actual Missions within their model, providing the necessary 
traceability to their missions. Since Scenario and Vignette can 
be applicable to any Mission Type (as seen in Figure 5), the 
Scenario should get applied to the top-level Actual Mission in 
the model, and Vignettes should get created and applied to 
each Actual Mission below the top-level one.

In the Hoth example, Figure 7 shows how the Scenario and 
Vignette elements get defined and applied to the appropriate 
missions. On the left are a default Mission Scenario and Vignette. 
These elements will be included in the profile as examples in 
the same way as DLOD and DOTMLPF projects are. These 
have been extended for the Hoth Battle for a Planetary Invasion 
scenario, Ground Attack vignette, and Air Attack vignette. These 
can include additional conditions and values. Along the bottom 
are a set of conditions that can be used throughout the model 
regarding the environment, topography, and political situation. 
These are used by the instances of scenario and vignette on the 
right. These are then linked to the Mission definitions so that the 
Mission actuals can reference the Vignette and Scenario actuals. 
In this example, the actual scenario contains the vignettes. 

Figure 6. Scenario and vignette extensions to UAF.
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2.4. Mission relationships

Two relationships are used to connect mission types to MTs 
(Process Defines Initiative), shown in Figure 8, and actual 
missions to METs (Process Adapts to Initiative), shown in Figure 
9. Figure 9 shows the structure of the Hoth Invasion, which is an 
instance of the Planetary Invasion Mission defined in Figure 4. 

Figure 7. Definition of scenario and vignette.

This Actual Mission is made up of the Planning and Execution 
Phase as well as the Landing Mission, Attack Mission, and Scout 
mission. These Missions each have Planning and Execution 
Phases. The Execution phases all have METs mapped to them. 
The Hoth AMEP Execution Phase has defined goals as well as 
Operational and Resource Architecture.
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Figure 9. Actual missions and mission phases.

Figure 8. Mission relationships.

2.4.1. Conflicting elements 

Opposition and Conflict are inherent in ME. Some of these are 
obvious in the context of this mission: the Empire Forces attack 
the Rebel Forces, Energy Cannons attack the Defense Shield, 
etc. Others are not so obvious, such as the conflict within the 
Goals of the Mission shown in Figure 10. The Goal to Capture 
Luke Skywalker reduces the chances of Destroy Rebel Defenses 
and Prevent Rebel Escape. Normally, the Empire executes its 

missions with extreme prejudice, preferring to destroy a planet 
rather than allowing enemies to escape or information to be 
released. Since they had to attack with conventional forces and 
to do so with great care, they were unable to destroy the forces 
or prevent the Rebel escape. Highlighting these conflicting 
elements would help to ensure a successful outcome and 
provide a means of mitigating risk and other aspects. Each goal 
is further decomposed into its objectives. Objectives define 
short term accomplishments while goals are long term. 
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2.4.2. Linking strategy to execution

The goals, drivers, challenges, opportunities, mission phases, 
capabilities, and systems are linked together in Figure 11. The 
Hoth AMEP execution phase phases the goals of Destroy Rebel 
Defenses, prevent Rebel Escape, and Deliver Luke Skywalker 

Figure 10. Mission goals and objectives.

and the Planetary Attack capability. This means that they are 
realized during this phase. The Resource and Operational 
Architectures implement the mission phase and the MET is 
executed. Risks of the Loss of Empire Forces and Rebel Forces 
Escape are identified for the opportunities. Mitigation strategies 
can be developed for these risks. 

Figure 11. Mission drivers, goals, challenges, opportunities and capabilities.
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3. DEVELOPING AN OPERATIONAL 
ARCHITECTURE

3.1. The Blue Force operational architecture

The Empire’s operational architecture, shown 
in Figure 12, lays out at a logical level the main 
elements of the Empire forces that are needed 
to execute a Planetary Invasion. Note that the 
Empire must also estimate what Rebel Forces 
may be present, so that they can account for their 
interactions with the Empire’s forces.

These candidate logical elements are mapped to 
the required capabilities to ensure that they have 
all been addressed as shown in Figure 13.

Figure 12. Attack phase operational taxonomy

Figure 13. Operational performers to capabilities mapping table.

Note that Empire Air Transport and Empire Scout Forces are not included 
as they are not required for this phase. Having defined these structural 
elements, their interactions can be defined using the internal connectivity 
diagram, similar to a SysML IBD as shown below in Figure 14.

Figure 14. Attack mission architecture.

The mission architecture shows internal communication links as well 
as weapons fire and scan data between the opposing forces. The 
Rebel Forces are those which were identified during the Scout Mission. 
Showing these interactions ensures that the required firepower and 
tactical resources are available for the mission.
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3.2. Operational activities

The Empire identifies applicable operational 
activities and that each element in the Operational 
Architecture could perform, in the context of a 
Scout, Landing, or Attack mission in support of 
a Planetary Invasion. These are mapped to one 
another and correspond to the defined behavior 
for these elements in Figure 15. The rebel and 
empire elements are modeled on separate 
diagrams. 

Figure 15. Empire forces and activities. 

These define the activities that can be performed 
by the Empire forces. These will be used during 
the execution of the mission. Figure 16 defines the 
functionality defined for the Rebel Forces. This set 
of defensive activities will be evaluated against 
the Empire offensive activities.

Figure 16. Rebel performers and activities.
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3.3. Mission thread definition

The Empire’s doctrine lays out the Mission Threads and Mission 
Tasks for each Mission Phase. Figure 17 shows the breakdown 
of Mission Threads and Mission Tasks for the Execution Phase 
of a Planetary Invasion. It is broken down into Mission Threads 
of Scout Planet, Weaken Planetary Defenses, Attack Primary 
Objective and Deploy Attack Force. Each of these are further 
decomposed into Mission Tasks.

For each Mission Thread and Mission Task an Operational 
Activity Diagram is developed to describe what Operational 
Activities are needed to accomplish each Mission Thread, and 
what part of the Operational Architecture will be expected to 
perform them. These were defined in Figure 15. Libraries of 
these should be built up over time to minimize the required time 
for mission engineering and ensure correctness and compliance 
with standards and doctrine. Figure 18 shows the description of 
the “Destroy Defense Forces” operational process diagram.

Figure 17. Planetary invasion mission threads and tasks.

Figure 18. Destroy defense forces.
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Figure 19 shows the Strategic Traceability between Mission Threads, 
Tasks, and Actual Missions. This demonstrates that the capabilities 
are addressed by the functional elements. Only the Attack Mission 
is shown for simplicity.

3.4. Differentiation between Enemy/Friendly/Neutral

ME models require the identification of different forces such as 
enemy, friendly, neutral, or others. This can correspond to individual 
elements as well as organizations and groups. The most useful way of 
accomplishing this is through a set of stereotypes that allow tracking 
these elements easily within the model, as well as allowing for unique 
formatting (e.g., colors) that clearly identify them in diagrams. The 
ME Profile adds 5 of these Force Designation stereotypes, with an 
overarching stereotype that they specialize, as seen in Figure 20. 
This also allows modelers to add additional stereotypes by simply 
inheriting from the overarching Force Designation stereotype. The 
term “Force Designation” was chosen as the term “Force Type” 
implies Army, Navy, Air Force, etc., and could be confusing. These 
types could be added by an engineer to extend the profile.

Figure 20. Force designation definition profile diagram.

Figure 19. Strategic traceability between mission 
threads, tasks, and actual missions.
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Figure 21 shows the opposing Empire and Rebel 
forces. The Rebel forces are shown at the top 
in red. Empire forces are shown in blue. The 
force designations can be applied to either the 
definition as shown here or to the role elements 
in an internal connectivity diagram. Other force 
designations may include civilians, commercial 
operations, allies, etc. The opposes relationship 
originally defined in Figure 8 shows mission 
elements that will contend/attack/fight one 
another.

3.5. Goals, objectives, effects, and 
outcomes

As mentioned previously, goals and objectives 
are modeled as types of requirements. As such, 
they come with unique identifiers, can be nested, 
and can make use of all the relationships afforded 
to requirements. Figure 10 listed the goals and 
objectives of the attack mission. A portion of 
the Execute Planetary Invasion MT is shown in 
Figure 22. The different mission tasks satisfy the 
outcomes and objectives of the mission. In this 
way, it demonstrates that a ME solution should 
also be able to achieve the goals and objectives. Figure 21. Red and blue mission performer elements.

Figure 22. Mission threads and tasks linked to goals and objectives.
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Figure 23 shows the objectives of the intelligence gathering 
mission as well as the effects, outcomes and the systems 
that will achieve those effects and outcomes. The effects and 
outcomes are sequences corresponding to deploying drones 
and spies, gathering information, sensing signals, analyzing 
those signals and finally synthesizing that intelligence to 
show the location of the rebel base.

Figure 23. Mission objectives, effects, outcomes and achieving elements.



88

3.5.1. Provenance/Confidence of enemy resources

The rebel forces capabilities, forces, activities, strength, 
etc. have been discovered via the intelligence services. 
Two aspects of any intelligence are the provenance of the 
information and the level of confidence in the information as 
well as the source. The structure and behavioral elements 
created based on that intelligence should refer to the source 
(provenance) and corresponding confidence. Figure 24 
shows a portion of the rebel forces. Information on the rebel 
forces has been collated by drones and spies. Enumerations 
have been defined for the profile providing Intel Confidence 
and Intel Type. Attributes correspond to the resource 
elements. These are instantiated as a fielded capability 
and specific values associated with them. In this case, the 
intelligence was gathered by an intelligence probe droid, the 
type is unknown, and the confidence level is medium. 

3.5.2. Compliance/Conformance to doctrine/
standards. 

The SysML requirement element has been extended to 
provide concepts of Ref Doctrine, Ref Publication, and Ref 
Standard (not shown for reasons of space). These provide 
the ability to link specific steps in an MT or MET, mission 
elements or the entire mission to atomic elements of doctrine. 
This can be crucial to ensure that proper procedures are 
followed when constructing missions. The UAF standard 
concept is also available but is typically at a more “macro” 
level of that deals with an entire document. 

Figure 24. Mission resource elements and intelligence information.
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4. DEVELOPING A RESOURCES 
ARCHITECTURE

4.1. The Blue Force resources architecture

The beginnings of the Resources Architecture 
were seen in Figure 24, which shows a portion 
of the rebel forces involved in the battle. To 
fully understand how the mission plays out, 
the various resources (i.e. systems, software, 
personnel) that are used to support the Mission 
Tasks in the Mission Threads are captured in 
the Mission Engineering Threads (METs) that 
are part of the Resources Architecture. This is 
done for both sides of the battle – for the Blue 
Forces (on our side, the Empire in this case) 
and the Red Forces (who are the adversaries, 
the Rebels in the case of this example model).

4.2. Mission engineering thread functions

The various steps of the MET are defined for the 
Execute Hoth Planetary Invasion. The functions 
can either be part of the Mission Engineering 
Thread, or they can be Functions performed 
by the Resources, now that we have identified 
some of these Resources. Figure 25 shows the 
Mission Engineering Thread on the left and the 
Mission Thread on the right. The functions in the 
MET will “implement” the operational activities 
in the MT. This model shows two shortcomings 
of the architecture:

1)	 The MT for Weaken Planetary Defense 
has no corresponding resource (system) 
functions that implement this mission task 
(i.e. operational activity).

2)	 The MET for Destroy Key Rebel Hoth 
Defenses has a function Protect Empire 
Ground Forces that has no corresponding 
mission task, i.e. there is a missing 
operational process that needs to be 
performed but is not yet accounted for.

Figure 25. Mission resource elements and intelligence information.



90

4.3. Deploy scout droids process flow

Figure 26 illustrates a relatively complicated MET for the 
various resource elements that Deploy Scout Droids. In 
this process flow, the human and technical elements are 
deployed upon receiving the Scout OPORD. Figure 27 shows 
a related process flow that outlines the activities to prepare 
for scouting and sending back status reports.

Figure 27. Scouting and status reporting process flow.

Figure 26. Deploy scout droids process flow.
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5. OTHER CONSIDERATIONS

5.1. System of Systems issues

The systems that participate in the METs that 
implement the MTs in the mission architecture are 
usually developed by different organizations and 
are not always developed with these particular MTs 
in mind. These systems are also usually operated 
by different organizations involved in conducting 
the mission. So, from a SoS perspective, this 
illustrates the managerial independence and 
operational independence of the systems that 
make up the SoS for each of the METs.

5.2. Key measurements and traceability

A well-defined model will contain quantifiable 
measures for success. At the very least, it will 
describe how to measure a successful outcome 
for the various mission phases and mission 
essential tasks. These will be modeled at the 
levels of the mission, mission phase, MET, and 
mission essential tasks. For a well-formed model, 
these measurements need to coincide, link, and 
trace to one another from system level Measures 
of Performance (MOPs) focused on performance 
of the individual constituent systems, to MOEs 
defining mission success at each mission essential 
task, to MOS defining the desired end state (see 
Figure 28). 

These key measures must flow down from MOS 
and lead into the MOEs from which MOPs and 
Measures of Suitability (MOSu) can be derived. 
Though, to trace these measures through a SoS, 
they need to be linked to statements of importance. 
In this case, since we are in the military domain, we 
can refer to these statements as critical operational 
issues (COIs). For each of these COIs there may 
be one to many MOS, MOEs, and further one to 
many MOPs and MOSu as shown in Figure 28. 
This diagram is purely notional, as these metrics 
are largely stochastic, only estimable through 
advanced simulation, and often represent 
emergent properties of a complex SoS, making a 
deterministic ‘roll-up’ impractical or impossible. An 
example for the Hoth mission is given in Figure 29.

Figure 28. Relationship between critical operational issues and measures of effectiveness.

Figure 29. Typical MOEs through a mission engineering SoS lens.
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5.3. All Models are Wrong, Some Models are 
Useful…

Even a relatively simple Resource Architecture model requires 
significant time and effort to develop, if everything in the 
architecture is modeled. As with any model, understanding 
what questions the model is intended to answer, what 
information is available to model, and what resources you 
have available to do the modeling (people, time, money, and 
tools) will help frame what needs to be modeled. Of course, 
once the modeling scope has been decided, any modeling 
scope changes must be well managed; otherwise, unintended 
risk to developing a useful model will be introduced. 

It is likely that the entire scope of the modeling effort will not 
be known, as required information may not be available at 
the start of the modeling effort, or significant, unplanned 
architecture changes occur. Identifying modeling risks 
from the start is key to managing the modeling effort and 
maintaining its usefulness. It is highly recommended that 
prior to starting a model effort some time is spent conducting 
a Problem Framing exercise.

6. CONCLUSIONS
Mission architecture modeling is a foundational enabler for effective ME. This chapter has demonstrated how a well-structured 
mission architecture, rooted in the Unified Architecture Framework (UAF), supports the rigorous analysis, traceability, and coordination 
required to execute complex missions involving multiple stakeholders, scenarios, and SoS. By systematically integrating strategic 
intent, operational activities, and resource capabilities through constructs such as MTs and METs, UAF provides a cohesive modeling 
language for describing and analyzing mission architectures.

Using the Battle of Hoth as an exemplar, the chapter illustrated how ME modeling not only clarifies the relationships between goals, 
objectives, and operational elements but also reveals risks, conflicts, and dependencies inherent in the mission. It highlighted 
the importance of contextual constructs such as scenarios and vignettes, and how these can be extended within UAF to provide 
meaningful connections between conditions, behaviors, and mission execution.

Moreover, the use of measures (MOS, MOEs, MOPs) and the emphasis on traceability from high-level drivers to tactical resource 
activities ensure that the mission model can serve as a foundation for analysis, assessment, and iterative improvement. The 
incorporation of provenance and confidence in intelligence data, compliance to doctrine, and consideration of force designations 
further enhances model fidelity and realism.

Ultimately, mission architecture modeling is not about producing a perfect representation, but rather about building a useful one; one 
that can inform decisions, identify vulnerabilities, and guide effective action. The principles and constructs presented in this chapter 
offer a scalable and repeatable approach for applying mission architecture modeling across defense, aerospace, and enterprise 
contexts.

Organizations will need to determine what model libraries 
they want to develop, share, and maintain. Although there are 
many ways to separate ME models into reusable and case-
specific information, UAF already segments model information 
such that one could simply create separate models based 
on the top-level packages: Strategy, Operational, Services, 
Personnel, Resources, Security, Projects, Standards, and 
Actual Resources. Of course, a model library approach will 
need to be made specific to how an organization wants to 
do modeling. A model federation plan, even just a simple 
one, should be devised prior to the start of modeling to help 
partition the large model into smaller modeling projects to 
facilitate model management and governance. This also 
helps improve time to query the model, reduce model access 
conflicts among team members, allow for greater control over 
model changes and configuration control.
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1. INTRODUCTION
The focus on ‘governance’ for SoS is targeted to the active 
steering of a SoS through the artful and integrated design, 
execution, and evolution of the SoS [1]. Thus, the primary 
motivation for this chapter is to present the role and 
contributions that governance can make to the design 
and implementation of SoS.

In this chapter, we address three primary topics. First, 
we articulate a systems-based perspective of SoS 
governance. This perspective examines the nature and 
role of governance with respect to SoS governance 
design and implementation. Second, Complex System 
Governance (CSG) is introduced as a systems theory-
based framework for SoS governance. CSG is established 
as an evolution of System of Systems Engineering, 
focused on providing an approach to support more 
effective direction, oversight, and accountability for 
increasingly complex SoS. Third, the application of the 
framework for SoS governance is explored. The chapter 
concludes with challenges and application guidance for 
practitioners responsible for SoS design and governance 
implementation.

In evolving SoS design and implementation, eight 
distinguishing characteristics for the governance of SoS 
[2] are offered (Figure 1): 

1.	 Holism: Governance operates at all levels of an SoS, 
ranging from individual practitioner to enterprise. 
Consideration is given to avoiding both hard (technical) 
and soft (nontechnical) failure modes.

2.	 Wide Spectrum: The governance focus for SoS 
looks beyond the narrow confines of technology-
based solutions. Instead, the scope of governance 
entails technology, social, human, organizational, 
managerial, resources, context, commercial, policy, 
and political considerations.

3.	 Pluralistic View: Governance does not assume a 
unitary (singular agreement) view of SoS design 
and implementation. Instead, a pluralist (multiple 
perspectives) view is taken to understand that SoS 
governance must contend with numerous different 
and potentially conflicting motivations, perspectives, 
and aims. 

4.	 Continuous: Governance development is continuous, 
realizing that SoS governance is never complete and 
must be continually pursued. 

5.	 Feasibility: Governance development must consider that 
there are design and implementation issues that lie beyond 
the capacity of a SoS to address. Every SoS has limitations 
as to what can be pursued with a high possibility of success. 

6.	 Existing: Irrespective of their acknowledgment, the functions 
of SoS governance are being performed by any viable 
(continuing to exist) SoS. However, the state and performance 
of the SoS governance may fall short of that desire and 
potentially be moving toward failure.

7.	 Context: Context includes those circumstances, factors, and 
conditions that influence, and are influenced by the SoS. The 
context within which SoS governance is performed is critical 
to enabling or constraining SoS governance. 

8.	 Incorporation: Design and implementation of SoS 
governance must incorporate the variety of methods, tools, or 
techniques available and accessible to support governance 
development. Every SoS is unique and will have different 
methods, tools, and techniques available.

Figure 1. Eight distinguishing characteristics of SoS governance.
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2. GOVERNANCE IN THE CONTEXT OF SYSTEM 
OF SYSTEMS 
For SoS, governance plays a critical role in ensuring 
consistency in the direction, oversight, and accountability as 
the SoS performs its mission. In this section, we distinguish 
between management and governance and explore the role 
of governance in SoS design and implementation.

Table 1. Differences between management and governance.

Characteristic Management Governance
Implications for 
SoS Design and 
Implementation

Emphasis
Outputs (tangible, 

objective, short-term)
Outcomes (less tangible, 

subjective, long term)

Determination of governance 
‘goodness’ is not simple 

or straightforward.

Central questions 
of concern

What? And How? Why?
Governance exists at a higher 
logical level of performance – 
emphasizing system purpose.

Focus Near-term demonstrable results
Long term future 

focused trajectory

The focus of governance 
is expansive, entertaining 

long-view questions of 
strategic rather than 

operational significance.

Determinants of success
Easily defined, measured, 

and tracked
Difficult to define and measure

While governance measures 
might be developed, they 
necessarily lack precision.

Time horizon Short term Long term
The nature of governance 

invokes a much longer 
time horizon.

Action-response proximity
Limited duration between 

action and system response

Long separation between 
action and realization 
of system response 

The evolutionary nature of 
SoS lengthens the time and 
proximity between actions 
and realization of results.

Uncertainty Local uncertainty concerns Global uncertainty concerns
Governance has a more 

global level of uncertainty 
and its resolution.

Stability and emergence
Local proximity stability, 
local level emergence

Global proximity stability, 
global level emergence

The global focus of governance 
is concerned with emergence 
and stability at a higher level.

2.1. Nature and role of governance

The concept of governance is somewhat novel with respect to 
SoS. At a high level, the focus on ‘governance’ is taken as the 
active steering of a system through the artful and integrated 
design, execution, support, and evolution of the SoS [2].

Governance has similarities but is also different than 
management. Table 1 identifies the critical distinctions between 
management and governance along with implications for SoS 
design and implementation of governance [2, 3]. 
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Etymologically, ‘governance’ (govern) finds its roots in the Latin 
‘gubernare’ meaning to steer, as well as the Greek ‘kybernētēs’, 
meaning to pilot, governor (from Hibernian to steer, govern). 
Thus, at the most fundamental level, governance is about 
steering.

There are multiple perspectives on governance. However, for 
SoS, three perspectives are essential concerning the role of 
governance [3]:

1.	 Process-centric: Governance is focused on collective 
decision-making processes. These processes are 
steeped in formal, consensus-seeking, and deliberative 
decision-making. The central objective of this governance 
perspective is to provide effective processes. These 
processes enable the act(s) of governance to be 
performed.

2.	 Structure-centric: Governance emphasizes the 
formulation and execution of structures. These structures 
preserve order/continuity while steering the system in the 
desired direction. The primary objective is to establish 
sufficient structure such that the trajectory of a system 
toward desired ends is maintained.

3.	 Policy-centric: Governance emphasizes the formulation 
of policies. These policies are targeted to inculcate the 
rules, norms, principles, and behaviors that support 
regularity in performance. The primary objective is to 
invoke policies that support direction/control essential to 
achieving/maintaining system performance.

2.2. The unique role of governance for SoS design 
and implementation

Based on this discussion of governance, we can draw several 
important themes for SoS design and implementation. For 
SoS, governance must provide continuous achievement of a 
triad (see Figure 2): 

1)	 Direction: sustainment of a coherent identity (grounding 
essence of an SoS) that is capable of supporting 
consistency in the decision, action, interpretation in 
support of long-range strategic trajectory of the SoS;

2)	 Oversight: providing necessary controls, regulation, 
and performance monitoring to integrate the SoS in 
performance of the mission/purpose; and 

3)	 Accountability: ensuring that responsibilities are 
established and resources are efficiently and effectively 
utilized to support achievement of SoS aims. 

With these three pillars of governance, the achievement of 
the Process-Structure-Policy imperatives for SoS design and 
implementation of governance can be developed.

Figure 2. The SoS governance triad.

3. SOS GOVERNANCE 

Present-day SoS are increasingly interconnected and complex 
yet enable possibilities far beyond any previous capabilities. 
These enhanced capabilities exist beyond SoS member 
systems and could not have been imagined a decade ago. 
It almost goes without saying that we are experiencing 
difficulties in governing SoS as we seem incapable of 
matching the acceleration of information, interconnectedness, 
and technology driving our current state of affairs. For all the 
‘goodness’ and capabilities that SoS have brought, they have 
also generated problems that appear to be intractable given 
our current methods and frameworks to address them [1-3]. 
The time is appropriate for designing and implementing new 
frameworks to enhance our ability to more effectively govern 
present and future evolutions of SoS. 

Complex System Governance (CSG) is an emerging evolution 
of SoS seeking to enhance our capabilities for the design, 
execution, and evolution of SoS. The emerging CSG field 
offers a new and novel path forward in governing increasingly 
complex SoS and their problems. Since its inception in 2014, 
CSG has matured significantly, evolving from its early stages 
into a knowledge-rich field, contributing both theoretical 
insights and practical applications for operational SoS [4]. 
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CSG evolved from the work in System of Systems Engineering 
(SoSE) as articulated by [5, 6]. CSG’s development was partly due 
to the limitations of SoSE to consider both the ‘hard’ (technical) and 
‘soft’ (nontechnical) aspects of complex systems, moving beyond 
the strict dominance of ‘technology first, technology only’ based 
approaches and solutions. Thus, by incorporating the essence of 
Systems theory, CSG aimed to address the entire spectrum of SoS, 
spanning the entire range of socio-technical-economic-political 
dimensions. Additionally, incorporating governance moved CSG 
to a higher level of emphasis, focused on direction, oversight, 
and accountability across the entire range of socio-technical-
economic-political drivers of SoS. The CSG field is very young, 
and while much remains to be accomplished as CSG continues 
to develop, the time is appropriate to acknowledge and amplify 
CSG’s contributions to SoS governance. 

In this section, we provide a framework for designing and 
implementing SoS governance (CSG). The section begins by 
explaining the two informing fields —Management Cybernetics and 
Systems Theory— which, alongside (System) Governance, provide 
the conceptual foundations for the establishment of CSG. Next, the 
CSG Paradigm is articulated to establish the fundamental aspects 
of CSG for SoS governance. Following the paradigm introduction, 
the detailed framework for CSG is provided. This framework, built 
upon the underlying informing fields and paradigm, provides 
the essence of CSG through a set of functions and associated 
communication channels. Together, these provide for the design 
and implementation of governance for a SoS.

3.1. SoS governance at the intersection of three 
fields

Three informing fields serve as the conceptual basis for CSG [3, 
30]. In broad terms, these fields include: 

1)	 General Systems Theory, which provides the set of 
propositions (laws, principles, concepts) that serve to define 
the behavior, structure, and performance of all complex 
systems;

2)	 Management Cybernetics, which is described as the science 
of effective system structural organization targeted to assure 
system viability (continued existence); and 

3)	 System Governance, which is focused on establishing 
direction, oversight, and accountability for complex systems. 
System governance has been discussed above. We continue 
with a discussion of the two remaining fields, which will be 
briefly examined for their unique contribution to CSG as 
a foundation for the design and implementation of SoS 
governance.

3.1.1. Systems theory contributions 

The contribution of Systems Theory to SoS Governance 
is threefold. First, Systems Theory provides a strong 
and rigorous theoretical grounding. Second, Systems 
Theory has been articulated as a set of axioms (taken-
for-granted assumptions) and associated propositions 
(principles, laws, and concepts) that seek to describe, 
explain, and predict the behavior, structure, or 
performance of systems, either natural or manmade [7-
9]. While a detailed development of Systems Theory is 
beyond the scope of this chapter, it suffices to say that the 
axioms and propositions provide the intellectual basis 
for SoS governance. Third, Systems Theory provides 
a language to understand systemic deficiencies that 
impede the performance of governance functions for 
SoS. These deficiencies, known as pathologies, are 
observed as violations of underlying Systems Theory 
propositions. 

In effect, Systems Theory provides a theoretical 
grounding for the design and implementation of SoS 
governance, such that integration and coordination 
necessary to ensure SoS viability can be maintained. 

3.1.2. Management cybernetics contributions

Management Cybernetics is broadly defined as ‘the 
science of effective system structural organization’ [10-
12]. Critical to CSG is the concept of the ‘metasystem’ 
as a set of interrelated functions that must be performed 
by any viable (continuing to exist) system. The 
metasystem provides integration (allowing a system to 
act as a unity) and coordination (providing for smooth 
interaction among system constituents). Thus, a SoS is 
structured in a way that permits it to meet performance 
levels necessary to continue to be viable (exist). 

Management Cybernetics brings three important 
contributions to the design and implementation of 
governance for SoS. First, grounding in Management 
Cybernetics offers a strong theoretical/conceptual 
foundation. Management Cybernetics, at a most basic 
level, is concerned with communication and control. 
This aligns with governance to provide direction and 
monitoring as a system continues on a desirable 
trajectory. Concerning control, the cybernetic viewpoint 
suggests that control-based constraints placed on a 
system provide regulatory capacity essential to assure 
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system performance and continued viability. Second, Management 
Cybernetics forms a basis for governance structure, which includes 
functions and communication channels consistent with the achievement 
of governance for a system [10-13]. Management Cybernetics is a 
launching point for the CSG Reference Model [3]. Third, Management 
Cybernetics has been successfully applied for over five decades. 
Despite technological shifts and the rapid pace of change in SoS, 
Management Cybernetics has remained relevant and maintained a 
strong and sustained presence.

3.2. SoS governance – A next generation paradigm

CSG is the “Design, execution, and evolution of the metasystem 
functions necessary to provide control, communication, coordination, 
and integration of a complex system” [4, p. 264]. Within this definition, 
we find the underlying paradigm that brings the definition to life [2, 14]. 
The paradigm that instantiates this definition is captured in Figure 3.

First, design accentuates the necessity 
to purposely pursue the creation of the 
governance structure. While the design for 
SoS governance represents the normative 
case, execution tempers the normative design 
based on deployment in the operational 
setting. Where design meets execution, the 
result is inevitably a design that requires 
evolution (development) to make modifications 
necessary to adjust to unknowns, emergence, 
and design inadequacies for a given context of 
application. 

Second, the four aspects of CSG include 
control (the regulatory constraints that 
ensure SoS performance and trajectory), 
communication (the flow, processing, and 
interpretation of information through channels), 
coordination (focused on interaction among 
constituent entities comprising the system, and 
with those external to the system, to prevent 
unnecessary fluctuations), and integration 
(maintenance of system unity through common 
goals, accountability, and balance between 
individual constituent autonomy and system 
level interests). 

Third, viability (continued existence) is assured 
by the performance of functions (system 
imperatives that must be performed to maintain 
viability) and associated communication 
channels (the conduits that provide for the 
flow of information and interpretation within 
and external to the system). The functions and 
communication channels together comprise 
the ‘metasystem’ which institutes SoS 
governance (Figure 4). 

Fourth, functions and communication channels 
are performed by mechanisms (vehicles that 
serve to implement) that are unique to each 
system governed.

Figure 3. The SoS governance paradigm relationships.
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Central to SoS governance is the metasystem. The 
metasystem is the composite of functions and communication 
channels that are above and beyond individual systems 
that enable SoS governance. Nine interrelated functions 
and ten communication channels capture the essence 
of governance for a SoS [3, 4, 15]. These functions are 
an extension of Management Cybernetics [10-12]. The 
metasystem functions and corresponding communication 
channels are depicted in Figure 4. As the figure shows, 
there are four primary functions and five related subordinate 
functions, along with 10 communication channels [2-4, 16].

CSG is the set of 9 interrelated functions that act to provide 
governance for a complex system. These functions include:

	• Metasystem Five (M5) – Policy and Identity: provides 
overall steering (e.g., vision, purpose, mission) for the 
SoS, giving direction to ensure that the trajectory of the 
SoS is retained, provides for maintenance of identity 
(the essence of uniqueness for the SoS) responsible 
to engender consistency in decision, action, and 
interpretation, represents the SoS to the ‘outside’, 
maintains boundary conditions, and balances focus 
between short and long term SoS interests.

	• Metasystem Five Star (M5*) – System Context: 
responsible for elaborating and managing the 
specific context (factors that enable and constrain the 
performance of the SoS, e.g., support infrastructure, 
culture, stakeholders) within which the metasystem is 
embedded. Monitors and facilitates communication of 
contextual factors, within and external to the SoS.

	• Metasystem Five Prime (M5’) – Strategic System 
Monitoring: provides oversight of the system performance 
at a strategic level and determines the degree to which 
the SoS is effective in pursuit of long-range directions and 
maintenance of future trajectory.

	• Metasystem Four (M4) – System Development:  
emphasizes understanding and implications for pursuing 
and achieving the long-range development of the SoS to 
ensure future viability. Processes environmental scanning 
to determine impacts on present operations and future 
development.

	• Metasystem Four Star (M4*) – Learning and 
Transformation: concentrated on facilitating learning 
based on correcting design errors in the metasystem and 
planning for the responsive transformation of the SoS.

Figure 4. Metasystem functions and associated communication channels.
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	• Metasystem Four Prime (M4’) – Environmental 
Scanning: designs, deploys and monitors 
sensing of the environment for trends, patterns, 
conditions, circumstances, or emergent events 
with implications for both present and future 
system viability. Maintains an active model of the 
SoS environment.

	• Metasystem Three (M3) – System Operations: 
focuses on the day-to-day operations of the 
metasystem to ensure that the SoS maintains 
desired performance levels consistent with 
resource distributions to produce value by the 
SoS.

	• Metasystem Three Star (M3*) – Operational 
Performance: concerned with developing and 
monitoring system operational performance 
measures to monitor productivity achievement 
and identify and assess aberrant conditions.

	• Metasystem Two (M2) – Information and 
Communications: focused on the design 
for the flow and interpretation of information 
within the SoS metasystem and from the SoS 
metasystem to the constituent systems. Provides 
for consistent interpretation of exchanges through 
communication channels to support consistency 
in decision, action, and interpretation within and 
external to the SoS. 

One way the CSG’s nine interrelated functions 
enable SoS governance is through the metasystem 
communication channels. These channels support the 
flow of information for decision and action as well as 
produce consistency in interpretation for exchanges 
within the metasystem and between the metasystem 
and external entities. Table 1 below concisely lists the 
communication channels, their primary associated 
metasystem function, and their particular role in SoS 
governance.

Communications 
Channel and 
Associated 
Metasystem 

Function

Channel Role for SoS Governance

Command
(Metasystem 5)

	• Provides non-negotiable direction to the 

metasystem and governed systems. 

	• Primarily flows from the Metasystem 5 and is 

disseminated throughout the system.

Resource bargain/
Accountability
(Metasystem 3)

	• Determines and allocates the resources 

(manpower, material, money, methods, time, 

information, support) to governed systems. 

	• Defines performance levels (productivity), 

responsibilities, and accountability for governed 

systems. 

	• Primarily an interface between Metasystem 3 to 

the governed systems. 

Operations
(Metasystem 3)

	• Provides for the routine interface concerned with 

near-term operational focus. 

	• Concentrated on providing direction for system 

production of value (products, services, 

processes, information) consumed external to the 

system.

	• Primarily an interface between Metasystem 3 and 

governed systems.

Coordination
(Metasystem 2)

	• Provides for metasystem and governed systems 

balance and stability. 

	• Ensures design and achievement (through 

execution) of design: (1) sharing of information 

within the system necessary to coordinate 

activities, and (2) ensures decisions and actions 

necessary to prevent disturbances are shared 

within the Metasystem and governed systems.

	• Primarily a channel designed and executed by 

Metasystem 2.

Audit
(Metasystem 3*)

	• Provides routine and sporadic feedback 

concerning operational performance. 

	• Investigation and reporting on problematic 

performance issues within the system.

	• Primarily a Metasystem 3* channel for 

communicating between Metasystem 3, the 

governed systems, and the metasystem 

concerning performance issues.
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Communications 
Channel and 
Associated 
Metasystem 

Function

Channel Role for SoS Governance

Algedonic
(Metasystem 5)

	• Provides a ‘bypass’ of all channels when the 

integrity of the system is threatened.

	• Compels instant alerts to crisis or potentially 

catastrophic situations for the system.

	• Directed to Metasystem 5 from anywhere in the 

metasystem or governed systems. 

Environmental 
Scanning

(Metasystem 4’)

	• Provides design for sensing to monitor critical 

aspects of the external environment.

	• Identifies environmental patterns, activities, or 

events with system implications.

	• Provided for access throughout the metasystem 

as well as governed systems by Metasystem 4’.

Dialog
(Metasystem 5’)

	• Provides for examination of system decisions, 

actions, and interpretations for consistency with 

system purpose and identity.

	• Directed to Metasystem 5’ from anywhere in the 

metasystem or governed systems. 

Learning
(Metasystem 4*)

	• Provides detection and correction of error within 

the metasystem as well as governed systems, 

focused on system design issues as opposed to 

execution issues.

	• Directed to Metasystem 4* from anywhere in the 

metasystem or governed systems.

Informing
(Metasystem 2)

	• Provides for flow and access to routine information 

within the metasystem or between the metasystem 

and governed systems.

	• Access provided to the entire metasystem and 

governed systems.

	• Primarily designed by Metasystem 2 for utilization 

by all metasystem functions as well as governed 

systems.

Table 2. Communication channels to support SoS governance.

At first exposure to the framework for SoS 
Governance, it appears somewhat detailed and 
perhaps overwhelming. However, the functions 
and communication channels are already being 
performed to some degree in each viable (continuing 
to exist) SoS. Unfortunately, they are most likely 
performed in a piecemeal (ad hoc) fashion, without 
the benefits of purposeful and integrated design, 
oversight, and accountability. Ultimately, a SoS may 
be governed without explicit acknowledgment of the 
functions and communication channels. However, we 
suggest that if the performance of SoS governance 
is to reach higher levels, the functions and 
communication channels offer an explicit framework 
to engage in rigorous self-study and development. 

4. APPLICATION FOR DESIGN 
AND IMPLEMENTATION OF SOS 
GOVERNANCE 

Given the SoS Governance framework provided, our 
question now becomes, How can this framework be 
implemented to support the purposeful development 
of SoS governance? To answer this question, we 
focus on the identification of SoS governance 
deficiencies. Governance deficiencies are identified 
as ‘pathologies’, which are aberrations in normal or 
healthy performance of governance functions. This 
section examines the question of SoS governance 
implementation with three central topics. First, the 
identification of pathologies, across the metasystem 
governance functions is explored. These pathologies 
indicate areas where governance functions fall short 
of meeting desirable performance expectations. 
Second, several scenarios are explored where SoS 
governance might offer utility for improving the 
current and future SoS performance. Third, a set 
of practitioner guidance for the implementation of 
SoS governance is developed. This guidance offers 
‘lessons’ from our applications of CSG to improve the 
state of governance for SoS. 



108

4.1. Identification of pathologies as issues 
in SoS governance 

At a basic level, pathology is generally associated 
with health, where pathology indicates a departure 
from what is expected as normal or healthy system 
operation (e.g., the human body). With respect to SoS 
governance, a SoS pathology is “A circumstance, 
condition, factor, or pattern that acts to limit system 
performance, or lessen system viability, such that 
the likelihood of a system achieving performance 
expectations is reduced” [18, p. 253]. In essence, 
a pathology is the degradation of a system function, 
impacting the ability of the system to produce desirable 
performance. Pathology is observable as symptomatic 
of an underlying condition. Thus, a pathology is not 
necessarily something obvious. Instead, it requires 
exploration at a deeper systemic level beyond its 
surface-level symptomatic manifestation. In SoS 
Governance, a pathology is indicative of ‘violations’ 
of Systems Theory propositions (laws, principles, and 
concepts).

CSG functions and communication channels that 
provide for SoS governance offer a set of “coordinates” 
to locate the existence of a pathology. This location 
is linked to the nine different metasystem functions 
essential to the continued viability of a SoS, which 
are articulated as a set of 53 specific pathologies 
in relationship to the metasystem functions are 
articulated. These pathologies are organized around 
the nine metasystem functions and serve to identify 
aberrations to the normal (healthy) performance of 
metasystem functions (Table 3) [18, 19].

Metasystem 
function

Corresponding set of pathologies

Metasystem 

five (M5): Policy 

and identity

M5.1. Identity of system is ambiguous and does not 

effectively generate consistency system decision, 

action, and interpretation.

M5.2. System vision, purpose, mission, or values 

remain unarticulated, or articulated but not embedded 

in the execution of the system.

M5.3. Balance between short term operational focus 

and long term strategic focus is unexplored.

M5.4. Strategic focus lacks sufficient clarity to direct 

consistent system development.

M5.5. System identity is not routinely assessed, 

maintained, or questioned for continuing ability to 

guide consistency in system decision and action.

M5.6. External system projection is not effectively 

performed.

Metasystem 

Five Star (M5*): 

System context

M5*.1. Incompatible metasystem context constraining 

system performance.

M5*.2. Lack of articulation and representation of 

metasystem context.

M5*.3. Lack of consideration of context in metasystem 

decisions and actions.

Metasystem 

Five Prime (M5'): 

Strategic system 

monitoring

M5’.1. Lack of strategic system monitoring.

M5’.2. Inadequate processing of strategic monitoring 

results.

M5’.3. Lack of strategic system performance indicators.

Metasystem Four 

(M4): System 

development

M4.1. Lack of forums to foster system development 

and transformation.

M4.2. Inadequate interpretation and processing of 

results of environmental scanning – non-existent, 

sporadic, limited. 

M4.3. Ineffective processing and dissemination of 

environmental scanning results.

M4.4. Long-range strategic development is sacrificed 

for management of day-to-day operations – limited 

time devoted to strategic analysis.

M4.5. Strategic planning/thinking focuses on 

operational level planning and improvement.
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Metasystem 
function

Corresponding set of pathologies

Metasystem Four 

Star (M4*): Learning 

and transformation

M4*.1. Limited learning achieved related to environmental shifts.

M4*.2. Integrated strategic transformation not conducted, limited, or ineffective.

M4*.3. Lack of design for system learning – informal, non-existent, or ineffective.

M4*.4. Absence of system representative models – present and future.

Metasystem 

Four Prime (M4’): 

Environmental 

scanning

M4’.1. Lack of effective scanning mechanisms.

M4’.2. Inappropriate targeting/undirected environmental scanning.

M4’.3. Scanning frequency not appropriate for rate of environmental shifts. 

M4’.4. System lacks enough control over variety generated by the environment.

M4’.5. Lack of current model of system environment.

Metasystem Three 

(M3): System 

operations

M3.1. Imbalance between autonomy of productive elements and integration of whole system.

M3.2. Shifts in resources without corresponding shifts in accountability/shifts in accountability without corresponding shifts in 

resources.

M3.3. Mismatch between resource and productivity expectations.

M3.4. Lack of clarity for responsibility, expectations, and accountability for performance.

M3.5. Operational planning frequently pre-empted by emergent crises.

M3.6. Inappropriate balance between short term operational versus long term strategic focus.

M3.7. Lack of clarity of operational direction for productive entities (i.e., subsystems).

M3.8. Difficulty in managing integration of system productive entities (i.e., subsystems).

M3.9. Slow to anticipate, identify, and respond to environmental shifts.

Metasystem Three Star 

(M3*): Operational 

performance

M3*.1. Limited accessibility to data necessary to monitor performance.

M3*.2. System-level operational performance indicators are absent, limited, or ineffective.

M3*.3. Absence of monitoring for system and subsystem level performance.

M3*.4. Lack of analysis for performance variability or emergent deviations from expected performance levels - the meaning of 

deviations.

M3*.5. Performance auditing is non-existent, limited in nature, or restricted mainly to troubleshooting emergent issues.

M3*.6. Periodic examination of system performance largely unorganized and informal in nature.

M3*.7. Limited system learning based on performance assessments.

Metasystem Two 

(M2): Information and 

communications

M2.1. Unresolved coordination issues within the system.

M2.2. Excess redundancies in the system result in inconsistency and inefficient utilization of resources - including information.

M2.3. System integration issues stemming from excessive entity isolation or fragmentation.

M2.4. System conflict stemming from unilateral decisions and actions.

M2.5. Excessive level of emergent crises - associated with information transmission, communication, and coordination within the 

system.

M2.6. Weak or ineffective communications systems among system entities (i.e., subsystems).

M2.7. Lack of standardized methods (i.e., procedures, tools, and techniques) for routine system level activities.

M2.8. Overutilization of standardized methods (i.e., procedures, tools, and techniques) where they should be customized.

M2.9. Overly ad-hoc system coordination versus purposeful design.

M2.10. Difficulty in accomplishing cross-system functions requiring integration or standardization. 

M2.11. Introduction of uncoordinated system changes resulting in excessive oscillation.

Table 3. Pathologies corresponding to metasystem functions.
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Although beyond the scope of this chapter, the metasystem 
pathologies are also linked to violations of underlying Systems Theory 
propositions [20, 21]. Pathologies Identification for SoS governance 
includes assessment across three dimensions of existence, impact, 
and feasibility. Existence deals with the degree to which the pathology 
is determined to be present in a SoS metasystem. Impact deals with 
the degree of severity that the existence of the pathology suggests 
for the performance of the SoS metasystem. Feasibility addresses 
the likelihood that, given the current state of the metasystem and 
its context, the pathology could be addressed with a reasonable 
chance of successful resolution. Each pathology can be assessed 
along the three dimensions (Figure 5).

4.2. Scenarios for implementation of SoS governance

In this section, we examine three scenarios where SoS governance 
provides insights and potentially offers different alternatives 
for governance development. The first scenario examines the 
prioritization of pathologies for SoS development. This scenario 
examines the potential for direction, or redirection, of scarce 
resources based on priority development needs to address 
pathologies. The second scenario is based on maturing systems-
based capabilities for SoS governance. The third scenario examines 
providing clarity in SoS governance.

Figure 5. Three-dimensional assessment of pathologies. 

4.2.1 Prioritization of scarce resource 
investment for SoS development 

All SoS have resources that are invested to provide for 
system development and improvement. An example 
of this is the introduction of a new initiative (e.g., 
Lean Six Sigma) as something that is recognized as 
a good thing to do to improve a SoS. However, not 
recognizing what ‘issues’ the initiative would address 
does not mean it is right or a wise investment of scarce 
resources. SoS governance suggests that scarce 
resources should be applied to the SoS governance 
areas that are shown to be lacking (e.g. pathologies of 
highest existence, impact, and correction feasibility).

Scarce resources should not be squandered on 
development activities without establishing their 
specific need and priority contribution to advance 
the state of SoS governance. Two other contributions 
of SoS governance might come to fruition in this 
scenario. First, there is the possibility of ‘redirecting’ 
scarce resources, already committed, to higher 
priority pathologies in need of development. Second, 
understanding the state of SoS governance 
provides the opportunity to move beyond piecemeal 
development to pursue more orchestrated, holistic, 
and integrated SoS governance development. Instead 
of looking at development initiatives in isolation, 
each SoS governance development initiative can 
be prioritized based on governance needs. Those 
development initiatives deemed to not have a fit or 
appear infeasible should be avoided. 

4.2.2 Maturation of systems-based 
capabilities for SoS governance 

All SoS have a level of systems maturity. This level 
is a function of the experiences, activities, design, 
and execution of the SoS. If this maturity is left to 
develop on its own, there is no guarantee it will either 
be at a desirable state or have the desired rapidity 
of development. Engaging in the purposeful design 
and implementation of SoS governance contributes 
to the maturation of systems-based capabilities. 
Purposeful governance development can follow a 
cycle of (1) discovery of governance pathologies’ 
existence, impact, and feasibility for resolution, (2) 
prioritization and ranking of governance pathologies 
to be addressed with scarce resources, and (3) 
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purposefully engaging high-priority targets for development. 
The impact of this cycle is the continuing maturation of 
systems-based capabilities for SoS governance.

4.2.3 Clarity and transparency in SoS governance 

SoS governance development can enhance performance 
in several distinct ways. First, SoS governance makes the 
SoS and its context clear, explicit, and transparent. SoS 
governance development calls for the construction of a 
representation that entails making the SoS governance 
design explicit. Left at a tacit level, SoS governance can 
remain ambiguous and potentially create a source of 
confusion in the execution of governance functions and 
communication channels. In contrast, by making the SoS 
governance design explicit, transparency can create clarity 
in both design and implementation. Second, from a ‘baseline’ 
state of SoS governance, the trajectory of governance and 
the contributions of specific development initiatives can be 
assessed. This clears the path to continuing, modifying, or 
eliminating governance development initiatives based on 
performance assessment. Third, a clear and transparent SoS 
governance provides for consistency in the current and future 
trajectory of the SoS. This supports the ability to challenge 
decisions, actions, and interpretations that uphold a ‘status 
quo’ without sufficient explanation, logic, or rationale. 

Clarity and transparency are hallmarks of effective SoS 
governance. The better that SoS governance is understood, 
the increased likelihood that people will understand their 
roles, responsibilities, contributions, and accountability for 
governance functions. 

5. GUIDING PRACTICES 

This section aims to encapsulate the design and 
implementation of SoS governance. First, SoS governance 
is summarized in a concise presentation of key points. Five 
key points are offered to delineate SoS governance from 
the perspective of CSG. Second, a set of challenges and 
cautions are explored for SoS governance implementation. 
The thrust of these challenges is rooted in our experiences in 
the implementation of SoS governance.

5.1. A concise explanation of SoS governance for 
practitioners

SoS governance offers practitioners a new and novel 
approach to achieve more sophisticated governance. CSG 
was offered for SoS governance as the “Design, execution, 
and evolution of the metasystem functions necessary to 
provide control, communication, coordination, and integration 
of a complex system” [4, p. 264]. SoS governance can be 
captured in 5 fundamental themes. 

1.	 All systems are subject to the propositions (laws, 
principles, and concepts) of systems. Just as laws 
govern matter and energy (e.g., the law of gravity), there 
are propositions that explain and predict the behavior and 
performance of systems. These system propositions stem 
from General Systems Theory and are always there, non-
negotiable, unbiased, and offer explanations for system 
performance. Practitioners need to question, ‘Do we 
understand fundamental systems propositions and how 
they impact the design and performance of governance 
for our SoS?’.

2.	 All systems perform essential governance functions 
that determine system performance. Nine system 
governance functions and 10 communication channels 
were presented. These functions and communication 
channels are performed by all systems, regardless of 
sector, size, or purpose. The functions define ‘what’ 
must be accomplished for the governance of a system. 
Functions are invoked by a set of implementing 
mechanisms unique to a SoS (means of achieving 
governance functions). For example, a weekly staff 
meeting and semiannual conferences are examples 
of mechanisms. Mechanisms determine ‘how’ 
governance functions and communications channels are 
accomplished. Each mechanism can be tacit-explicit, 
formal-informal, limited-comprehensive, or routine-
sporadic in their application. Practitioners must ask, ‘Do 
we understand the mechanisms that perform essential 
governance functions and communication channels to 
produce SoS performance?’.

3.	 Governance functions can experience pathologies 
(deviations from ‘healthy’ system conditions) in 
the performance of functions and communication 
channels. There is no SoS governance system design 
that achieves perfection in execution. Irrespective of 
the ‘greatness’ of a system design, execution relies on 
too many variabilities to ‘assure’ complete realization of 
design intentions. The effectiveness of governance is 
dependent on the efficacy of identification, assessment, 
response, and evaluation of inevitable pathologies. 
Governance supports the achievement of resilience 
and robustness to withstand and persevere in the 
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midst of external turbulence and internal system flux. Well-
governed systems address pathologies as they occur, while 
excellent systems continually design out governance pathologies 
before they escalate into crises. Practitioners must ask, ‘Do we 
purposefully design and continually redesign our SoS to address 
and preclude pathologies?’. 

4.	 Violations of systems propositions in the performance of 
governance functions carry consequences. System propositions 
cannot be ignored. Regardless of noble intentions, unconscious 
ignorance, or willful disregard, violating system propositions 
carries real consequences for system performance. In the best 
possible case, violations of systems propositions will only degrade 
performance. In the worst case, violations of systems propositions 
will escalate to cause catastrophic consequences or, worse yet, 
total system collapse. Practitioners must ask, ‘Do we understand 
deficient SoS performance in terms of violations of underlying 
system propositions affecting functions?’.

5.	 System performance can be enhanced through the purposeful 
development of governance functions. When SoS fail to 
meet performance expectations, assessment of contributing 
deficiencies (pathologies) in governance functions offers novel 
insights into the deeper sources of failure. SoS performance issues 
can be traced to issues in governance functions and eventually to 
violations of underlying system propositions. Through purposeful 
development, governance can proceed from a more informed 
position. Practitioners must ask, ‘How might our SoS governance 
functions and communication channels be explored to determine 
violations of system propositions?’.

While not a complete set of themes for SoS governance, the provided 
set captures the essence of the new CSG field for guiding SoS 
governance design and implementation.

5.2. Challenges and cautions for SoS governance 
implementation

The design and implementation of SoS governance is not a simple, 
mundane, or low-resource endeavor. Given the enormity of a SoS 
governance development undertaking, there are several challenges 
that practitioners should consider. Our current experience in the 
application of CSG has provided the following insights for those 
contemplating such an undertaking for SoS governance development 
[2]:

1.	 SoS governance development is not the Entry Point: As 
promising as SoS governance might be for advancing system 
understanding and performance, it is not the highest priority for 
those who might be considering engagement. Instead, the priority 
for practitioners is focused on ‘their problems’. Thus, focusing 
on the role of SoS governance in addressing relevant system 
problems is likely to generate greater engagement.

2.	 SoS governance engagement is not an all-or-
nothing endeavor: Building on the results of 
initial explorations of SoS governance and their 
implications, numerous potential developmental 
paths can be pursued. Having SoS governance 
postured as an ‘all-or-nothing’ endeavor for SoS 
development is flawed. Instead, the development 
path might pursue a spectrum of activities 
(education, training, limited assessment, 
modeling, etc.) and developmental levels 
(practitioner, system, project, entity, enterprise, 
problem) to enhance SoS governance.

3.	 SoS governance is not an ‘In-Addition-To’ 
endeavor: Unlike more traditional system 
development activities that seek to address 
a new concern by introducing a totally new 
initiative (e.g. Lean, Six Sigma, TQM, CRM, 
AI Adoption, Internet of Things, etc.), SoS 
governance functions and communication 
channels are already being performed by a SoS 
that is viable (exists). The functions may not be 
articulated or produce desirable performance, 
but nevertheless, they are being performed to 
some degree. SoS governance is focused on 
understanding and potentially improving what 
a SoS is already performing. Therefore, the 
language, thinking, and explorations of SoS 
governance are applied to an existing SoS where 
they are already being ‘tacitly’ performed.

4.	 SoS governance development time and risk 
should initially fall on the guide: It is unrealistic 
to expect SoS participants to fully engage in a 
SoS governance development initiative in terms 
of investment of time and acceptance of ‘risk of 
failure.’ Instead, the SoS governance facilitator 
should bear the initial burden of time investment 
and risk mitigation as opposed to implementing 
SoS. This division should continue until the value 
of investment (time) and utility of SoS governance 
development combine to produce a risk-value-
cost trade-off perceived as being within reason 
by practitioners. SoS governance development 
should be conducted in a ‘safe to fail’ mode, 
where there are possibilities to take risks without 
the fear of retribution for falling short.



113

6. CONCLUSIONS 
Designing and implementing SoS governance is not trivial. However, for those practitioners and entities willing to boldly engage in 
SoS governance development, the potential for enhanced SoS performance is substantial. Four primary points of emphasis exist 
for this exploration of SoS governance and implementation. First, SoS governance provides direction, oversight, and accountability 
and was presented as distinctly different from traditional management. Second, SoS governance was presented through a set of 
9 metasystem functions and 10 communication channels that produce governance and support continuing system viability. Third, 
the SoS governance functions are subject to experiencing pathologies as deviations in normal or healthy conditions. Pathologies 
degrade SoS performance and can eventually lead to catastrophic failure. Pathologies can be assessed for their existence, 
impact, and the feasibility of successful resolution. Fourth, the contributions of SoS governance include permitting an efficient 
allocation of scarce development resources, maturing systems-based capabilities, and providing transparency in the purposeful 
design, execution, and development of SoS governance. Engaging SoS governance development is not a trivial endeavor.  The 
required resources, will, and commitment for SoS governance development are extensive. However, the potential for improvement 
in SoS performance is significant.
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1. INTRODUCTION
This chapter examines the factors and methods employed in 
planning and integrating the technical aspects of a system 
of systems (SoS). Notably, the lifetime of a SoS may extend 
over many years, beginning with modest initial capabilities 
that continually evolve to meet the needs of new users and 
usages. A well-conceived planning exercise aims to create 
a SoS foundation that accommodates near-term connectivity 
and services for early users while not constraining future 
anticipated or unidentified needs. 

While planning and integrating a SoS shares many activities 
similar to those used in developing a traditional system, a 
SoS has unique characteristics that contribute to its utility and 
complicate its planning and integration [1-5], as discussed in 
Chapter 1, which occurs in multiple, interdependent activities. 
The following section discusses planning considerations. 
Section 3 examines planning for interoperability, Section 4 
discusses SoS integration, and lastly Section 5 provides the 
conclusion.

2. SOS PLANNING CONSIDERATIONS

2.1. SoS performance and behavior features

Before describing planning activities, discussing key features 
that impact planning is necessary. These features establish 
the requirements and constraints for SoS architecture, 
functionality, safety, security, operations, and utility. Table 1 
lists key SoS factors and their planning influences.

Factor Concern Planning Function

Accessibility
The services and products produced by the SoS are easily 

accessible to SoS users.
Determine what services and resources clients need and the 

means and constraints for providing them.

Adaptability
The SoS interactively changes its behaviors and connections to 

suit individual users.
Determine what adaptability is needed and how to provide it. 

Affordability
The degree to which the lifetime cost of the SoS is within 

anticipated budget constraints.
Establish budgets for development, operations, and 

maintenance.

Availability
SoS services and resources can be reasonably assumed to be 

available whenever needed.
Determine the necessary availability of services and 

resources that meet client expectations.

Composability
SoS components may be connected in many ways, as defined by 

user goals and requirements.
Architecture planning that assures the composability of 

services and applications.

Confidentiality
Sensitive data and services are made available only to 

designated users.
Determine what content, services, and applications are 

sensitive and the approach to assuring confidentiality.

Disaster management
Preparing for and executing processes and procedures for 
recovering operations should some or an entire SoS be destroyed 

by a large-scale disaster such as a fire, flood, or earthquake.

A catastrophic disaster may damage data and computational 
resources. Determine what must be protected and a plan for 

providing that protection.

Elasticity
The SoS architecture enables automatic provisioning and release 

of resources that meet changing workloads.
Planning the SoS architecture to accommodate flexible 

allocation of resources to match workloads.

Extensibility
The degree to which a SoS can provide for future resources, 

applications, services, and behaviors.
Plan for a SoS architecture that can seamlessly accommodate 

future resources and services.

Interoperability
The ability of constituent systems to exchange and use 

information and services.
Determine how interoperability will be accomplished in new 

and legacy components.

Maintainability
The degree to which resources in the SoS can be maintained for 

correcting, preventing, and eliminating faults. 
Establish the processes, roles, responsibilities, and audits 

necessary for evaluating and restoring SoS performance.

Performance
Ensuring that the SoS meets performance requirements under 

expected usage and environmental conditions.
Evaluate client performance requirements and plan the 

needed SoS architecture and resources.
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Factor Concern Planning Function

Quality of service
A measure of the effectiveness and performance of a service 
or the SoS for performing tasks and meeting user expectations.

Evaluate the quality of service expected by clients and 
plans for measuring and making repairs or modifications to 

maintain it.

Real-time
Some SoS applications may require tight time constraints to 

complete services or deliver products.
Plan for edge or fog computing to accommodate hard real-

time applications.

Repairability
The SoS has features that support the diagnosis and repair of 

failed or malfunctioning resources.

Related to maintainability, plans that make the SoS 
diagnosable and repairable while preserving required 

availability.

Resilience
The ability of the SoS to continue providing useful services during 

disruption and to repair any damage post-disruption.
Plans for incorporating mechanisms that preserve functionality 

in the presence of resource faults and cyberattacks.

Safety
An SoS that implements safety-critical functions requires special 
attention to ensure those functions remain controlled and safe.

Plan to add features that protect safety-critical functions.

Scalability
This attribute is related to elasticity; scalability measures how well 

the SoS can adapt to increasing workloads.
Evaluate and plan for the temporary allocation of resources 

needed by a client workload.

Security
Protecting the SoS from unauthorized access and ensuring data 

integrity and confidentiality.

Cybersecurity plans include audits, detection methods, user 
training, and continual testing. Planning for cyber-resilience 

involves means for learning and adapting to new attacks.

Spectrum management
Efficient electromagnetic spectrum management in wireless 

networks to avoid interference and ensure communication.

Plan the use of the electromagnetic spectrum in a way 
consistent with SoS communication requirements and 

regulatory provisions.

Trust Reliance on the SoS’ capability, honesty, and reliability. 
Determine the extent and means necessary to ensure clients 

trust interactions with other clients and SoS resources.

Usability The SoS is user-friendly and easy to operate.
Plan for intuitive and easy-to-use client interfaces, such 
as web services, RESTful applications, and application 

programming interfaces.

Users and usages

SoS client needs and expectations drive the need for resources 
and composability. Increasing numbers of users and threads 
directly affect the quantity and type of resources and their 

interoperability. 

Plan for changes and growth in client services and resources.

Verifiability
Ensure that the SoS was built correctly and provides the expected 

capabilities.
Develop plans for performing end-to-end testing of SoS 

missions, capabilities, and threads.

Table 1: Planning Considerations.
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2.2. SoS planning activities

Figure 2 shows the interaction between planning actions that 
are defined in Table 3. Strategic, tactical, and operational 
planning are decomposed into their subplans. Lower-level 
plans tend to have a single purpose, and their details are 
found in Table 3. Long-term planning extends the goals of 
strategic planning. Retirement planning is developed from 
strategic and tactical planning. Lifecycle planning is informed 
by tactical planning. Each plan may address one or more of 
the factors in Table 2.

Figure 2: Ontological structure showing SoS concepts and relationships. 
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Planning 
Activity Purpose

Strategic

Strategic planning establishes the process for defining an organization’s future direction, needs, and goals. These plans align, 
motivate, and engage internal and external stakeholders with strategic priorities that reflect mission goals and priorities. A strategic 
plan is the basis for understanding and accommodating extensibility, adaptability, affordability, availability, resilience, scalability, 
security, confidentiality, and safety. Strategic plans are often static or minimally changed during the lifetime of a SoS. As strategic 

plans define the business case and overall missions, they are rarely changed, although capabilities and threads may be changed.

This activity analyzes and assesses the SoS value proposition, missions, trends, best practices, current developments, and gaps; 
develops a strategy that aligns key stakeholders with missions and the resources needed to achieve them; establishes the processes 

required to accomplish the strategy; and monitors and evaluates plan progress and replans when necessary.

The plan includes a statement of purpose, analysis of strengths, weaknesses, opportunities, and threats.

Tactical

Tactical plans map strategic plans into the near-term goals, strategies, and micro-strategies of specific organizations for achieving 
those goals. These plans include considerations of SoS processing and storage resources, communication, elasticity, maintainability, 
and interoperability expected of the SoS for carrying out real-time and non-time-critical services and product generation, evaluating 
product quality, and monitoring SoS performance and resilience. Tactical plans adapt to new needs and realities during the SoS 

lifetime and are more volatile than strategic plans.

Tactical planning includes creating goals, allocating responsibilities, establishing timelines, determining resources, and assigning 
tasks. 

Operational

Operational plans establish the flow of activities that achieve tactical plans. These plans often cover a few months and provide the 
guidance needed by enterprise managers for operating the SoS. Operation planning comprises the detailed planning of how the SoS 
will operate in real-world scenarios. This includes defining workflows, processes, and system interactions to ensure smooth operations. 

This activity initiates Capability-Based, Lifecycle, Risk Management, and interoperability planning.

Capability-Based 
Focuses on identifying and developing the capabilities required by the SoS. This involves defining 
the desired outcomes and ensuring that the systems within the SoS can achieve these capabilities.

Lifecycle 

Focuses on managing the entire lifecycle of the SoS, from the initial concept through development, 
deployment, operation, and eventual decommissioning. This ensures that the SoS remains effective 
and relevant throughout its lifespan. Lifecycle planning primarily takes input from strategic and 

tactical planning.

Risk Management 
Involves identifying, assessing, and mitigating risks associated with the SoS. This ensures that 
potential issues are addressed proactively to minimize their impact on the SoS. Risks are often 

expressed as the likelihood of an unwanted event and the impact of the event if it happens.

Interoperability
Ensures that the systems within the SoS can work together seamlessly. Plans involve defining 

standards, protocols, and interfaces facilitating system communication and integration.

Long-Term

These plans explore SoS options and potential uses many years beyond strategic plans. The primary distinction between long-term 
and strategic plans is that strategic plans are the means for achieving an organization’s expected future needs. In contrast, long-term 
plans are a form of unconstrained brainstorming. Strategic plans are on the path that develops SoS requirements and use cases, while 

long-term plans are unfunded candidates for future goals.

Short-Term
Short-term plans decide the capabilities available to SoS clients at a point in time. These plans directly influence SoS requirements, 
personnel assignments, and near-term tasking. An example might be planning the delivery of a specific service used throughout the 

SoS.

Validation
Describes the facilities, configuration, resources, test equipment, personnel, test scenarios, and success criteria associated with 

validating expected SoS functionality and requirements.

Deployment

Details the plans for how the SoS will be deployed.  Deployment options include running the new system alongside an old system, 
setting up the new system to slowly perform functions of an old system, shutting down an old system and the new system takes 
over, gradually modifying an old system to the new system, having the new system shadow an old system but is hidden to users, or 
progressively enabling and testing components of the new system available to users when an old system doesn’t exist. Deployment 

may also occur with integration.
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3. PLANNING FOR INTEROPERABILITY
An essential aspect of SoS planning involves understanding 
the form and degree to which services and resources must 
interoperate [7]. Interoperability can occur at different scales 
and times and can be applied differently to individual clients 
and services. Importantly, interoperability must exist with legacy 
systems that may or may not provide the necessary services. 

Commonly, four levels of interoperability may be implemented 
in a SoS.

	• Foundational interoperability is the simplest form in 
which data are shared among systems in an SoS, but 
the data are not interpreted. Human users interpret 
exchanged data for use by data clients. It involves 
establishing communication links and protocols that 
enable data transmission between systems. 

	• Structural or syntactic interoperability comprises 
consistent data formats that all systems within the SoS 
understand. This form of interoperability enables all 
systems to retrieve, interpret, and process information. 
It ensures that the data syntax, such as data formats 
and communication protocols, are standardized so that 
systems understand and process the data correctly.

	• Semantic interoperability assures that the systems 
within an SoS share a common conceptual understanding 
of data and messages. It also removes the possibility of 
misinterpreting shared information. It involves defining 
common data models, vocabularies, and ontologies to 
ensure that the data exchanged has the same meaning to 
all participating systems.

	• Organizational interoperability enables consistent 
data sharing across an SoS aligned with common goals, 
needs, expectations, usage, workflows, and enterprise 
governance.

Thread execution needs and timelines strongly influence SoS 
interoperability, which impacts SoS architectural decisions, 
communication options, resilience, maintainability, safety, 
and availability. 

Considerations and accommodations for interoperability are 
captured in tactical plans as capability statements that describe 
information sources, uses, and destinations. For example, 
a mission goal to reduce aircraft accidents is associated 
with capabilities for collecting heterogeneous aircraft sensor 
data, collecting weather data, distributing data to situational 
awareness processors, decision making, and real-time air traffic 
management control. 

Operation and short-term plans describe the technical means 
for accomplishing interoperability as tactical capabilities dictate. 
Following the air traffic control example above, interoperability 
may involve service and message brokers, middleware, data 
exchange standards and protocols, web services, and proxy 
servers, among many other options. Real-time traffic control 
needs information exchanges guaranteed to be free of delays 
and extended outages. 

Interoperability impacts the overall performance of the SoS. 
Interoperability enhances the adaptability of SoS, allowing it 
to incorporate new systems and technologies. Planning must 
be flexible to accommodate changes and upgrades. Also, 
interoperability ensures seamless integration of constituent 
systems, which is crucial for effective SoS operation. Planning 
must consider how to optimize performance through effective 
interoperability by mitigating or eliminating challenges resulting 
from:

	• Legacy systems may use outdated technologies and 
communication protocols. Legacy can be challenging 
to interoperate with newer systems unless significant 
changes or specialized middleware are used to translate 
between legacy and newer system syntax and semantics.

Planning 
Activity Purpose

Support
Plans the means and staffing to support the operation of the SoS after it is deployed. Support may include service functions that 

monitor performance, error rates, usage, and outages. Support planning may consist of plans for training operators and users.

Retirement Planning
Describes the plans for retirement and disposal of the SoS. Retiring a SoS does not necessarily imply retiring constituent systems 
but could remove the framework and utilities associated with SoS interoperability and support. Importantly the plan should address 
continuation of client services on another SoS. Planning for retirement begins with strategic planning and is detailed in tactical planning.

Table 3: Planning activities details.
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	• Interoperability requires standardized communication 
protocols (e.g., HTTP, FTP, SOAP, REST, TCP/IP, UDP, 
ICMP, etc.) to facilitate information exchange between 
systems. Planning must define these protocols to ensure 
smooth interactions. Managing data at scale involves 
coordinating and consolidating data from multiple sources. 
A particular challenge is providing interoperability with 
legacy data stored in siloed databases with obsolete 
formats that depend on outdated database management 
software.

	• Heterogeneous programming languages, operating 
systems, and hardware used by different systems may 
not readily interoperate.

	• Systems may use different data formats (e.g., JSON, 
XML, plain text, CSV, proprietary formats). Translating 
those formats for interoperability can be difficult and can 
slow exchanges.

	• Communication and processing bottlenecks may slow 
exchanges, especially as the SoS scales upward. 
Bottlenecks can worsen when layers of middleware add 
overhead and additional communication delays.

	• Semantic misunderstandings are perhaps the most 
significant challenge of interoperability because they 
prevent proper interpretation of exchanged information. 
Misunderstandings are especially problematic when data 
from different domains are exchanged.

4. ARCHITECTURE AND INTEGRATION 
PLANNING
A SoS architecture comprises enterprise resources and their 
connections as required for providing threads that achieve 
mission capabilities. Accommodating the attributes noted 
in Chapter 1 places additional demands on architectural 
planning. In simple terms, planning the physical architecture 
of an SoS involves choosing options that efficiently balance 
opposing attributes. Unfortunately, several realities complicate 
architecture planning.

Consider a federated architecture to illustrate the complexities 
in SoS structure and interoperability. A federation is a form 
of collaborative SoS in which multiple autonomous systems 
work together to achieve a common objective. Each system 
within the federation operates independently of the other 
systems using its data, processes, and control. Collaboration 
occurs because of well-defined exchange and application 
invocation interfaces. Systems in loose federations operate 

almost entirely independently of each other and coordinate 
through data exchanges and authentication. Tight federations 
comprise a central authority for coordinating the activities of 
autonomous systems. Hierarchical federations are structured 
like tight federations, but the central authority also determines 
enterprise policies. Peer-to-peer federations have no central 
authority, and coordination is managed by consensus and 
predefined protocols. Lastly, hybrid federations are a mix of 
tightly and loosely federated systems that a central authority 
may coordinate.

Planning resilience, availability, cybersecurity, maintenance, 
disaster recovery, and safety accommodations entails knowing 
and predicting potential disruptions when possible and having 
procedures to manage the unexpected. Further complications 
arise when the SoS executes threads that must be completed 
at time scales that cannot tolerate long outages. The planning 
process must anticipate the need for robust architectures and 
develop, test, and revise contingency plans as unexpected 
fault conditions and novel cyberattacks occur.  Commercial 
cloud providers offer tools, services, and architecture 
recommendations for building robust and responsive SoS. 
An architecture plan could include a cost-benefit analysis of 
engaging a commercial cloud vendor versus building a SoS in-
house. 

Architecture planning should also consider usages outside 
mission applications, such as application and service 
development and deployment, service discovery, maintenance, 
performance and security monitoring, and auditing. Commercial 
cloud providers also offer these capabilities. A plan could 
include evaluating the cost-benefit of using a commercial 
service provider or building needed capabilities in-house. 

Planning a SoS configured as a cloud needs a process for 
determining the cloud type, e.g., public, private, hybrid, or 
community:

	• Public cloud environments use information technology 
infrastructure and services provided by third-party vendors 
over the internet. Public cloud resources are shared among 
multiple organizations and individuals. Key features include:

Scalability
Virtually unlimited scalability to 

meet varying demands.

Cost Efficiency
Operates on a pay-as-you-go 
model, reducing upfront costs.

Accessibility
Accessible from anywhere with 

an internet connection.

Management
The cloud provider manages and 

maintains the infrastructure.
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	• Private clouds are dedicated to a single organization, 
providing exclusive access to computing resources. They 
can be hosted on-premises or by a third-party provider. 
Key features include:

A SoS that executes real-time or time-critical threads may 
need to consider high-performance, low-latency architectures 
such as edge or fog architectures. Edge computing reduces 
latency by physically moving computing and data storage 
close to the data source or user. Fog computing reduces 
latency by using geographically distributed computing that 
extends cloud computing to network edges. A plan should 
include a process for evaluating architectural options related 
to the performance of near-term and future mission threads. 

Lastly, SoS resources, applications, and services are 
connected in ways that are consistent with the attributes in 
Section 1. Other factors [2] impacting SoS integration are 
shown in Table 4.

Security
Enhanced security and control 

over data and applications.

Customization
Tailored to meet specific 

organizational needs.

Compliance
Easier to meet regulatory and 

compliance requirements.

Management Can be managed internally or outsourced.

	• Hybrid clouds combine public and private clouds, 
allowing data and applications to be shared between 
them. This approach offers flexibility and optimization of 
existing infrastructure. Key features include:

Agility
Ability to quickly adapt to 

changing business needs.

Scalability
Leverages the scalability of public 

clouds while maintaining control over 
critical data in private clouds.

Cost Optimization
Balances cost and performance 
by using the most appropriate 

environment for each workload.

Business Continuity
Enhances resilience by distributing 

workloads across multiple environments.

	• Community clouds are shared among multiple 
organizations with similar requirements, such as 
regulatory compliance or security needs. The participating 
organizations or a third party manage them. Key features 
include

Shared Resources
Cost-effective sharing of resources 

among community members.

Compliance
Tailored to meet specific regulatory and 

compliance needs of the community.

Collaboration
Facilitates collaboration and data sharing 
among organizations with common goals.

Security
Enhanced security measures tailored 

to the community's needs.

Factor Purpose

Stakeholders

Stakeholders have diverse needs and goals that 
must be aligned for successful SoS integration. Their 
requirements drive the design and functionality of 
the SoS, ensuring that the integrated system meets 
the collective objectives. Additionally, customers 
for mission data products, suppliers of information 
needed to produce mission data products, quality 
assurance monitors, developers, verification and 
validation teams, security specialists, accountants, 
system maintainers, auditors, and managers who 
need access to specific SoS data, status, and 

physical resources.

Architecture 
Development

Besides defining physical and software 
composition, a plan should identify the process 
by which a SoS architecture is developed and 
reviewed, as well as the trades needed to allocate 
functions and data. The architecture defines the 
structure and interaction of constituent systems 
within the SoS. A well-designed architecture 
facilitates seamless integration, ensuring systems 

can work together effectively.

Integration 
Resources

SoS integration sometimes requires special 
equipment, facilities, and staffing for installation 
and checkout. Adequate resources, including 
funding, personnel, and technology, are crucial 
for integration. Limited resources can hinder 
integration, leading to delays and suboptimal 

performance.

Integration 
Processes

Integration processes comprise the steps to 
perform integration using integration resources. 
Initial process descriptions are usually detailed 
enough to determine the integration resources. 
Process specifics are developed during operation 

and short-term planning.

Integration 
Requirements

Mission functions will have requirements related to 
accuracy, throughput, capacity, timeliness, safety, 
etc. Planning should establish how requirements 

are elicited, validated, tracked, and allocated.
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Table 4: Factors impacting SoS integration.

Factor Purpose

External 
Influences

External factors such as regulatory changes, 
technological advancements, and market 
dynamics can impact SoS integration. These 
influences must be considered and managed to 

ensure successful integration.

Risk 
Management

A risk management plan should be developed for 
all aspects of the SoS. Regarding integration, risks 
may be associated with late deliveries, failures and 
defects, inconsistencies, and assembly errors. A 
risk management plan provides the process for 

collecting, bookkeeping, and retiring risks.

V&V

The type of SoS will determine the extent to which 
verification and validation (V&V) are possible. 
At minimum, systems should perform V&V on 
interface protocols to ensure compliance with 
SoS agreements and standards. A V&V plan 
explains what is checked and the success 
criteria. Additionally, planning should indicate 
V&V roles and responsibilities and the process for 

documenting and adjudicating V&V failures.

Tailoring 
and Reuse

Tailoring involves customizing integration 
processes to fit specific needs, while reusing 
leverages existing components and processes to 
save time and resources. Both practices enhance 

efficiency and reduce integration costs.

Certification 
and 

Accreditation

Certification and accreditation ensure that the SoS 
complies with relevant standards and regulations. 
This process validates the safety, security, and 

performance of the SoS, assuring stakeholders.

A plan should define the process for selecting the SoS integration 
best suited for thread execution as shown in Table 5.

Option Purpose

Data 
Integration

Data integration focused on maintaining data 
consistency across the SoS. Ideally, data should 
be standardized across all systems. However, 
middleware or similar services can be employed 
when system-level standardization is not feasible.

Point-to-Point

Point-to-point integration comprises direct 
connections between resources. This method 
is straightforward, but inflexible, leading to 

complexities as the SoS grows.

Star

Star integration is associated with making direct 
connections between all resources. It provides a 
high degree of connectivity but may be difficult to 

manage.

Hub-and-
Spoke

Hub-and-spoke integration has a central hub that 
connects resources. It simplifies management and 

reduced the number of connections needed.

Vertical
Vertical integration connects systems within an 
organization. This approach is suitable within the 

same organizational boundaries.

Horizontal

Horizontal integration connects systems across 
organizations. It is ideal for integrating systems 
that need to collaborate across organizational 

boundaries.

Middleware

Middleware is glue software that smooths 
connectivity between software components that 
may not share common data semantics or syntax. 
It is useful for integrating heterogeneous systems 

and data.

SOA

Service-oriented integration connects services to 
clients through a service broker, hiding transaction 
details and the client's and the service’s location. 
Universal Description, Discovery, and Integration 
(UDDI) is a standard for specifying, publishing, and 

discovering web services.

SOAP

Simple Object Access Protocol (SOAP) is a 
transport-independent web service messaging 
protocol that is suitable for scenarios requiring 

robust security and transaction compliance.

REST

Representational State Transfer (REST) is a 
simple, scalable, flexible, stateless, client-server 
communications protocol. REST is ideal for web-
based applications requiring lightweight and 

efficient communication.

Table 5: Thread execution options.
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5. CONCLUSION
This brief chapter overviewed the factors and trade considerations necessary in planning a SoS development. It discussed 
multiple plan phases consistent with traditional systems engineering. Each plan phase defines processes eliciting and evaluating 
increasingly finer levels of design and operational detail.

Ideally, the chosen architecture and integration approach 
should provide capabilities for early users while not 
constraining future growth. There is a trade between 
upfront design and implementation costs versus increased 
lifecycle costs. Creating flexible architectures involves more 
complicated integration mechanisms with greater upfront 
costs and risks. However, restrictive architectures that are 
less costly and risky in the beginning will be more expensive 
to update in the future.
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Abstract

Testing and evaluation (T&E) of a System of Systems (SoS) present unique challenges that differ 
significantly from those encountered in traditional system-level testing. This chapter presents a 
comprehensive approach to SoS T&E, emphasizing the need for adaptive frameworks, robust modeling 
and simulation techniques, and the integration of operational context throughout the test lifecycle. Key 
considerations include interoperability, dynamic configuration, and the evaluation of performance 
under realistic, mission-driven scenarios. The chapter also touches on metrics for success, validation 
strategies across heterogeneous systems, and the importance of stakeholder collaboration. The 
goal is to ensure that the SoS meets overarching mission requirements while maintaining reliability, 
scalability, and resilience in complex environments.
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1. INTRODUCTION
This chapter provides guidance as to how to Test & Evaluate 
System of Systems (SoS). Test and Evaluation (T&E) of a 
SoS is a complex and dynamic process that involves 
multiple stakeholders, integrating multi-proprietary and 
thus independent yet interdependent systems to achieve 
a common goal. Unlike traditional system testing, SoS 
T&E must address emergent behaviors, interoperability 
challenges, and evolving operational requirements [1, 2]. 

From the customer’s perspective, T&E ensures that the 
SoS meets mission objectives, operational effectiveness 
(mission success), and suitability within real-world 
constraints. Customers, typically government agencies or 
large enterprises, focus on validating performance, risk 
mitigation, and ensuring compliance with regulatory and 
security standards [3]. Conversely, from the contractor’s 
perspective, SoS T&E involves balancing system integration, 
cost, schedule, and technical feasibility. Contractors 
are responsible for meeting contract requirements while 
ensuring that constituent systems function cohesively 
within the broader SoS architecture. They must navigate 
evolving customer needs, technological uncertainties, and 
interoperability constraints across different vendors and 
legacy systems.

Effective T&E of an SoS requires, to the greatest extent 
possible, the delineation of predictable performance 
from whatever emergent phenomena can and will occur 
through life. This requires a rigorous test methodology, 
including modeling and simulation, live testing, and iterative 
assessments throughout the SoS lifetime and the lifecycle 
of each of its constituent systems [4]. Both customers 
and contractors must engage in collaborative planning, 
leveraging agile and adaptive T&E strategies to address the 
complexities of SoS environments.

2. CONCEPTS THAT AFFECT SOS TEST
The difference in treatment between traditional and SoS 
T&E can be substantial. Therefore, we should consider 
the difference when we develop T&E plans. Generally, the 
constituent systems being integrated have their own levels 
of maturity in terms of technology, manufacturing, and 
interoperability readiness levels. This will make it challenging 
to synchronize the different lifecycles to ensure that the SoS 
can be tested with a stable functional, configuration, and 
allocated baselines. This will require close coordination with 
the customer(s) as part of the SoS governance process. As 
shown in Table 1, we can identify areas where we should pay 
close attention due to the integration issues that arise when 
building a SoS. Note that some of these considerations may 
also apply to traditional systems.

The importance of managing the overall SoS baseline in 
coordination with the constituent system baselines cannot 
be overstated. Failure to achieve this generally results in cost 
overruns and failure to meet mission objectives.



137

Traditional Systems 
Engineering

System of Systems 
Engineering T&E Considerations

Purpose
Development of a single system 

to meet stakeholder needs 
and defined performance.

Evolving new SoS capability by 
leveraging synergies of legacy systems.

Consider the governance model and the 
requirements for resourcing for the customer(s).

System Architectures
System architecture established 

early in lifecycle and 
remains relatively stable.

Dynamic reconfiguration of 
architecture as the needs change; 
use of service-oriented architecture 

approach as enabler.

Define the SoS boundary and provide a T&E 
Master Plan that pays close attention to the 

interoperability between constituent systems 
and the satisficing of the mission of the SoS.

System 
Interoperability

Defines and implements specific 
interface requirements to 

integrate components in system.

Constituent systems can operate 
independently of SoS in a 

useful manner. Protocols and 
standards essential to enable 

interposable systems.

Develop architecture representations early that 
identify the interoperability metrics required 
to assess fitness for purpose. Integrating a 
SoS can sub-optimize performance overall. 

Map systems to mission capabilities and 
identify threshold and objective measures.

Acquisition & 
Management

Centralized acquisition and 
management of the system.

Constituent systems separately 
acquired and continue to be 

managed as independent systems.

Ensure that the governance model for the SoS is 
resourced to effectively build and execute a T&E 

plan. Consider impact to constituent systems 
and the unforeseen need to account for baseline 
changes. This implies that it may not be possible 

to conduct intrusive testing on constituent 
systems or stop services to perform testing at the 

edge as the behavior of the SoS will change. 

Table 1: T&E Considerations for SoS (adapted from [5]).

3. RISK MANAGEMENT IN SOS 
TESTING
The T&E of a SoS is an inherently complex and 
dynamic process that requires a structured yet 
flexible approach. From the customer’s perspective, 
SoS T&E ensures that mission objectives, security, 
and operational effectiveness are met. From the 
contractor’s viewpoint, managing cost, schedule, and 
technical risks is a critical challenge. By employing 
a mix of modeling and simulation, agile testing, 
interoperability assessments, and adaptive risk 
management strategies, stakeholders can enhance 
the reliability and performance of SoS. As technology 
advances, future SoS testing methodologies will likely 
incorporate artificial intelligence, digital engineering, 
and autonomous testing frameworks to further improve 
efficiency and effectiveness.

Risk management is integral to SoS T&E, as system 
interdependencies can introduce unintended failures or 
mission-critical risks. Both customers and contractors 
must collaborate on risk identification, mitigation, and 
contingency planning throughout the T&E process.

3.1. Identifying emergent risks

Emergent behavior is a defining characteristic of SoS, where individual 
components may function correctly in isolation but cause unintended 
consequences when integrated. Typically, the constituent systems are 
already operational and the difference between integrating green field 
(new) systems and those that are already operationalized means that 
the behaviors will change, whether positive or negative emergence 
will be the underlying discovery. Identifying such risks early through 
system-of-systems hazard analysis (SoSHA) and failure mode and 
effects analysis (FMEA) is essential [3].

3.2. Stakeholder coordination and communication

SoS risk management requires strong coordination between 
government agencies, contractors, and third-party vendors. Clear 
communication channels and shared risk registers help stakeholders 
to align risk priorities and mitigation strategies [4]. This is more 
challenging for SoS than traditional systems as the power of each 
stakeholder will vary as will the lifecycle stage of each constituent 
system and the programmed resources for remediation and 
integration. Tools such as Stakeholder analysis can help mitigate 
problems early through identification of power and influence leading 
to a more coherent governance model. 
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3.3. Adaptive risk mitigation strategies

Unlike traditional system testing, SoS risk mitigation 
strategies must be adaptive and iterative as the 
constituent systems are rarely aligned in stage 
of development, upgrade, obsolescence, and 
capability. The implication of this is that the Test and 
Evaluation Master Plan (TEMP) should be dynamic in 
nature. Continuous monitoring, predictive analytics, 
and rapid-response testing frameworks help detect 
and address risks as they emerge [2].

3.4. Balancing cost, schedule, and 
performance risks

Contractors often face challenges in balancing 
cost constraints, program schedules, and technical 
performance requirements. Risk-informed decision-
making frameworks help prioritize testing efforts, 
ensuring that critical risks are addressed without 
exceeding budget or time constraints. SoS have the 
added issues of competing schedules based on the 
governance for each constituent system.

3.5. Regulatory and compliance risks

Compliance with government regulations, safety 
standards, and cybersecurity requirements adds 
another layer of complexity to SoS T&E. Adhering 
to Department of Defense (DoD) directives, EU 
regulation, national regulation as ENS (National 
Security Framework, by its acronym in Spanish), ISO 
standards as ISO 27001 and ISO 29119, or other 
regulatory guidelines is essential to mitigate legal 
and operational risks [3].

4. CONSIDERATIONS TO SUPPORT 
SOS T&E
The considerations to support SoS T&E are varied. 
While they are constantly being addressed by new 
technologies, the principles of these considerations 
have been known for over a decade. For example, 
the following list has been adapted from [6], including 
several direct quotes in italics.

4.1. Translating capability objectives

For a mission, the capability objectives of the SoS will be stated at a 
high level; these capabilities drive the goals of the SoS, realized through 
meeting measures of performance and effectiveness (MOP, MOE). As 
already mentioned, whereas traditional systems will have technical 
performance measures (TPM) and key performance parameters (KPP) 
aligned with well-defined functional requirements, SoS will generally 
not, due to the integration of constituent systems, many of which will 
have already been fielded and maybe in the sustainment phase of their 
lifecycle. Engaging customers in the capability development process 
and understanding required trades might be helpful. 

4.2. Monitoring and assessing changes

SoS are governed differently than traditional systems. The integration 
of constituent systems, which have governance models established, 
will make the integration and modification of systems challenging. 
This requires careful synchronization of changes as each constituent 
system has its own lifecycle. 

4.3. Understanding systems and relationships

Constituent systems are connected through varying degrees of 
complexity, and understanding their interconnections is essential. 
A clear grasp of control and information flows within the SoS is 
necessary. Although these challenges fall primarily within the domain 
of engineering and development, the associated costs of remediation 
and integration are important to customers, as they can significantly 
impact project timelines and resource allocation. 

4.4. Developing and evolving system architectures

Identifying and understanding the SoS boundary is essential, along 
with mapping all interconnections and accurately describing the overall 
architecture. The SoS is likely to evolve in both design and architecture 
over time, and this potential for change should be anticipated and 
addressed during the design phase. Responsibility for these efforts 
should be shared equally between the development team and the 
customer’s governance organization.

4.5. Assessment of SoS performance

The MOP and MOE required of the SoS must be clearly defined 
and well understood. Given that SoS environments are often multi-
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proprietary and span multiple generations, responsibility for overall 
design control must be clearly established (particularly regarding 
measures of supportability (MoS) such as training, maintenance, and 
spares). It is essential to determine whether the SoS can achieve its 
mission objectives through the integration of the desired capabilities. 
All relevant ‘ilities’ (including interoperability, scalability, flexibility, 
resilience, adaptability, sustainability, and security) must be explicitly 
described and revisited with each generational update. These 
expectations are to be set by the customer.

4.6. Orchestrating upgrades to the SoS

Synchronizing the evolving performance and supportability of 
all constituent systems must be ensured consistently. Upcoming 
upgrades to both the constituent systems and the overall SoS need to 
be identified, along with their potential impact on capability. Effective 
planning and resourcing of these upgrades are essential. Achieving 
this requires a strong governance model with alignment among all 
customers, enabling the contractor to implement the necessary 
changes efficiently.

4.7. Addressing capability and solution options

The SoS must be aligned to support a defined mission, which directly 
influences the required MOEs and MOPs. Modifications to constituent 
systems are likely necessary to ensure successful integration within 
the SoS. These modifications can be assessed against the relevant 
‘ilities.’ This remains a key area of concern for the customer.

It also implies a need to generate metrics defining the end-to-end 
SoS capabilities that provide a benchmark for SoS development. 
Developing these metrics and collecting data (evidence) to assess 
the state of the SoS is accomplished as part of the SoS system 
engineered core element assessing the extent to which SoS 
performance meets capability objectives and hence the mission 
over time.

4.8. Emergent behavior

Emergent behavior arises from a combination of the behavior and 
properties of the constituent system elements and structure through 
allowable interactions between the constituent systems and may be 
triggered or influenced by a stimulus from the system’s environment. 
Therefore, system engineers need to assess and understand 
the environment external to the SoS boundary and account for 
interactions as best as possible. Emergence might not be predicted 
and may result in a negative impact on the schedule and budget.

T&E Perspective for SoS 

Capability objectives are not “specific requirements” 
assessed through KPPs. Capability objectives 
are a starting point for developing a statement of 
expectations at the SoS level and require further 
specification and elaboration to conduct T&E.

Communication is key, as is understanding how 
the constituent systems are governed and who has 
influence and resources. Constituent system changes 
are often asynchronous to the SoS. Ensure both 
the capability and technical aspects of the SoS are 
equally addressed.

The SoS cannot be easily broken apart and tested; 
in fact it should not, as this will affect the integrated 
performance. The SoS must be tested in its SoS form, 
else the behavior can and will change. 

Bound the SoS and test as a holistic SoS irrespective 
of the constituent systems behaviors. Maintain 
configuration and adject as the capability needs drive 
changes to the SoS architecture.

Ensure that the MOP and MOE of the SoS are well 
understood and agreed to by the capability owner and 
constituent system owners. Can the SoS perform its 
mission as designed? The measurement may be as 
much subjective as it is objective!

Changes to the constituent systems can impact 
the SoS performance. Planning and orchestrating 
upgrades or updates to the SoS will be essential to 
testing and will modify the performance and affect 
behavior. 

There may be competing needs between constituent 
systems and the SoS. SoS capability objectives 
provide a foundation for identifying systems 
supporting an SoS, developing an SoS architecture, 
and recommending changes or additions to systems 
to meet the capabilities. They also provide the basis 
for defining and measuring top-level SoS performance 
and effectiveness.

As emergence cannot be predicted the best course 
is to allocate budget accordingly. Gaining knowledge 
from similar integrations can help to inform the scale 
of impact but not necessarily identify where or how. 
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5. TEST METHODOLOGIES
Testing and evaluating a SoS requires a departure from 
traditional system testing approaches due to the complex 
nature of SoS environments. Unlike single systems which 
can be tested in isolated and controlled conditions, a SoS is 
characterized by emergent behaviors, distributed control, and 
independent lifecycle management of its constituent systems 
[1, 2]. These SoS phenomena particularly undermines 
confidence in the following approaches:

	• Develop once, maintain through life

	• Assuring once thoroughly, maintain through life

	• One-off design acceptance testing

	• Contracting out development with integration test only 
once upon delivery

	• One-off operational test

An illustration of assurance in a heterarchical organization of 
systems versus a hierarchical organization is shown in Figure 
1 to illustrate the different assurance approaches needed.

“Traditionally, systems theory has emphasized 
the distinction between a system’s internal 
structure and its external behavior, with the latter 
derived from the former. This approach has led to 
a focus on structural representations of systems 
in cybersecurity protection methods. However, 
CPS [cyber-physical systems] are heterarchical 
in nature and consist of multiple, diverse 
elements that interact both independently 
and interdependently. As a result, traditional 
decomposition and predictive methods are 
inadequate to capture the complexity of CPS. 
In complex systems, structure and function are 
intrinsically linked, and a system’s structural 
characteristics shape its processes and 
behaviors.”

Furthermore [7]:

Figure 1: Illustration of different organizational structures in an SoS (adapted from [8]).
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Effective SoS testing relies on a combination of methodologies 
tailored to address these complexities [9, 10, 11].

5.1. Modeling and Simulation (M&S)

M&S is a critical approach in SoS testing, enabling 
stakeholders to assess interactions, performance, and 
emergent behaviors before physical testing. Simulations 
provide a cost-effective way to test various scenarios, stress 
conditions, and potential system failures. From extensive 
research analysis, digital twins are defined as ‘a virtual 
representation of a physical system (and its associated 
environment and processes) that is updated through the 
exchange of information between the physical and virtual 
systems’ (see Figure 2) [12]. Digital twins and system 
emulations are increasingly used to analyze performance 
and predict SoS behavior under different operational 
conditions.

5.2. Incremental and Agile Testing

Due to the evolving nature of SoS, incremental and agile 
testing methodologies are often employed, a residual of which 
is critical throughout life to be ‘evergreen’ and thus resilient 
to emergent behaviors [10,11]. These approaches focus on 
iterative evaluations, allowing for adjustments based on real-
time feedback [3], with generational changes synchronized 
in a resilience ‘battle-rhythm’. Agile testing strategies ensure 
that changes to individual systems do not compromise 
overall SoS functionality, particularly in environments where 
constituent systems are developed by different contractors 
or agencies who make changes at different times for different 
customer mixes.

Figure 2: Illustration of a Digital Twin (adapted from [13]).
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5.3. Live and operational testing

Live testing in an operational environment is essential 
to validate the real-world performance of a SoS. Field 
testing, joint exercises, and war-gaming simulations 
provide insights into interoperability, resilience, and 
mission effectiveness. However, live testing is resource-
intensive and often constrained by logistical and security 
considerations [4].

5.4. End-to-End and interoperability testing

Ensuring seamless interoperability among constituent 
systems is a primary challenge in SoS T&E. End-to-end 
testing at the highest level of interoperability is needed 
(see Fig. 1) to evaluate how well different subsystems 
communicate, exchange data, and achieve mission 
success, and through life to deal with emergence. This 
testing often involves real-time monitoring of interfaces, 
data exchange standards, and cross-platform 
compatibility [2]. This aspect of SoS can be particularly 
challenging for a capability manager, who operates 
interconnected multi-proprietary systems for overall 
effect, but has not yet invested in sovereign test-bench 
representation of the connected systems (i.e., no network 
integration center (NIC) or live-virtual-constructive (LVC) 
simulation at the highest level of effect (Fig. 1)) [14, 9].

5.5. Cybersecurity and resilience testing

Given the interconnected nature of SoS, cybersecurity 
vulnerabilities can have cascading effects across the 
entire system. Testing for cyber resilience involves 
penetration testing, threat modeling, and resilience 
assessments to mitigate potential cyber threats [15, 7]. 
This requires a thorough and independent analysis of the 
Cyber Kill chain to identify the attack vectors (mission, 
attack, variant) across the SoS attack surface. 

5.6. Digital twins

Digital twins are particularly effective for the T&E of SoS 
when progressively developed with the capability and 
used through life as an SoS T&E basis, as shown in Figure 
3 [16]. However, the Model-Virtual-Design-Physical 
diamond (Figure 4) [17] is perhaps more appropriate, 
although reused or revisited through life (i.e., helical).

Figure 3: Illustration of the important through life use of a digital 
twin for an evergreen SoS T&E basis (adapted from [16]).

Figure 4: Parallel development of virtual and physical systems (adapted from [17]).

In summary, the T&E of SoS requires a paradigm shift wherever 
the capability manager and supporting contractors have not yet 
embraced:

	• Continuous Monitoring, Development, Test & Release (which can 
be enabled by Model-Based Systems Engineering [11], digital 
twin [12], and digital engineering [18]).

	• Highly automated testing.

	• Support contracting for a rate-of-change [19, 20, 21, 22, 23].

	• Network Integration Centre at the highest level of integration [24].

	• Live, virtual & constructive (LVC) simulation for multi-generational 
interfacing [9].
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Put simply, SoS are complex systems where the appropriate 
management is to create the wherewithal and culture to probe, 
sense, and respond through life (e.g., Cynefin Framework 
[25]).

6. GUIDING PRINCIPLES IN SOS T&E

6.1. Embracing continuous development, security, 
and assurance

One of the key concepts to deal with SoS T&E is to embrace 
those elements that are complex (ref. Figure 5).

The concepts of DevOps and DevSecOps [27] are key to the 
T&E needed for SoS:

“In the business world, the demand for agility and speed 
continues to grow. Advancements in technology such as 
Continuous Engineering, particularly DevOps, allowed some 
organizations to gain a competitive advantage. However, 
security concerns have risen because of security breaches, 
such as massive data breach and leaks, which are forcing 
organizations worldwide to pay significantly attention to 
security threats. This is especially true in the context of 
safety-critical systems, given the possible consequences of 
security incidents, e.g., loss of life, loss or misuse of sensitive 
information and major financial loss. In this scenario, high 
levels of security integration into DevOps are needed. 
Thus, the need for security to be integrated in DevOps as 
DevSecOps was first mentioned in 2012.”

DevSecOps can theoretically lead to a Continuous Authority 
to Operate (CATO) [28, 10, 29] if there is sufficient automated 
testing for assurance in these categories:

	• Functional/Use (expectation to change).

	• Abuse (i.e., safety).

	• Misuse/Malicious (i.e., cyberthreat always adapting) [30].

	• All non-functional (to the extent possible with fuzz testing 
[31, 24]. 

As test cases are added from the top of the list to the bottom 
there are increasing permutations and a need for greater 
computation or other test resources. Combinatorial testing 
helps through coverage of critical factors and functions 
(multiway) [32, 33]. Hence, combinatorial testing is present 
in some automated test tools, but to apply these correctly 
requires additional competencies by testers in combinatorial 
test design. The process of combinatorial test designing is 
illustrated in Figure 6.

Figure 5: Illustration of the need to embrace complexity in management approaches [26]. 
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Developing the test infrastructure to realize CATO is 
challenging. An example is the 10-step methodology for 
a Simulation, Experimentation, Analytics, and Test (SEAT) 
Layered Architecture Framework Approaches [34]. Such test 
approaches are promising, as are improvements in defense 
and corporate test networks to perform fuzz testing [24] and 
test methodologies to deal with APIs [35]. 

“Autonomous and AI-enabled systems present a challenge for 
integration within the System of Systems (SoS) paradigm. A 
full system of systems (SoS) testbed is necessary to verify the 
integrity of a given system and preserve the modularization and 
accountability of its constituent systems. This integrated system 
needs to support iterative, continuous testing and development. 

This need warrants the development of a virtual environment that 
provides the ground truth in a simulated scenario, interfaces with 
real-world data, and uses various domain-specific and domain-
agnostic simulation systems for development, testing, and 
evaluation. … Such a virtual and constructive SoS architecture 
should be independent of the underlying computational 
infrastructure but must be cloud-enabled for wider integration of 
AI-enabled software components.”

Fuzz-test of all permutations, mixing random and systematic 
viewpoints seems to work best, especially for critical hardware 
and software-intensive functions like an aircraft data bus, vehicle 
LAN, ship IPMS, or rail signaling. An illustration of fuzz testing 
using a Multi-Armed Bandit algorithm is shown in Figure 7.

Figure 6: Illustration of combinatorial test design process.

Figure 7: Illustration of Multi-Arm Bandit algorithm fuzz test approach from [37]. 
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6.2. Embracing digitization and digitalization in 
test

The second major T&E approach for SoS is another general 
approach from digitalization, Model-Based Systems 
Engineering (MBSE). MBSE captures the design context, 
requirements, test metrics, systems design, test cases 
as the SoS is developed, entering information once to be 
used many times with substantially reduced documentation, 
more pervasive and current approval, and the agility to be 
evergreen (i.e., the authoritative source of truth) [13, 37]. 
Done properly to include the operational analysis layer, 
MBSE enables end-to-end scenario or mission engineering 
to be threaded to test cases and to drive subsequent 
emergent change management with better targeted 
regression testing.

Figure 8: Illustration of MBSE approaches for SoS (adapted from [41]).

MBSE used through life fundamentally helps keep T&E 
evergreen, and facilitates model-driven test design [38]. 
Building an MBSE model to cover all relevant SoS elements 
is challenging [39], as shown in Figure 8. Fundamentally, 
an MBSE for SoS has to get each proprietary system into a 
common modelling reference environment, one that is test 
capable [40], or which allow for transformations between 
different systems. Since some systems will be pre-digital 
design, then some retrospective MBSE work is likely 
necessary to digitize testing.
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7. CONCLUSIONS
SoS T&E requires a different approach to systems testing due to the differences between the two and the properties of SoS. These 
properties require that the approach taken for T&E considers the impacts of the constituent system baselines, the governance 
and resourcing for the SoS integration and test, and the difficulties of testing a geographically distributed program that will likely 
exhibit emergence. This requires close attention to the governance model employed and the anchoring of metrics in mission 
effectiveness and performance.

A key consideration for SoS T&E that should be kept in mind is that the idea that the SoS can be fully tested before deployment 
is simply not realistic. It may be more appropriate to view SoS T&E as an evidence-based approach to addressing risk. The SoS 
systems engineering team identifies issues critical to success of each increment of SoS development, as well as places where 
changes in the increment might adversely impact user missions and then focuses pre-deployment T&E on them. 

Deferring system upgrades until all constituents in an increment are ready to test successfully is impractical and undesirable in 
most cases. Since most SoS are comprised of already fielded systems, there may not be a discrete fielding decision. 

Full SoS level testing can be costly, and it can be very difficult to create test environments which realistically represent the 
expected results in an operation environment because of the size and complexity of many SoS environments.
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Abstract

Systems of Systems (SoS) do not have rigid lifecycles but rather live in a constant evolution as some 
constituent elements fade and some new ones join the SoS. This chapter discusses how both the 
SoS and its constituent elements should be designed and/or architected and managed for evolution. 
Evolution is driven within the SoS by evolving technologies, processes, products, and tools; and 
externally by evolving domain drivers such as market competition, economics, and user preferences. 
This evolution must be managed as both an intentional process and an opportunistic process. It 
must be led. This chapter discusses strategies for managing SoS evolution based on both SoS 
management principles and on Innovation System1 principles. The chapter views SoS evolution as an 
enterprise leadership challenge and culminates with the qualities of effective SoS leaders.

Keywords

Systems of systems, SoS management, SoS leadership, Innovation systems.

1. “Innovation Systems” refers to organized networks of elements (people, businesses, universities, laboratories, governments, technological 
infrastructure, etc.) that interact to develop, disseminate and apply technological or process innovations.
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1. INTRODUCTION.
By definition, Systems of Systems (SoS) are composed 
of constituent systems (CS) that are operationally and 
managerial independent [1]. While this is true, most 
modern SoS are also dependent on other SoS for sets of 
capabilities, which blurs the boundaries of the SoS and 
complicates management. With respect to SoS evolution, 
changes to the SoS will always occur at the level of the 
CS [2], which makes SoS change more complicated to 
manage than in traditional systems. Individual CS can also 
change independently of the SoS, creating unanticipated 
effects at the SoS level. Because the SoS provides 
capabilities that emerge beyond those of any individual 
CS, an SoS could have unique inputs and outputs beyond 
those provided by individual CS in their independent uses 
[3]. In SoS evolution, one must take care that these unique 
capabilities, and related inputs and outputs, are attained, 
preserved, and appropriately managed at the SoS level. 
As a result, SoS evolution must be coordinated at the SoS 
level and managed across CS and perhaps other SoS. 

SoS are becoming more complex. In commercial 
organizations, most products today are being developed 
and delivered with connectivity to other systems via 
commercial networks and software applications. The 
availability of information is increasing the amount of 
autonomy and “intelligence” in many systems – even 
simple products have SoS concerns. Military organizations 
are also increasing connectivity of battlefields and other 
assets, while increasing the amount of autonomy in each 
CS. Military acquisition functions are also encouraging 
innovation using commercial entities and commercial 
technologies which reduces their influence at the CS level. 
All SoS today are emphasizing deployment speed using 
non-developmental systems, which also leads to reduced 
CS-level influence. These trends lead to an increase in 
both the operational and managerial independence of 
CS, and more complexity for those that must lead SoS 
evolution. Even since 2019 when the ISO/IEC/IEEE 21840 
was published [2], we have been seeing significant 
changes in the challenges of SoS evolution, to include:

1.	 SoS composed of larger numbers of CS.

2.	 Higher operational and managerial independence of 
CS.

3.	 Greater connectivity between CS across the SoS, and 
between SoS.

4.	 More geographic diversity in CS.

5.	 More autonomy in CS behaviors, and emerging autonomy in 
SoS behaviors.

6.	 More rapid entry of new CS into the SoS.

7.	 Higher complexity and uncertainty in SoS design and 
management.

As a result, the leadership and management attributes needed 
to create and maintain SoS capabilities have changed. This 
chapter explores approaches to leading and managing SoS 
evolution, with a focus on innovation and socio-technical change. 
The chapter begins with a discussion of SoS characteristics that 
drive evolutionary behaviors. This is followed by a discussion of 
challenges associated with leading and managing SoS evolution. 
Methods to guide SoS evolution are then discussed, followed by 
the leadership competencies necessary for managing SoS.

2. CHARACTERISTICS OF EVOLUTION 
IN SOS

2.1. Generalities

Evolution in SoS requires a series of methods to structure and 
manage the set of interacting CS toward a specific set of goals or 
purposes [4]. A particular pain point in SoS management is the 
development of methods and tools that help guide, predict, and 
manage emergent attributes and capabilities [5]. Emergence in 
SoS is often the result of series of innovations that cause new 
SoS-level capabilities and attributes to be formed or to become 
prominent. Thus, one way to view emergence in a SoS is as a 
series of innovations that, over time, disrupt or transform CS 
or their operational use in a way that creates new capabilities 
or attributes that are unique to the SoS. The primary challenge 
with SoS evolution is to influence these changes toward goals 
that reflect the needs of SoS-unique stakeholder sets. As such, 
one component of SoS evolution is to influence the stakeholders 
in ways that ensure key desirable properties of the SoS are 
met, which implies that stakeholder collaboration is needed 
throughout an SoS lifecycle [6].

Most SoS today can be described as Sociotechnical Systems1. 
Sociotechnical Systems are technology-driven systems that 
involve significant human and social participation, and that 
participation in turn influences the architecture and design of 
the technical system [1]. Often SoS are also complex adaptive 
systems, in which both the human/social participation and the 
engineered system co-adapt over time [7]. The distinguishing 

1. A “Sociotechnical System” is defined as a system that interdependently integrates social 
elements (people, organizations, human processes) and technological elements (technologies, 
infrastructure, software, hardware) to achieve a common purpose.
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feature of a SoS is the behaviors of the “whole” come from 
individual constituent systems that act independently and 
autonomously [8].

Systems that have a social interaction demonstrate several 
consistent patterns. The following characteristics have been 
selected as most relevant to the concepts of evolution [9]:

	• Self-organization and multi-scale or multi-level 
hierarchy: socially driven systems tend to self-organize 
at lower layers and then create hierarchies as they 
grow in size, usually driven by series of events. Often 
the structure of these hierarchies also changes over 
time. The behaviors that develop at higher layers do not 
necessarily reflect the behaviors of individual agents 
or groups. Even directed SoS have some level of self-
organization, as CS will compete for inclusion in the 
directed SoS.

	• Autonomy or multi-agent interaction: individual agents 
in the system operate autonomously, adapt, and learn 
as they interact over time. The amount of autonomy in 
individual agents has been increasing and will continue 
to increase more rapidly. SoS are formed by formal or 
informal agreements between autonomous agents, 
requiring a view of an SoS as a multi-agent enterprise.

	• Emergence: new behaviors and properties emerge from 
interactions that are representative of the whole of a 
system. Emergence arises from the structure of the parts 
and their interaction, as viewed in a context of interest. 
These behaviors and properties cannot be predicted 
from, or reduced to, the properties and behaviors of the 
constituent parts. 

	• Evolutionary development: goals and objectives, 
as well as structure and functionality, are in constant 
change as entities are added, modified, and removed. 
However, the evolution of the whole happens slowly in 
comparison to individual agents or components [10] 
(although it is increasing in speed). Also, goals and 
objectives in developing a new SoS are very different 
than in sustaining existing SoS. Methods to evolve SoS 
level capabilities are very context dependent.

	• Connectivity: evolution in the system is driven by 
connectivity, communication (information flow), and 
collaboration. This applies to both the SoS and the 
organizations that participate in it. Both the connectivity 
between CS and the amount of information flow 
is increasing, while collaboration agreements are 
becoming more critical. SoS collaboration is an enterprise 
leadership challenge.

	• Complexity: the systems are sufficiently large in terms 
of the number of physical connections, organizational 
relationships, and information-driven interactions, where 
they cannot be fully analyzed by conventional (i.e. 
mathematical) descriptions of system behavior [11]. 
Qualitative tools and approaches are necessary.

In SoS literature, there is the concept of evolutionary 
emergence, or the study of the evolutionary process the 
system might take over time, and how to effectively guide 
that process in the presence of other desirable attributes of 
the systems (versus undesirable attributes). In this chapter 
we view this evolution as a set of innovation pathways, where 
groups of innovations become apparent over time at the SoS 
level based on their disruptive or transformative impact to SoS 
attributes and capabilities.

2.2. Unprecedented architectures versus incremental 
evolution

It is important to view SoS evolution as two separate processes: 
the emergence of a new SoS, which often results in a new 
or “unprecedented” architecture, versus the sustainment 
of an existing SoS, which requires a stable foundation. The 
emergence phase is often competitive, where multiple potential 
SoS are deploying new technologies and business models. 
The emergence phase most often follows the “diffusion of 
innovation” model popularized by Rogers, which measures 
stakeholder adoption [12]. An SoS moves into the sustainment 
phase when it has been adopted by a sufficient number of 
users to achieve a stable operating model. 

Two forms of evolution are relevant to SoS [13]: those that 
change the components of constituent systems, and those that 
change the structure and interactions (system architecture) 
that are also provided by CS (usually defined as infrastructure). 
Breakthrough or radically new products frequently use new 
architectures to provide new capabilities. Truly transformative 
changes most often reflect architectural changes. However, 
well established architectures are difficult to change due to the 
implicit knowledge and infrastructure investment they bring. 
Thus, a further analysis component of SoS evolution must 
separate architectural decisions from capability decisions. 
Over time, architectural knowledge becomes embedded in 
each CS company’s organization and procedures. Because 
this knowledge is now implicit, it can be difficult for any CS to 
change the architecture of its products. Thus, a SoS that is in 
its sustainment phase tends to have only incremental changes 
until it is disrupted by another SoS. 
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SoS tend to develop and evolve in layers. SoS literature 
generally describes these as:

1.	 Technology layer: physical aspects of the SoS to 
include hardware, networking, and other physical 
infrastructure components. Some of these are not 
technology, for example air traffic management 
systems divide the airspace into zones to maintain 
safety in the architecture.

2.	 Applications layer: the capabilities of the SoS, 
including software applications, that interact with 
data and information across CS to provide SoS 
functionality and user interaction. 

3.	 Information layer: the data and information that 
is exchanged between CS and other SoS that are 
provided for the SoS to operate effectively. This 
layer should be focused on interoperability.

4.	 Business layer: the set of relationships across 
the SoS and CS that respond to changing external 
drivers and the individual business models of the 
SoS and its CS.

SoS in the emergence phase are most often driven 
by technical innovation in the first 3 layers. SoS in the 
sustainment phase are most often driven by market 
forces and business models in the business layer, as 
well as the need for continued interoperability between 
CS (via standards) that spans the technology and 
information layers. These are very different dynamics 
and require very different processes to manage their 
evolution. The literature across these two phases is 
strongly divided between SoS Engineering guidance 
and Innovation System guidance. SoS engineering 
guidance assumes we can apply systems engineering 
and project planning principles to SoS evolution – that 
they can be “engineered”. Innovation System guidance 
aligns more with social systems and complexity theory 
and suggests we can only influence SoS evolution, 
not explicitly plan for it. Practitioners must blend these 
approaches situationally, based on whether SoS 
capabilities are emerging or being sustained.

2.3. Planning SoS evolution

The Wave model (Figure 1) is an established framework 
for evaluating and planning evolution in SoS. It is a top-
down framework derived from systems engineering 
processes. The Wave model recognizes that evolution 
is continuously driven by input from the external 

environment (context), and, unlike traditional systems engineering 
views the analysis of system change is an ongoing process with 
multiple overlapping increments. The Wave model views evolution 
as a forward-looking process with feedback at each iteration and 
attempts to group multiple constituent changes into SoS level 
architectural changes to create efficiency in the test and validation 
process [14]. Key aspects of the Wave model are determining a 
starting point (Initiate SoS), conducting SoS analyses, developing 
and evolving SoS architecture, and planning and implementing SoS 
updates. The starting point for an SoS is difficult to define, as the point 
in time that an SoS is initiated implies that all four architectural layers 
are sufficiently mature to allow new capabilities to be deployed and 
adopted (the diffusion of innovation model). The value of the Wave 
model is the recognition that SoS updates must be planned, and that 
there is some entity that is analyzing SoS updates and evolving the 
SoS over time. Except in directed SoS, definitions of the SoS starting 
point and related analyses can be quite subjective. 

Key SoS analysis artifacts include SoS capability-based information 
– concepts of operation and fundamental constraints; SoS systems 
information – systems architectural views and CS descriptions; 
SoS technical information (the technical hierarchy) – performance 
measures and data: architectural and technical baselines – standards, 
business rules, connections and interfaces; and SoS management 
information – contracts and agreements. The successful evolution of 
an SoS depends on how well SoS leaders communicate artifacts like 
these, and how well other SoS stakeholders understand them.

Figure 1. The Wave model (adapted from [14]).
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2.4. SoS as an innovation system

Innovation system literature views SoS emergence as 
“technological transition consisting of major changes 
in sociotechnical configuration” [15]. The equivalent to 
SoS wave planning in innovation literature is “transition 
management” [16]. Innovation system models recognize 
innovation as a process that spans human and social 
institutions where lower-level innovations in CS form 
niches of adoption, which over time produce broader 
changes in established SoS regimes, eventually resulting 
in transformation of the existing landscape. Today one 
can view the public development of driverless vehicle 
technologies or generative AI transformer models as 
such an evolution “in-process.” The primary aspect of 
this model is that innovation progresses through social 
layers and can be modeled as a multi-scale or multi-
layer social phenomenon. The transition management 
literature represents the Wave model as a similar but 
much messier bottoms-up process of change where the 
SoS architectures are sociotechnical regimes and the 
evolutions progress through many components of those 
regimes (technology, policy, infrastructure, institutions, 
industries, etc.), enabled by a landscape that is open 
to change [15]. Figure 2 illustrates this process. One 
must consider what is happening at any point in time 
as a snapshot of each layer. Innovations at the CS level, 
which also introduce new architectures, are a primary 
driver of regime change and should be a focus of 
attention in SoS evolution. 

The Innovation System of Systems (I-SoS) framework 
[17] adopts the idea that, in a SoS, multiple innovation 
systems form relationships. For example, the SoS 
information, sensing, computing, and control architecture 
that enables driverless vehicles started as a CS-level 
challenge (the DARPA Grand Challenges) and emerged 
mostly in university laboratories. In the driverless 
vehicle SoS the innovation system providing navigation 
information (US Air Force Global Positioning System, 
Google maps, TomTom, etc.) has an interdependent 
relationship with the innovation system developing 
automated vehicle control (DARPA vehicle grand 
challenges, Google Project Chauffer which became 
Waymo, Tesla, etc.) and the technology companies 
providing graphics processing units (Nvidia) and low-
cost LIDAR2 (Luminar Technologies). Note that there are 
multiple innovators including universities, government 

2. LIDAR, Light Detection and Ranging is a remote sensing technique that uses 
laser light pulses to measure distances and create 3D maps. The technology emits 
laser pulses and measures the time it takes for the reflection to return, allowing the 
distance to an object or surface to be calculated.

agencies, very large companies, and smaller technology providers 
all involved in moving technological niches to new regimes. Many 
SoS operate within policy constraints that must also participate 
in the innovation system. In early days of Google’s driverless car 
development, the State of California legislature passed Senate Bill 
1298 regulating autonomous vehicles “driving on California roads 
[18].

Figure 2. A dynamic multilevel perspective on 
technology transitions (adapted from [15]).

SoS evolution results from change in three systems: the SoS of 
interest, the innovation systems, and the broader sociotechnical 
system where landscape development and regime changes 
occur [9]. Figure 3 shows the degrees of overlap and separation 
among the three distinct systems that make up the three systems 
model. This view has been inspired and adapted from Lawson’s 
“universal mental model” of a system [19]. Each system represents 
a complex environment of interacting elements, but at potentially 
different abstraction levels. Changes to the SoS of interest are 
represented as needs or opportunities, and the SoS of interest 
also has enablers and barriers that make it easier or more difficult 
to change. The Innovation System has existing assets and its own 
enablers and barriers that can be applied in a new system that 
might be added to the SoS of Interest. These new systems are 
described as “interventions” in the SoS of Interest since it already 
has existing structure and capabilities that might encourage 
or resist new capabilities. The new outputs from the Innovation 
System must be coupled with the SoS of Interest via integration and 
evaluation, but that process involves the greater Sociotechnical 
System that has its own stakeholders, infrastructure, policies, 
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etc. To evolve, SoS stakeholders must embrace and 
address stakeholders, enablers, and barriers across 
all three systems. What has value in one system may 
be at a different abstraction level than the other two. 
The driverless vehicle example in Figure 4 makes 
these differences in abstraction levels visually clear.

Figure 3. The three systems model (adapted from [19]).

Figure 4. Three systems model for the evolution of driverless vehicles [9].
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The SoS of Interest is primarily composed of well-defined CS and 
critical underlying system components. The innovation system is 
a diverse set of stakeholders with highly complex interactions. 
Both are enabled by the sociotechnical system, which is again 
formed by diverse stakeholders with complex interactions. Each 
of the three SoS are comprised of many CS; the actions that take 
place within each CS define the overall level of SoS complexity 
and adaptiveness to evolution. Note that some of the CS in an SoS 
can reside in the sociotechnical system completely independent 
of the physical manifestation of the SoS but also enabling the 
SoS to operate effectively. Many of these CS will be associated 
with policy, laws, and regulations. When evolving the SoS of 
Interest, a holistic, three system-wide approach is necessary. 
Many emergent SoS and many changes in SoS sustainment fail 
because this holistic change leadership is either not present or 
takes an overly technical view of the SoS.

Most SoS literature discusses methods for SoS management and 
focuses on the SoS of Interest as the unit of analysis. The SoS of 
Interest tends to be less complex than the Innovation System that 
creates SoS evolution and Sociotechnical System that enables 
or inhibits SoS evolution. Both the Innovation System and 
Sociotechnical System are complex adaptive systems. While the 
SoS of Interest might be managed, its evolution in the other two 
systems must be led. This leadership takes the form of agreement 
processes – agreements between the interested parties driving 
the SoS outcomes, the interested parties at the CS level, and the 
interested parties in the Innovation and Sociotechnical Systems. 
Some agreements are contracts, but many are informal and 
operate at lower levels of each participating organization. This 
leadership also must plan for experimentation and “transition 
stages” as the SoS is unlikely to evolve all at once. Thus, contracts 
and other agreements must be flexible in order to account for 
unplanned effort, cost, and schedule changes in the transition 
process.

2.5. SoS evolution is change leadership

But who leads? “From a SoS standpoint, innovation is likely to 
come from a person or group that has good knowledge about 
the SoS component systems, has knowledge of how to put these 
component systems together in an overall SoS (or is willing to 
experiment with the SoS architecture) and is highly motivated 
by a vision of the potential gains or capabilities the SoS will 
provide” [20]. SoS evolution is often driven by technical teams 
who envision and work toward new SoS capabilities but do not 
have authority to direct SoS changes. This is the case even if the 
SoS has strong central authorities (is more directed). At the core 
of SoS evolution, there is a leadership challenge that must be 
addressed.

The resultant SoS generally possess the characteristics 
of complex adaptive systems due to the complexity of 
the organizational aspects of SoS management [21]. To 
succeed in SoS evolution one must be more focused on 
the characteristics of the SoS technical organizations 
than the technical characteristics of the SoS of interest. 
Many successful SoS have resulted from the vision 
of a technical leader operating within an organization 
associated with one or a few CS. For example, Google 
recruited its initial technical visionaries for self-driving 
vehicles from the Stanford University team that won 
the second DARPA Grand Challenge race, who then 
envisioned and developed the technologies under 
Google’s “Project Chauffer,” before spinning the project 
off to Waymo. Several of the original 16 members of the 
Stanford team are still involved in Waymo and its evolution 
of its self-driving taxi service SoS [22].

SoS evolution often comes from decisions at the lowest 
point in CS evolution that lead to interdependence 
between individuals who need to work together to realize 
their vision. Over time these SoS level relationships are 
formalized through standard ways of doing business. SoS 
governance should remain separated from management 
at the CS level, or SoS evolution will become driven by short 
term reactive changes instead of longer-term evolution 
[21]. In truth, there is a need for both short term SoS level 
updates/corrections as well as longer term evolution. 
In SoS, attempts to drive innovation from the top down 
will likely be undermined by the lower-level decision-
makers in the local CS if it is a different organization. As 
a complex-adaptive system, the organizations involved 
must be allowed to self-organize around the dual needs 
of both the SoS and their local CS. However, as the SoS 
emergent properties mature the core CS capabilities tend 
to converge under a single organization through people 
transfers, mergers, and corporate acquisitions.
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2.6. SoS evolution lifecycle considerations

Abbott states [10]: “Systems of systems evolve in at least three 
ways. (a) Technology changes, (b) Usage changes, (c) Standards 
and interfaces change… Systems with these properties do 
not lend themselves to easy hierarchical control. On the other 
hand, systems of this sort are not completely formless. Any 
system, to be useful, must be able to perform specific functions 
at particular times. Systems of systems achieve this goal in 
that at any given time (a) they include a collection of (relatively 
stable) participating systems and (b) they implement a (relatively 
stable) set of standards and interfaces. But neither the set of 
participating systems nor the standards and interfaces are fixed 
forever. They evolve—but slowly.”

Because of the complex nature of SoS evolution, there is not a 
single approach to manage their evolution across the full lifecycle 
of the SoS. SoS go through periods of emergent change as CS 
level innovations gain acceptance or CS are retired, and periods 
of stability where SoS level capabilities are ingrained in regimes 
and the greater social landscape. SoS stakeholders must take 
care to recognize and adjust their approach to manage in SoS 
evolution based on the needs and context for SoS change. Even 
if the SoS is in a stable period, a CS may undergo change:

	• SoS stakeholders may not know when planned maintenance 
or upgrade of one or more CS occur, or, more importantly, 
may be unable to synchronize or orchestrate when these 
changes occur. Awareness is critical.

	• An upgrade of a CS may result in deterioration of the SoS 
architecture because of new obstacles to interoperability. 
This could include changes to CS that negatively impact CS 
capabilities needed by the SoS, or changes to standards and 
interfaces that various CS follow to participate in the SoS. 
Some level of authority at the SoS level must lead adaptation 
to the new SoS structure.

	• Retirement of a CS or a usage of that CS or a standard does 
not necessarily imply the retirement of the SoS. Often the 
replacement of a CS capability that is still needed by the SoS 
must be paid for by an SoS authority. 

	• Upgrades of the SoS may not be planned but simply occur as 
a byproduct of new independent CS being deployed. Again, 
a level of authority at the SoS level must address integration, 
test, and training of the user community when these changes 
occur.

Thus, even when a SoS is in a period of stability, those that 
have a vested interest in the SoS capabilities and outcomes 
must expend effort to be aware of pending or even planned 
changes at the CS level. SoS tend to go through periods where 
they are more open to new constituent systems and periods 
where they are more integrated and as a result more stable. 

More integrated and stable usually equates to “more 
directed” in terms of SoS authorities. But in truth, almost 
every highly successful SoS becomes successful in the 
market because of an unprecedented (new) architecture, 
which discourages central control in the early lifecycle. 
The SoS then evolves to be more integrated and under 
single organizational control, which constrains innovation 
but creates stability. Concepts from change leadership 
and from enterprise (business) transformation are more 
relevant than concepts from management when an SoS 
is undergoing evolution. 

2.7. SoS evolution must be led

While formal standards such as ISO/IEC/IEEE 21839 and 
21840 provide details of SoS management processes, 
there is virtually no literature that discusses approaches 
to leadership in SoS. Literature searches for content 
associated with “SoS leadership” returns content primarily 
on leadership in complex adaptive systems with little direct 
content on leadership in SoS. However, SoS management 
is clearly a leadership challenge. ISO/IEC/IEEE 21840 
states [2]: “Agreement Processes are crucial for SoS 
because they establish the modes of developmental and 
operational control among the organizations responsible 
for the SoS and the often-independent constituent 
systems. Constituent systems, which are acquired and 
managed by different organizations, often hold original 
objectives that may not align with those of the SoS. 
Except in the directed SoS case, the SoS organization 
cannot task a constituent system organization without 
their cooperation. In an acknowledged or collaborative 
SoS, these tasks are balanced against the tasks of 
the CS as a system of interest in its own right. For 
virtual SoS, agreement processes may be informal, or 
considered only for analysis purposes.” One could ask, 
“In a context of independent constituents, what are the 
strategies one can effectively employ to control/steer the 
evolution of a SoS, especially, in eventual situations of 
lack of cooperation?” [23]. Literature on leadership of 
and agreement processes in complex adaptive systems 
helps to form a model of leadership in SoS, which will be 
discussed in Section 5.

Thus, the primary challenges to SoS evolution are more 
associated with leadership than with management. The 
next section looks at SoS challenges in general and SoS 
evolution specifically.
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3. CHALLENGES TO LEADING EVOLUTION 
IN SOS
The challenge of SoS is making a SoS evolve towards new 
outcomes or preserve already desirable outcomes as long 
as needed, while independent CS may potentially resist 
change or must evolve toward conflicting CS-level outcomes 
[23]. Table 1 from ISO/IEC/IEEE 21840:2019 describes at a 
high level the challenges in SoS evolution as differing from 
evolution of systems [2].

Clearly from Table 1, while system evolution may succeed 
based on technical change, SoS evolution can only succeed 
as an organizational change process. Three references 
characterize common challenges of evolving SoS from 
three different perspectives: the SoS of interest [14], CS-
level organizational drivers [21], and SoS leadership [23]. 
The listed challenges are summarized in Table 2 columns 
1-3. Column 4 is the authors’ summary of the key challenge 
derived from commonalities between their work.

Systems tend to… SoS tend to…

Have a clear set of stakeholders.
Have multiple levels of stakeholders with 
mixed and possibly competing interests.

Have clear objectives and purpose.
Have multiple, and possibly contradictory, 

objectives and purpose.

Have a clear management structure 
and clear accountabilities.

Have disparate management structure 
with no clear accountability.

Have clear operational priorities, with 
escalation to resolve priorities.

Have multiple, and sometimes different, operational 
priorities with no clear escalation routes.

Have a single lifecycle.
Have multiple lifecycles with elements 
being implemented asynchronously.

Have clear ownership with the ability to 
move resources between elements.

Have multiple owners making individual 
resourcing decisions.

Table 1. Comparing evolution of systems to evolution of SoS [2].
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SoS Leadership 
Perspective [23]

SoS of Interest 
Perspective [14]

CS-level Organizational 
Drivers Perspective [21]

Summary Challenge

Duality of the drivers. CS maintain 
a separate identity outside of the 
SoS, pursuing missions of their own. 
As a result, the SoS will be exposed 
to influences that would not occur if 
it were centrally managed. What is 
locally favorable to CS teams and 

individuals will drive tasks.

SoS Authorities. Each CS has its own 
local ‘owner’ with its stakeholders, 
users, business processes and 
development approach. As a result, 
the type of organizational structure 
assumed for most traditional systems 
engineering under a single authority 
responsible for the entire system is 

absent from most SoS.

Twin hierarchies are both necessary 
and useful. In SoS evolution, role 
dictates who is responsible, not 
traditional organizational hierarchy. 
Alliances of expertise must be 
established, and the associated task 
hierarchies must be distinguished 

from organizational hierarchies.

A strategy must be developed to 
connect and promote SoS level 
evolutionary outcomes across CS-level 
teams. This is via tasks associated with 
role, not organizational structure. This 
adds complexity to the management 
of both CS and SoS. There may not be 
an entity with authority to define and 

manage this strategy.

A fractured managerial environment. 
Along with independence of the 
CS, this creates barriers for the CS 
individuals responsible for SoS tasks, 
resulting in inter-organizational, 
economic, and sociotechnical 

disincentives.

SoS authorities and leadership.  
Evolution in a multi-organizational 
environment is a leadership challenge.  
The lack of structured control normally 
present in a CS requires alternatives to 
provide coherence and direction, such 

as influence and incentives.

SoS authority must be earned from 
the consent of CS developers. SoS 
leadership must acknowledge that 
this consent is not through authority 
but through shared interest to address 

SoS needs.

An environment of shared interest for 
SoS-level outcomes must be created 
by leadership who may not have 
positional authority in the CS. This 
cross-organizational leadership must 
be clearly defined and individuals 
incentivized to join in SoS-level 

outcomes.

Limited to no holistic visibility. The 
socio-technical barriers between the 
CS teams create situations where 
neither SoS-level roles nor the CS level 
roles can ever assume having full, 
timely, or permanent visibility on all of 
the aspects related to the SoS or its full 

environment.

Testing, validation, and learning. 
CS which are independent of the SoS 
challenge end-to-end SoS testing.  
Need a clear understanding of SoS-
level expectations and measures, 
with authority and funding, or it can 
be very difficult to assess SoS level of 
performance.  CS change cycles may 
be asynchronous.  Full end-to-end 
testing with every change in every CS 
would be cost prohibitive. This is often 

a learning process.

What is good for me should be good 
for the organization. Individuals 
working across CS and SoS 
capabilities must be allowed to learn 
and improve beyond the bounds of 
their CS responsibilities. This creates 

loyalty to the SoS outcomes.

Collaboration opportunities between 
CS teams and individuals must be 
explicitly created by leaders with either 
SoS responsibility or accountability, in 
order to create the visibility of SoS level 
concerns and outcomes across CS 
teams. This is a multi-organizational 

communication challenge.

Limited to no holistic control. No 
party, even if elected to manage 
the SoS-level considerations, can 
assume having any overarching or 
direct control over the constituents or 
their evolution processes. SoS-level 
leadership can only negotiate with 

rather than control.

Constituent Systems’ perspectives. 
Someone must technically address 
issues which arise from the fact that 
the systems identified for the SoS may 
be limited in the degree to which they 

can support the SoS. 

Managing empty spaces. CS 
teams and individuals live within two 
concentric circles of responsibility, 
where the inner circle is the core of 
their responsibility and the outer is the 
limit of their authority. The in-between 
is the area of discretion where SoS 

capabilities are evolved.

SoS responsibilities and accountability 
must be negotiated formally into 
CS-level contracts or informally into 
shared business models. The formal 
and informal negotiated relationships 
may be very complex, especially if 

there is no central SoS authority. 

More potential for incompatibility 
and conflicts. When a responsible 
party in one CS sees a SoS, a 
responsible party from a different CS 
may be seeing a different SoS or no 
SoS at all. This could be pure lack 
of visibility or bias. It is difficult to 
introduce evolutionary change without 

causing inconsistencies.

Capabilities and requirements. 
SoS needs evolve independently of 
individual CS needs, often requiring 
CS to take on new requirements or 
to replace participating CS with other 
participating CS. These relationships 
must be formally documented, 
through standards, requirements, etc. 
These may not all be known up front.

CS responsibilities. These CS 
developers must “sign their work,” 
they must account formally for their 
responsibilities to complete work 
necessary to the SoS. This must be 
communicated to other CS teams to 

manage inconsistencies.

In practice, some SoS-level 
accountable structure must be in 
place to oversee (if not govern) 
individual CS responsibilities and 
create documented communication of 
agreements. This may not be present 
in initial SoS development but must 
evolve as stability of the SoS becomes 
normalized. This often occurs by 
moving CS under SoS common 

authority.

Table 2. Challenges in SoS evolution.
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4. METHODS TO GUIDE EVOLUTION 
IN SOS
For engineered systems, there is some authority 
that serves to advance the emergent goals of the 
SoS, and also a set of stakeholders who have task-
oriented responsibility at both the CS and SoS level 
to create, manage, and sustain the SoS in its states of 
evolution. With SoS, authorities tend to evolve across 
the lifecycle but those responsible for tasks tend to 
persist. The Wave model views this as a systems 
engineering process where intentional analysis and 
planning of the next state of evolution can be done. 
The transition management model views this as an 
innovation process where these states of evolution 
must be guided but cannot be discretely planned. 
In practice, both models are relevant. Based on 
the summary challenges in Table 1, analysis of the 
next state of evolution must reflect not only how this 
evolution will occur, but also who will enable and 
create the changes.

4.1. Organizing for SoS evolution

The RACI model [26] is a useful organizational 
framework for clarity of agreements in SoS evolution and 
can be used to classify where SoS leadership can be 
most effectively applied. The RACI acronym stands for 
Responsible, Accountable, Consulted, and Informed. 
SoS evolution actually occurs from individuals or 
teams in the “responsible” category (those who 
complete tasks necessary for SoS evolution), not 
the “accountable” category (the authority, or the one 
person ultimately responsible for SoS outcomes). In 
some SoS, there is no one accountable authority. The 
“consulted” are those whose opinions are sought in 
order to aid evolution, often subject matter experts, 
with whom the responsible and accountable must 
engage in 2-way communication. This collaboration 
process must be enabled between CS responsible 
and accountable stakeholders. Finally, the “informed” 
are those that need to be kept up to date on evolution, 
particularly task completion. One might consider 
this as a way that the details of current SoS state are 
transferred across all the CS. Even this can be difficult 
in a SoS as the individual CS may have competitive 
reasons to protect the details of their current state [25].

Summary Challenge
Change Practice in 

SoS Evolution 

1. A strategy must be developed 
to connect and promote SoS 
level evolutionary outcomes 
across CS-level teams. This is via 
tasks associated with role, not 
organizational structure. This adds 
complexity to the management of 
both CS and SoS. There may not 
be an entity with authority to define 

and manage this strategy.

There might not be a central authority 
for SoS evolution. There will be one or 
more leaders who are accountable for 
SoS outcomes and may have variable 
levels of control or influence over 
CS-level tasks that lead to CS-level 
evolution. The strategies to create and 
maintain SoS capabilities and outcomes 
will evolve with SoS evolution, and the 
accountable leaders may evolve with 
them. The direction of SoS evolution 
must be informed by a strategy. This 
can be thought of as an enterprise 

transformation process [26].

2. An environment of shared 
interest for SoS-level outcomes 
must be created by leadership who 
may not have positional authority in 
the CS. This cross-organizational 
leadership must be clearly defined 
and individuals incentivized to join 

in SoS-level outcomes.

SoS must be built on shared interests and/
or concerns. Efforts from a stakeholder 
who has a leadership position must be 
spent to establish and maintain shared 
interest. Leaders must find actionable 
shared interest between CS teams and 
communicate it across a large and 
possibly remote set of responsible teams 

[23].

3. Collaboration opportunities 
between CS teams and individuals 
must be explicitly created 
by leaders with either SoS 
responsibility or accountability, 
in order to create the visibility of 
SoS level concerns and outcomes 
across CS teams. This is a multi-
organizational communication 

challenge.

A person who has a leadership position 
with respect to the SoS, which can 
be either responsible or accountable, 
must create an environment where CS-
level relationships can form and where 
responsible task owners can collaborate 
and become interdependent with 
respect to their task responsibilities. This 
interdependence serves to distribute 
power across CS and must be an active 
process when SoS capabilities are 
being updated or evolved. This includes 
engaging with consultants on behalf of 
the CS and keeping other stakeholders 

informed.

4. SoS responsibilities and 
accountability must be negotiated 
formally into CS-level contracts or 
informally into shared business 
models. The formal and informal 
negotiated relationships may be 
very complex, especially if there is 

no central SoS authority. 

Shared interests are necessary but 
insufficient to succeed at SoS work tasks 
when CS level priorities interfere with SoS 
work responsibilities. Incentives for SoS 
level work must be applied and captured 
into documented agreements that are 
negotiated between CS, whether formal 
contracts or other more indirect business 
relationships. These incentives may be 
economic, partnership-based, defined in 

policy, etc. [23].

Applying RACI to the summary challenges of Table 2, we can 
suggest the practices in Table 3:
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Summary Challenge
Change Practice in 

SoS Evolution 

5. In practice, some SoS-level 
accountable structure must be in 
place to oversee (if not govern) 
individual CS responsibilities and 
create documented communication 
of agreements. This may not be 
present in initial SoS development 
but must evolve as stability of the 
SoS becomes normalized. This 
often occurs by moving CS under 

SoS common authority.

This is the most difficult practice to define, 
as there are many means to create 
accountability for SoS capabilities and 
outcomes. The most straightforward is 
to become more directed, using explicit 
contracts with CS for SoS requirements. 
The danger with this approach is that 
these contracts are difficult to change as 
SoS capabilities emerge and their value 
are learned, suggesting these contracts 
should also evolve and be flexible in 
early stages of the SoS. The trend in 
commercial SoS is for the organization 
that gains the most value from the SoS to 
gradually grow its authority by moving CS 
under its authority, often by mergers and 
acquisitions. This is a more evolutionary 
process. There is also opportunity to 
harness network effects, which are 
often formed around policy, standards, 
or common economic interest (such as 

regulations) [23]. 

Table 3. SoS evolution challenges and associated change practices.

Table 3 emphasizes that analysis of SoS stakeholder relationships is 
often more important than SoS capability relationships when planning 
SoS evolution. Practices to evolve these stakeholder relationships 
are not well covered in existing SoS literature but can be derived from 
innovation systems literature and enterprise systems literature. SoS 
leaders are accountable for SoS evolution but only sometimes have 
authority to enforce change. Summarizing Table 3 from a leadership 
perspective, SoS leaders must expend efforts to:

	• Define and communicate strategies for SoS evolution.

	• Define and create actionable areas of shared interest across 
multiple CS teams.

	• Create an environment where CS-level relationships can form 
and where responsible task owners can collaborate.

	• Define and apply incentives for SoS-level work and negotiate 
these into CS agreements.

	• Evolve business models and relationships that make CS 
accountable for SoS-level outcomes.

At a high level, these change practices imply those 
that are responsible for tasks are: 

	• Aware of the structure of the SoS and the 
associated context or external drivers, as well as 
strategies for SoS evolution.

	• Know the predominant stakeholders across 
at least the CS level teams where there are 
interdependencies, with whom they might share 
interest.

	• Know sufficiently the SoS-level stakeholders that 
should be consulted with and kept informed.

	• Respond to SoS-level change goals and strategies 
with defined work tasks that are negotiated into 
agreements.

	• Accept responsibility for implementation (sign 
their work). 

Generally, for those that are responsible, these are 
technical interests and concerns. Those that are 
accountable (even if they lack authority) must be 
concerned with the SoS as an enterprise with technical, 
business, and other mission goals. These include 
sociotechnical concerns. Those who are consulted 
have an important role in creating knowledge across 
all the sociotechnical dimensions of the SoS.

4.2. Preparing for SoS evolution

The value of the Wave model, at least as a strategy, is 
it defines “SoS analysis” as an active ongoing process 
at the SoS level. Based on the I-SoS framework and 
additional research on enterprise transformation [26], 
we recommend those that are accountable to SoS-
level change goals regularly conduct analysis of 
SoS evolution in four dimensions: SoS definition, SoS 
actors, SoS change goals, and SoS implementation. 

1.	 SoS definition: When analyzing SoS evolution 
paths, one should start with clearly defining the 
current state of the SoS of interest, including the 
context (or current environment) that constitutes 
the sociotechnical context the current SoS is 
operating in. Note from Figure 3 this includes the 
stakeholder needs it satisfies, the current set of 
assets it uses (likely not just a list of CS but also 
the details of how each contribute to SoS), and 
the enablers and barriers to SoS change (a very 
important aspect that is often neglected). 
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2.	 SoS actors: Those accountable for SoS change goals 
must define all of the actors at each CS/SoS layer and 
“what they bring with them” – their business models, 
resources, networks, institutions, etc. This should also 
include knowledge if available about what other programs 
are driving CS level change.

3.	 SoS change goals: This should capture the desired 
end state of the SoS evolution in terms of new desired 
capabilities, who would use them, and what the priority 
of each is. The goal of this analysis is to identify primary 
performance measures of the current SoS and of the desired 
evolution, and who would be tasked to achieve these. 

4.	 SoS implementation: The implementation dimension 
serves to build a model of all dimensions considering new 
SoS outcomes (or goals), and the interactions that cause 
them. It is likely that the desired end state will not happen 
all at once, so dividing these into transition periods will help 
the planning process for the evolution. The implementation 
dimension should include estimates of schedule and cost, 
and where the resources might come from. Note from Figure 
3 we call this an “intervention” into the current SoS and the 
implementation dimension must use resources from the 
innovation system to create the desired changes in the SoS.

It is important to clearly define what is emergent in an SoS 
independent of its CS. We cannot usually predict exactly what 
emerges, but one can look at change trends and events that 
are precipitating change as signals of how new emergent 
capabilities should occur in the SoS. For example, what 
emerges in the SoS context related to self-driving vehicles, 
independent of vehicles as systems? In one Waymo business 
case, it is a new kind of taxi service that operates without taxi 
drivers. What are the independent CS that make up a self-
driving taxi service? What are their relative cost, performance, 
availability, user interfaces, etc.? Who are the independent 
organizations that contribute to this SoS? How has it evolved? 

To plan for SoS evolution, the SoS accountable leads should 
assess [27]:

	• What is the current state of the SoS? (The SoS of Interest 
per Figure 3).

	• What are the new desired SoS capabilities? (Figure 3 
describes these as the Interventions).

	• What is the priority of each desired capability?

	• What resources exist that we can work with? (This is the 
resources in the Innovation System).

	• When do we want to introduce these capabilities?

	• What will be the resulting business model?

The desired analysis framework that captures all 
stakeholder intentions would then represent all components 
of the related SoS’, distinguished by societal layer and by 
an interrelationship model that considers enablers and 
barriers, actors, interactions, and outcomes of the desired 
SoS evolution. This interrelationship model can be mapped 
and visualized as a tool to gain stakeholder consensus 
on SoS structure and performance goals, and to further 
computationally model the system [28, 29]. We will propose 
two qualitative tool frameworks in the next section. These 
are both holistic tools, since [10]: “a system of systems is 
best viewed not as a hierarchy built of component systems 
but as an environment within which other systems operate 
and which can support the addition of new systems that 
build on systems already in the environment. Furthermore, 
to fully understand a system of systems not only must it be 
viewed as an environment for other systems, but it must 
also be understood in terms of the larger environment 
within which it and its participating systems exist. In other 
words, a system of systems perspective requires one to 
look outward from a system rather than inwards towards the 
system’s hierarchical components.”

4.3. Two tools for analyzing the paths of SoS 
evolution

Returning to the three systems model, most systems 
analyses separate or avoid the complexity of these three 
systems all together when designing an intervention or 
evaluating a project’s feasibility. Having a toolset that 
supports a SoS approach, bringing the three systems 
together for integrated analysis, provides a novel approach 
in the field of systems of systems engineering and complex 
adaptive systems. A toolset that is designed to consider 
these three systems in their entirety provides analysis of 
the interactions, relationships, and evolution between and 
within these systems to offer an unparalleled vantage point 
from which to gauge the potential for innovation-fueled 
impact [8].

SoS analysis is a systems thinking challenge. The tools at 
least initially are qualitative and designed to encourage 
holistic thinking about the three systems at play. In traditional 
social systems analysis, we are encouraged to view an SoS 
at three levels: the macro (societal, institutional), meso 
(groups, organizations), and micro (individuals). The SoS 
must be viewed as a multi-level enterprise system with four 
layered phenomena: social layer, institutional/economic 
layer, physical/process layer, and human layer [29]. Figure 
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5 shows the value of this type of analysis in both SoS Wave 
model planning and in transition management planning, 
which follow a similar layered set of changes. Implementation 
of SoS evolution is at the human and physical layers, while 
planning and execution are sociotechnical and socio-
economic processes of the institutions that participate in the 
SoS. The multi-layer view directly supports both top-down 
and bottoms-up analysis of the phenomena that drive SoS 
evolution, particularly the human aspects of effective SoS 
accountability and responsibility.

With this in mind, we present two systems thinking tools that 
together aid in SoS analysis: the context analysis tool and the 
multi-level SoS evolution planning tool.

4.3.1. Context analysis tool

The context analysis tool in Table 4 [30] can be used 
to organize essential information reflecting desired SoS 
evolution outputs/outcomes, actors and institutions who will 
lead/oppose the evolution, activities they perform and how 
will they interact to affect evolution, and the enablers and 
barriers to the evolution process. These are each organized 
into the four multi-layer phenomena of Figure 5. The value 
of this tool is to institutionalize thinking about the multi-layer 
nature of SoS and the importance of analyzing enablers and 
barriers to change.

The additional value of the context analysis tool is its holistic 
collection of contributing factors to SoS evolution. It can serve 
as a running database of information useful in SoS evolutionary 
planning. It can capture important perspectives like “shared 
interests” (as enablers) and business relationships (as flows) 
in a form that is simple to use and maintain. To use this tool:

1.	 SoS outcomes represent value drivers to the stakeholders 
of the system derived from desired new SoS capabilities. 
Start with the outcomes column and list the outcomes of 
the SoS evolution at each level. This should focus on the 
new desired capabilities of the SoS and appropriate CS 
and their economic value at the “institutions” level. Above 
that in the table are any new outcomes expected of the 
domain. Below that in the table are any process level or 
human level outcomes that describe the evolution of the 
SoS.

2.	 Go back and capture the stakeholders who would support 
or oppose these outcomes as actors, and the enablers 
or barriers to evolution of the SoS. These would include 
accountable, responsible, consultant, or just informed 
stakeholders.

Figure 5. Multi-layer phenomena of SoS evolution.
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3.	 Identify the interactions between stakeholders 
and “what they bring with them” (technologies, 
resources, etc.) and the activities that need to 
be accomplished to produce the desired SoS 
evolution. This column looks at processes, 
activities, and behaviors. Focus on statements 
that describe transformations that occur 
between entities in the system. For example, 
“making lower cost sensors” and “millions 
of miles of simulated driving” represent two 
phenomena helping to bring self-driving 
vehicles to the market. The first is a process and 
the second is a set of activities. Brainstorming 
and consultation with experts helps in this step.

It normally takes several stakeholder workshops to complete this tool. 
These are good opportunities to bring CS level stakeholders together 
to create shared interest around SoS evolution. Keep this table at 
a summary level, as it is conceived as a communications tool, and 
update it regularly and as needed to plan SoS evolution strategies.

The intent of this tool is to aid in planning all holistic aspects of SoS 
evolution, which must consider all aspects of the three-systems 
model and the sociotechnical and socio-economic multi-layer nature 
of large enterprises. Even if not actively using the tool, consider Table 
4 as a useful guide to all of the types of phenomena that drive SoS 
evolution.

Enablers and 
Barriers

Actors 
(and what they bring)

Interactions/ 
Activities

Outcomes

S
oc

ia
l D

om
ai

n Governmental 
regulations, law, 

policy, infrastructure, 
environment, 

geography, economic 
conditions, security, 

global/national/regional 
investment strategies

Governments, nation-
states, regions, 
infrastructure 
management 
organizations, 

cooperatives, non-
government movements

Economic trends, 
demographic 

trends, shifts in 
governance, network 
attributes, ideologies, 

market trends

Buy-in and acceptance, 
employment shifts 

(macro), goal 
attainment, policy 

changes, new 
infrastructures, 
growth (macro), 
change (macro)

In
st

itu
tio

ns
 &

 
E

co
no

m
ic

s Ownership, production 
environment/capacity, 
distribution networks, 

logistics capacity, 
import/export 

controls, standards

Government 
organizations, 
commercial 

organizations, 
universities, research 

institutions, lobby groups, 
standards organizations, 

unions, incubators

Market access & 
control, resource 

access, access to 
credit, technology 

transfer and patents, 
organizational 

relationships, ventures

Capacities, disruption 
and continuity, 

resilience, efficiency, 
change measures, 

strategies, product lines 
& systems, processes

P
hy

si
ca

l P
he

no
m

en
a,

 
P

ro
ce

ss
es

 &
 F

lo
w

s

Legal structures, 
demand, pricing 

constraints, process 
constraints, standards, 

agreements, 
contracts, technology 

readiness/maturity

Leadership, work 
practices, organizational 

management 
structures, training, 

innovation practices, 
development practices, 

marketing practices, 
employment practices

Information flows, 
resource flows, 

knowledge transfer, 
financial flows, 

manufacturing flows, 
work activities, 
organizational 

interactions, customer 
interactions, market 

interactions

Products, buying, 
selling, technology 

uptake, market share/
leadership, innovations, 

collaborations, 
performance metrics

P
eo

pl
e 

&
 

A
ss

et
s

Culture, networks, 
community structures, 
access to information, 
proximity to resources 

and others, rights 
to property

People (individuals & 
classes), entrepreneurs, 

leaders, executives, 
skills, competencies, 
health, technologies, 
material resources, 

financial capital

Production, 
consumption/ 

purchasing, work 
automation, income, 

membership, 
teaming, learning

Use cases, tools & 
apps, employment, 

work roles, work 
outcomes, inclusion, 
health, standard of 

living, education, trust

Table 4. Context analysis tool [29].
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4.3.2. Multi-level SoS evolution planning tool

The multi-level SoS evolution planning tool in Table 5 is a 
means to visualize the details of transition management 
processes [31]. The tool integrates the primary 
decision information from all aspects of SoS analysis 
into a single framework that allows the team to visualize 
manageable transition paths in the broader SoS from 
lower-level CS organizations and systems. These paths 
are based on the desired changes sought within the 
problem space and the potential for innovation in the 
context of interest. The top half of the map outlines the 
SoS evolution context in terms of macro-level trends, 
events, and signals of change. The bottom half defines 
a SoS evolution in terms of possible innovations and 
relevant enablers and barriers of change, described at 
the CS level of the SoS.

As with the context analysis tool, using Table 5 starts 
with identifying the new desired SoS capabilities in the 
right-most column. This analysis is much less focused 
on the general context of the three-systems model 
and much more focused on the specific new desired 
capabilities (and priorities) of the SoS evolution. 

The new desired capabilities (and priorities) of the SoS 
evolution are best described initially as a narrative that 
captures an “event” that deploys the new capabilities 
to the using community and the impact these changes 
will have to that capability. This is the “macro” view 
of the SoS outcomes. This event-based narrative is 
backed up by the SoS level and CS level trends that 
drive this narrative. 

Each SoS evolutionary period starts with a current 
state, goes through an iteration period where the 
new capabilities “re-emerge” (there are often multiple 
iterations), and arrive at the desired end-state. It is 
these iterations that will provide the insight into SoS 
evolutionary pathways and help to organize the actual 
implementation of the new capabilities. These should 
be described first at the SoS (macro) level. There will 
be multiple iterations or “transitions” in SoS evolution, 
even though the table only represents one due to 
space constraints. 

Starting at the bottom of the table, one then lists the 
individual CS-level change programs and actors in 
the current state, iterations, and desired end-state. 
Then moving up a row, the focus is on the institutions 
or organizations involved and the representative 

authorities and business models that would support SoS level 
change. A unique aspect of this table is the next two rows 
up, which capture enablers and barriers to SoS-level change. 
Because SoS leaders are accountable but may not have direct 
authority over CS updates, they typically can only enable them 
to happen or provide barriers to CS-level change that can have 
negative impact on the SoS-level performance. 

4.4. Revisiting layers: Socio-economic focus of SoS 
evolution

When using these tools to conduct SoS analysis, it is important 
to apply a socio-economic frame of reference as opposed to 
a technical frame of reference. This implies one should focus 
on the Institutions and Economics related factors (and rows) 
in these tools. While SoS often exist in the Acknowledged 
and Collaborative categories, there must always be a lead 
organization that realizes economic value from the SoS 
capabilities and becomes the de facto change leader. As noted 
in Section 2.2, SoS develop and evolve in layers: technology, 
applications, information, and business.

One should also adopt a socio-economic layering of SoS [32]: 

1.	 The set of organizations and independent individuals 
functioning as part of the SoS and how they are influenced. 
These live in the Institutions and Economics layer of the 
Context Analysis tool.

2.	 The infrastructure environment represented by various 
SoS-level technical foundations, institutions, regulations, 
procedures, and mechanisms. These live in the Social 
Domain layer of the tool.

3.	 The communication and logistics systems that provide the 
processes of interaction of the organizational components of 
the system. These live in the Physical Phenomena, Processes 
& Flows layer of the tool.

4.	 The innovation system: the set of activities, each of which 
is localized in space and in time, aimed at adapting the 
ecosystem to changes in the external environment. These 
live in the People and Assets layer of the tool.

What does this mean for SoS leadership and for leading 
implementation of SoS evolution? First, the implementation must 
start with the organizations involved and the economic value of 
the changes. From Table 5: “describe in detail the current SoS 
and CS level organizations as well as others in the context of use 
with descriptions of importance.” 
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Current State Signals of Change Iteration Period Desired End State
S

oS
 L

ev
el

 
E

ve
nt

s List any past events 
that presented 

opportunities for 
SoS evolution.

What events signal 
to us that the SoS 
should change?

Describe the plan for deployment of these 
changes and how they will be evaluated.

Provide a narrative 
of how these SoS 
capabilities were 

introduced and what 
impact they will have.

S
oS

 L
ev

el
 T

re
nd

s What outcomes 
does the SoS 
provide and to 

whom? What CS 
level changes 
are currently in 
development or 
contemplated?

What are the current 
trends that signal new 
SoS capabilities are 
needed or becoming 

opportunities for 
evolution?

Describe how you will integrate, 
test, deploy, and measure user 

adoption of the planned evolution.

What new outcomes 
should the SoS provide? 

What are the desired 
new capabilities? What 
CS need to be added, 
removed, or changed? 

How would you prioritize 
these capabilities?

Current SoS primary capability Capabilities evaluated in the iteration
Desired SoS 

primary capability

E
n

ab
le

rs

List enabling 
policy, technology, 

processes, 
organizations, etc. 
from the Context 
Analysis table.

What are the current 
trends that signal 

changes in an SoS 
enabler or barrier? 

New regulation, 
economic landscape, 

threat landscape, 
policy changes, etc.

Expected changes 
to enabling policy, 

technology, 
processes, 

organizations, etc. 
from the Context 
Analysis table.

Did the transition 
period indicate 

additional enablers 
of barriers would 

need to be 
addressed?

What changes to 
enabling policy, 

technology, processes, 
organizations, etc. are 
necessary to reach this 
desired state - from the 
Context Analysis table?

B
ar

ri
er

s List current potential 
barriers to evolution 

from the Context 
Analysis table.

Expected changes 
to potential barriers 

to evolution from 
the Context 

Analysis table.

What barriers need 
to be overcome to 
reach this desired 

state - from the Context 
Analysis table?

In
st

itu
ti

o
n

al
/ 

O
rg

an
iz

at
io

n
al

 Describe in detail 
the current  SoS 

and CS level 
organizations as 
well as others in 

the context of use 
with descriptions 
of importance. What are some new 

operational use 
concepts that the SoS 

could provide and 
who would be able 
to provide them?

What new SoS 
and CS level 

organizations will 
be involved? Who 
in the operational 
use concept will 

be involved? How would 
you measure 
successful 

transition of the 
desired new SoS 

capabilities?

What are the new 
use cases for the 

desired capabilities 
and who will be able 

to provide them?

E
xa

m
p

le
 P

ro
g

ra
m

s 
an

d
 In

vo
lv

ed
 A

ct
o

rs

Describe in detail 
the current SoS and 

CS level actors/ 
stakeholders and 
what you know 

about their work.

What CS level 
change programs 

or programs 
that produce 

new CS that you 
will integrate in 

this period?

What CS level change 
programs or programs 
that produce new CS 

would you plan to 
integrate and deploy 

in this end state?

Table 5. Multi-level SoS evolution planning tool [31].
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Then move to the innovation system: “what CS level change 
programs or programs that produce new CS will you integrate 
in this period? Who produces them?” From there the leader 
must move to the leadership methods of Table 3: “what effort 
must be spent to establish and maintain actionable shared 
interest between CS teams and how will I communicate it 
across a large and possibly remote set of responsible teams?”

Third, evaluate or reevaluate the communications and 
logistics systems. This is where the enablers and barriers 
analysis of Tables 4 and 5 becomes most useful. As noted in 
Table 3: “a leader must create an environment where CS-level 
relationships can form and where responsible task owners 
can collaborate and become interdependent with respect to 
their task responsibilities.” 

The infrastructure environment is a primary developmental 
concern for new unprecedented SoS but is likely to be stable 
in evolution of a sustained SoS. Changes to the infrastructure 
environment should be discussed in the Trends and Events 
rows of Table 5 and where they are enablers or barriers to 
change, should be noted in those rows.

5. LEADERSHIP COMPETENCIES FOR 
SOS MANAGEMENT
When a new SoS is being created or an existing SoS is 
undergoing significant evolution, success will depend on 
the qualities of leadership. A framework for leadership in 
megaprojects and mega-systems that can apply well in 
the context of SoS evolution [33]. Four essential leadership 
capabilities are:

	• Coordinating across diverse stakeholders toward 
shared outcomes.

	• Addressing system complexity and uncertainty through 
learning.

	• Creating flexibility in evolutionary strategies.

	• Managing risk to SoS capabilities.

Management strategies tend to be more transactional 
and supported by transactional processes like “Plan-Do-
Check-Act” (PDCA). In stability periods much of the SoS 
level change involves planning, implementing, checking 
results, and acting upon findings (the Wave model). 
In evolutionary periods, leadership can be described 
as more transformational. The Bass transformational 
leadership model defined two transactional and four 
transformational characteristics that contribute to high 
performance in leadership [34]. Figure 5 depicts how 
these six characteristics come together in a project setting.

While transformational leadership motivates and 
inspires followers, transactional leadership is more 
focused on “exchanges” between leader and follower 
in terms of work tasks, penalties, and rewards [35]. This 
framework is important to accountable SoS leadership 
because both transactional (project management) and 
transformational (influence and followership) leadership 
skills are necessary. The two transactional characteristics 
are more related to PDCA and include: management by 
exception (deal with misaligned CS level behaviors, plan 
and conduct SoS integrations, stabilize negotiated SoS 
relationships) and contingent reward (funds, incentives). 
The four transformational characteristics are more 
motivational and include: individualized consideration 
(coaching, delegation, training opportunities), idealized 
influence (model expected behaviors, use charismatic 
communication), inspirational commitment (gain 
commitment to the work and the SoS, teamwork), and 
intellectual stimulation (ensure the need for change, 
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provide a strategy, build internal support, ensure external 
support, provide resources if needed, institutionalize 
changes) [35]. Transformational aspects of leadership are 
required to motivate responsible CS stakeholders to achieve 
SoS-level outcomes and to perform beyond their CS-level 
expected taskings.

In all the SoS case studies we reviewed, the creation and 
evolutionary periods of SoS had leaders with strong technical 
backgrounds in the SoS domain of interest, combined with 
experience sorting out difficult situations across complex 
supply chains. Critical skills for SoS leaders include [36]: 

	• Highly open to new experience, self-disciplined, 
engaging, stable, and test high in emotional intelligence.

	• Project management remains important but in the context 
of cooperation and not in transactional methods (as it is 
usually employed). 

	• Preference for spending time on people management, 
alignment, and communications over work processes. 

	• Highly aware of their own abilities for learning.

Applying this model to the change practices of Table 3, we 
can characterize the leadership abilities of those that are 
accountable for SoS level outcomes:

Figure 6. Bass transformational leadership model [33].

Change Practice in SoS Evolution Leadership skills [33]

There might not be a central authority for SoS 
evolution. There will be one or more leaders who 
are accountable for SoS outcomes and may have 
variable levels of control or influence over CS-
level tasks that lead to CS-level evolution. The 
strategies to create and maintain SoS capabilities 
and outcomes will evolve with SoS evolution, and 
the accountable leaders may evolve with them. 
The direction of SoS evolution must be informed 

by a strategy. 

	• SoS leaders exhibit political savvy: the ability to exhibit confidence and professional 
diplomacy, while effectively relating to people at all levels internally and externally.

	• SoS leaders anticipate future situations, leaders with foresight can better plan for 
long-term outcomes and adapt to evolving project environments.

	• SoS leaders embrace uncertainty and ambiguity.

	• They are self-aware and self-motivated: they continually reassess their own judgment 
and decisions, while showing enthusiasm, passion, and a strong commitment to 
SoS goals.

	• They are open-minded: they are willing to revise their plans based on new 
information in order to achieve better SoS outcomes.

	• They are courageous and willing to make tough decisions, address 
underperformance, and challenge unrealistic expectations or assumptions.
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Change Practice in SoS Evolution Leadership skills [33]

SoS must be built on shared interests and/or 
concerns. Efforts from a stakeholder that has a 
leadership position must be spent to establish 
and maintain shared interest. Leaders must find 
actionable shared interest between CS teams 
and communicate it across a large and possibly 

remote set of responsible teams. 

	• Leaders with strong technical and domain skills in the SoS are needed for creating 
shared interest.

	• SoS leaders must be willing to learn along with CS responsible stakeholders.

	• SoS leaders must be trustworthy and establish strong leader-follower relationships 
along lines or shared interests.

	• Strategic thinking is required for setting realistic goals, and ensuring alignment 
between SoS and CS objectives.

	• Vision/Goal Setting: a clear vision is crucial for guiding decision-making and 
maintaining stakeholder alignment.

	• SoS leaders master all aspects of effective communication and make it a focus 
of their work. Communication must be at a higher, more visionary level in SoS 
leadership.

A person that has a leadership position with 
respect to the SoS, who can be either responsible 
or accountable, must create an environment 
where CS-level relationships can form and where 
responsible task owners can collaborate and 
become interdependent with respect to their task 
responsibilities. This interdependence serves 
to distribute power across CS and must be an 
active process when SoS capabilities are being 
updated or evolved. This includes engaging with 
consultants on behalf of the CS and keeping 

other stakeholders informed.

	• SoS leaders encourage a culture of openness and communication and are 
themselves open to new ideas and perspectives.

	• SoS leaders build cultures of collaboration across CS-level teams.

	• SoS leaders create an environment that actively shows they believe responsible 
task owners act in good faith and do their best to help the SoS achieve its goals.

	• SoS leaders coach and mentor others independent of CS organization; they help 
to develop others’ leadership skills, foster collaboration, and enhance trust and 
performance.

	• SoS leaders build relationships; they create and maintain connections with people 
to create a sense of team.

Shared interests are necessary but insufficient 
to succeed at SoS work tasks when CS level 
priorities interfere with SoS work responsibilities. 
Incentives for SoS level work must be applied and 
captured into documented agreements that are 
negotiated between CS, whether formal contracts 
or other more indirect business relationships. 
These incentives may be economic, partnership-

based, defined in policy, etc. 

	• There will be conflicts between stakeholders and conflicts of priority within the team. 
Managing stakeholders calls for negotiating and diplomatic skills. SoS leaders 
need to be able to bring stakeholders together on critical SoS level decisions.

	• SoS are complex, involve a wide variety of stakeholders, and require the integration 
of multiple disciplines. SoS leaders help solve complex problems. They understand 
knowledge exchange and transfer within and across social networks is critical 
and they actively visualize knowledge to develop shared understanding across 
stakeholders.

	• SoS leaders create an environment that encourages and prioritizes gaining new 
knowledge and skills. Learning is rewarded.

	• They are highly experienced in managing complex supply chains across multiple 
CS.

	• They are extremely business savvy. They know when to become more directed, 
using explicit contracts with CS for SoS requirements. Yet they create flexibility in 
contracts and business relationships that incentivize integration problem solving 
over simple cost and schedule factors.

	• They harness network effects, effectively using policy, standards, or common 
economic interest [22].
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6. CONCLUSION
SoS evolution is a leadership challenge that spans two types of SoS phenomena: the emergence of a new SoS and the sustainment 
of an existing SoS. One should view this as a sociotechnical and socio-economic process, not just new capabilities arising from an 
engineering process. Analysis and implementation of SoS evolution must start with the organizations involved and the economic 
value of the changes. From there evolution will arise from the innovation system, which is separate from the SoS of Interest, and 
the leaders’ abilities to create shared interest across multiple (primarily engineering) teams. All SoS must be led, although some of 
that may be informal. The leader must create an environment where CS-level relationships can form and where responsible task 
owners can collaborate and become interdependent with respect to their task responsibilities. Finally, SoS leaders must be holistic 
and able to place emerging trends and events that will affect SoS capabilities or business models into a transition plan. There are 
a unique set of leadership skills associated with SoS, and individuals with these skills tend to arise in development of new SoS 
and should be trusted and nurtured.
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1. INTRODUCTION
As discussed throughout the book, the engineering of Systems 
of Systems (SoS) presents a distinct set of challenges that 
transcend those faced in traditional systems engineering. 
SoS are characterized by the operational and managerial 
independence of their constituent systems, evolutionary 
development, emergent behavior, and often, heterogeneity in 
function, purpose, and design. These characteristics demand 
analysis and simulation methods that can accommodate 
dynamic interactions, decentralized control, and multiple layers 
of abstraction.

This chapter surveys a collection of novel analysis and simulation 
methods that have emerged or matured in response to the 
specific demands of SoS engineering. These methods provide 
engineers with tools to represent, reason about, and test SoS 
concepts in ways that traditional approaches cannot support 
effectively. The chapter covers approaches that facilitate the 
coordination of systems to achieve shared objectives, and those 
that support the federation of systems while preserving local 
autonomy. It explores heterofunctional modeling techniques that 
account for the diversity of roles and interactions among systems, 
and presents federated modeling and simulation strategies 
that allow independent models to interoperate coherently. The 
chapter also covers agent-based modeling, a powerful method 
for capturing the behavior of autonomous entities and their 
interactions, and broader SoS-specific modeling approaches 
that provide tailored abstractions and formalisms to capture the 
complexity of these large-scale engineered constructs.

By surveying these methods, this chapter aims to provide SoS 
engineers with a roadmap to select, combine, and apply suitable 
analysis and simulation techniques throughout the lifecycle of a 
SoS.

2. COORDINATION OF SYSTEMS

2.1. Introduction

Systems engineering is traditionally a centrally managed 
approach to the successful design, integration, testing, 
operation, and retirement of engineered systems. Centralized 
approaches help to address system-level objectives by 
directing engineering efforts to consider emergent properties 
that may not fall within the scope of individual subsystem 
teams. Characteristic of this point, recent interest in model-
based systems engineering (MBSE) approaches emphasize 
centralized information systems to collect, manage, and share 
design knowledge across a design team [1].

SoS challenge conventional concepts of control in 
systems engineering because no single system-level actor 
possesses complete authority over others. SoS engineering 
problems exhibit more decentralized structures, which 
influence the type and nature of supporting methods. The 
seminal work by Maier describes architecting principles for 
SoS, referred more precisely as collaborative systems, that 
emphasize more indirect control via stable intermediate 
forms, policy triage, leveraging at the interfaces, and 
incentives to ensure cooperation [2].

The type and degree of interaction within a SoS spans 
a continuum of collective endeavors [3]. Coordination 
is a loosely coupled information sharing and planning 
paradigm that pursues individual objectives by reducing 
conflict. Cooperation is a moderately coupled resource 
sharing paradigm that pursues mutual objectives with 
shared outcomes. Finally, collaboration is a tightly coupled 
united paradigm that pursues a joint objective that 
individuals are incapable of achieving alone. Advances in 
SoS modeling and analysis techniques seek to promote 
design actions leading to mutually desirable collective 
outcomes while mitigating undesirable ones.

2.2. Modeling coordination with game theory

Game theory is an economic field that studies strategic 
interaction. It builds upon key models and methods of 
decision theory, which itself studies individual decision-
making under uncertainty. The key distinction between 
game theory and decision theory hinges on the 
consideration of interactive decision-making processes 
among actors who iteratively consider each other’s 
perspectives about the coupled problem when devising 
decision-making strategies. Game theory is particularly 
applicable to SoS problems because it explicitly considers 
decentralized control over actions and multiple, potentially 
completing, actor objectives.

Fundamental game theory constructs define the actors, 
their available actions, and resulting shared outcomes. 
Each actor possesses a utility-based measure of 
preference for outcomes. Preferences follow a similar logic 
to objective functions in value-driven design [4]; however, 
coupled outcomes evaluated by each actor-specific utility 
function can lead to conflicting preferences for outcomes.

An actor’s strategy describes the complete process by 
which they select an action. Pure strategies select one 
action with certainty (thus, actions are also commonly 
referred to as strategies) and mixed strategies select 
probabilistic combinations of actions. To identify rational 
strategies (i.e., those leading to preferred outcomes), 
game theory explicitly considers strategic interaction 
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among actors, rather than simply treating other’s actions as 
sources of exogeneous uncertainty.

There exist a variety of game theoretical problem formulations 
and analysis methods; however, this section presents a basic 
one: a normal form game. It is represented by a matrix that 
quantifies preference for outcomes (payoffs) for each actor 
resulting from simultaneous action combinations, often 
over discrete action spaces. Normal form games typically 
model single-stage decision problems; however, repeated 
games can also study strategy of sequential decisions. Non-
cooperative games focus on the baseline decision-making 
dynamics arising from payoff values while cooperative games 
allow for within-game agreements to modify such values.

Game theory analysis methods focus on identifying 
equilibrium strategies. A Nash equilibrium is a strategy 
set where no actor has individual incentive to deviate to a 
different strategy. It represents a potential “solution” to a 
game because it finds a naturally stable decision point that is 
immune to interactive effects. Games may have zero, one, or 
many equilibriums and actors may have different preferences 
for each equilibrium. The presence of an equilibrium does not 
suggest it is mutually desirable to all actors.

Rather than solving realistic day-to-day problems, game theory 
strives to anticipate strategic behavior by understanding 
the underlying forces that shape actions in more abstract 
settings. Many game theory problems consider a small set 
of actors and their actions. A surprisingly rich variety of 
strategic dynamics emerge from games with two actors and 
two actions based on the number and nature of equilibrium 
strategies present. For example, the famous prisoner’s 
dilemma game is a two-actor, cooperate-or-defect game that 
exhibits one equilibrium strategy (both defect), which does 
not lead to the most desirable outcome (both cooperate). The 
tension between individual and collective benefits helps to 
understand the strategic dynamics behind many collective 
endeavors.

In addition to identifying equilibrium strategies, game theory 
methods also provide comparative analysis of strategies 
within or across related games. For example, a stag hunt 
is a two-actor, collaborate-or-defect game that exhibits a 
bistability dynamic where the two equilibrium strategies 
(both collaborate or both defect) trade sources of risk and 
reward. Game theory analysis of risk dominance evaluates 
comparative attractiveness of the two strategies by measuring 
the relative stability of collaboration, which helps to identify 
and pursue robust collaboration opportunities [5]. 

Broader applications of mechanism design leverage game 
theory analysis to propose structural game changes that are 
anticipated to result in more collectively desirable outcomes. 
In this setting, cooperative game theory allows enforceable 
agreements within actor coalitions to shift focus away from 

maximizing individual payoffs to sharing collective payoffs. 
As in most design problems, mechanism design operates 
within a vast space of creative design solutions that balance 
competing factors such as economic efficiency and equity.

2.3. Illustrative example: satellite coordination

Consider an example SoS coordination problem with 
two independent space agencies: Red and Blue. Red 
operates a small research satellite and Blue operates a 
large meteorological satellite. As an example of bilateral 
coordination, the agencies must decide on actions to 
mitigate the threat of a collision in response to a hazardous 
conjunction event.

Both actors have two available actions: do nothing or 
maneuver their satellite, leading to four possible outcomes. 
Table 1 illustrates the normal form representation of this 
coordination game using notional utility (payoff) values. Note 
that the mixed strategy has been added as an additional 
row and column to aid discussion. Utilities quantify the 
expected utility for each outcome which itself may compose a 
distribution of events (e.g., the outcome where both actors do 
nothing may only probabilistically lead to a collision). Financial 
units (e.g., USD $M) provide a relatively unbiased proxy for 
utility despite being affected by variable human risk attitudes. 
For simplicity, this example assumes risk-neutral decision-
making. The outcome where both actors do nothing results 
in severe negative consequences denoted as -$50M for Red 
and -$100M for Blue. The other outcomes result in slightly 
negative consequences due to propellant consumption that 
reduces satellite operational life, shown as -$2M for Red and 
-$3M for Blue. Utility values are not generally comparable 
between actors due to differences in preferences; however, 
the selected quantities are intended to highlight asymmetries 
between the two actors.



184

Equilibrium analysis searches for stable strategy sets, 
revealing two pure equilibria and one mixed equilibrium. The 
first pure equilibrium strategy occurs if Red chooses to do 
nothing, and Blue chooses to maneuver. Under this baseline, 
Red would not unilaterally choose to maneuver, because 
the threat is already mitigated. Similarly, Blue would not 
unilaterally choose to do nothing, because it results in a worse 
outcome than proceeding with a maneuver. The second pure 
equilibrium strategy occurs for the similar scenario where 
Red chooses to maneuver, and Blue chooses to do nothing 
with the same justification. The mixed equilibrium produces 
indifference to strategy selection. In this game, when Red 
chooses to maneuver with probability (-100+3)/(-100-0+3-3) 
= 0.97, Blue has expected utility -$2M for all outcomes. When 
Blue chooses to maneuver with probability (-50-0)/(-50+2-0-
2) = 0.96, Red has expected utility -$3M for all outcomes.

Actors do not have equal preferences for the three equilibrium 
solutions. Red prefers the equilibrium where Blue always 
maneuvers. Similarly, Blue prefers the equilibrium where Red 
always maneuvers. The mixed equilibrium is not preferred 

by either actor. Game theory provides little more progress 
towards a solution and external factors such as negotiation 
or brinksmanship may be required to resolve the strategic 
tension. Indeed, this example is an instance of games 
variously described as chicken, hawk-dove, or snowdrift that 
represent a theoretical model of intrinsic conflict.

Cooperative game theory permits enforcement of agreements 
that materially impact outcomes. In the above problem, 
it is comparatively less costly for Red to maneuver their 
small satellite than Blue; however, Red bears the cost of 
maneuvering their own satellite. Mechanism design proposes 
incentives to promote efficient solutions. For example, 
consider a mechanism where Blue agrees to compensate Red 
for maneuvering their smaller satellite to mitigate a potential 
collision, regardless of Blue’s action. Table 2 represents 
the value exchange as a deduction of Y from Blue and an 
addition of X to Red. Note that X and Y may not be equal if 
Red and Blue differently value the resource being exchanged 
or if transactional friction erodes a part of the value.

Blue Agency 4% Do Nothing

96% ManeuverDo Nothing Maneuver

Red Agency

Do Nothing
-50

-100

0

-3

-2

-6.88

Maneuver
-2

0

-2

-3

-2

-2.88

3% Do Nothing, 97% Maneuver
-3.44

-3

-1.94

-3

-2

-3

Table 1. Satellite collision coordination problem (Utilities in USD $M).

Blue Agency

Do Nothing Maneuver

Red Agency

Do Nothing
-50

-100

0

-3

Maneuver
X-2

0-Y

X-2

-3-Y

Table 2. Satellite collision coordination problem with incentives.
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For values X > $2M, only one equilibrium strategy remains 
where Red always chooses to maneuver and Blue always 
chooses to do nothing. Compared to the original game, 
this solution is better than Red’s best-case equilibrium and 
better than Blue’s worst-case equilibrium for values Y < $3M. 
Additionally, this solution avoids the strategic uncertainty 
associated with multiple equilibriums. However, a new 
potential problem arises: Red now has a perverse incentive 
to benefit from collision hazards as a source of additional 
revenue. An expanded system scope and additional analysis 
will be required to devise coordinated SoS solutions that resist 
exploitation.

3. FEDERATION OF SYSTEMS

3.1. Introduction

Federations of Systems (FoS) are a class of SoS that may 
operate during their life cycle independently or may voluntarily 
cooperate with each other with the intent of obtaining mutual 
benefits. Unlike hierarchical or tightly integrated systems, 
federations are a class of distributed systems that maintain 
the management, operational, and goal independence of their 
constituent systems. At the same time, they are designed in 
such a way as to promote collaboration among them. The FoS 
paradigm is particularly relevant in scenarios where resource 
sharing can improve value delivery while addressing cost and 
complexity challenges-particularly for systems characterized 
by high capital costs and/or high recurring operating costs. 

The characteristics defining FoS are outlined in Table 3. The 
motivation behind FoSs lies in the potential for improved 
resource utilization, and the possibility of providing added 
value by promoting collaboration among traditionally isolated 
systems. Collaboration between systems is particularly 
important in exploiting opportunities arising from the 
underutilization of resources.

SoS employ mechanisms structured to ensure integration when 
required. Such integration is implemented through centralized 
communication protocols. Governance frameworks are 
also possible to enable flexible collaborations, often of an 
opportunistic nature.

One instance of system federations is represented by the 
Federated Satellite Systems (FSS) paradigm [7]. Satellites in 
FSS cooperate to exploit resources that would otherwise go 
unused because they are not needed at particular points 
in their operational life. Examples of resources that can be 
shared in a federation include bandwidth, data storage, as well 
as computational capacity. Participation in a federation makes 
it possible to reduce operational inefficiencies and thus make 
better use of the capacity in orbit –an equally important goal 
for sustainable and responsible space. One of the problems 
that arise in implementing the idea of federations in orbit is 
that of the mechanisms necessary for their operations. In other 
words, it is necessary to define operational arrangements 
and incentives of an economic or utilitarian nature that 
enable satellites to operate efficiently while maintaining their 
autonomy. One of the mechanisms considered for this purpose 
is that of constrained– bid reverse auctions [8]. This approach 
enables the creation of a commercial ecosystem of in-orbit 
space assets, therefore generating opportunities for innovation 
and improvement in the capabilities available to individual 
satellites.

The study of system federations is interdisciplinary in nature 
and is not limited to the space sector alone. We can easily 
postulate other examples of possible federations in different 
industrial fields. For example, in the energy sector, it is 
possible to conceive of federations of energy systems such 
as wind turbines and solar farms, as well as battery storage 
units. In this case, electricity and its storage are the resources 
made available. The objective of the federation thus becomes 
to make excess energy available, promoting the balancing 
of the grid as well as the pricing dynamics between supply 
and demand. Further impacts of such an approach include 
the possible reduction of operating costs and minimization of 

Defining the characteristics of system federations

Voluntary cooperation: 
Participation based 

on mutual agreement, 
incentivized by the 

individual goals of the 
systems involved.

Mutual benefits: federations 
motivated by the emergence 

of mutual benefits from 
collaboration. Examples of 

mutual benefits are improved 
performance, reduced costs, 

or enhanced capacity.

Independent management: 
Limiting collaboration 
between systems to 

areas of mutual interest, 
leaving each system 

with its own autonomy.

Alignment of operational 
goals: maximizing the 

federation’s group goals, 
subject to operational 
independence and the 

pursuit of individual goals.

Table3 Characteristics of Federations of Systems (FoS).
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environmental impact through efficient utilization in terms of 
energy storage, transportation, and distribution. An additional 
area of interest for federations is the telecommunications 
sector. In the latter, federated wireless networks can enable 
independent service providers to share their resources, such 
as base stations and bandwidth, in order, for example, to 
expand coverage and improve service reliability.

The motivation behind the idea of system federations is the 
need for resource efficiencies in the face of constraints of 
technical complexity and economics that are often difficult for 
complex systems such as those in high capital cost industries. 
Through the promotion of collaboration among independent 
entities, system federations allow the capabilities of individual 
systems to be increased at a lower marginal cost than would 
be possible in the absence of collaborative opportunities. 
This approach also enables the reduction of operational costs 
and the balancing of resource utilization when designed 
within a sharing network. In this chapter, we will explore the 
basic principles, challenges, and practical applications of 
system federations. We will use federated satellite systems 
as a case study of FoS. The goal of the chapter is to provide 
a comprehensive discussion on the potential for system 
federations have to be a viable approach to optimizing the 
efficiency of systems operating in networks, as well as an 
approach to promoting scalability and sustainability in resource 
utilization.

3.2. Fundamental concepts of federations

The concept of synergy is central to the value proposition of 
system federations. In this context, synergy is defined as the 
aggregate benefit resulting from the cooperation of systems 
operating within a federation. Synergy is defined as the 
mutual benefit resulting from the cooperation of independent 
systems. Such cooperation enables the participating systems 
to collectively achieve greater results than could be achieved 
in isolation [9]. Mathematically, synergy is defined as follows:
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is that Hubble Space Telescope, which was designed 
with modular components to enable regular maintenance 
missions. The telescope’s design allowed astronauts to 
repair defects, such as the initial spherical aberration of the 
primary mirror, and to upgrade instruments and subsystems, 
significantly extending its operational lifetime and scientific 
utility [17]. However, traditionally on-orbit maintenance has 
entailed significant costs that are justifiable only for flagship 
space missions of Hubble’s caliber, and thus not affordable 
for the majority of space missions. This may change in the 
near future thanks to reduced launch costs and advances 
in in-orbit servicing technology [18]. An additional challenge 
to satellite interfacing is the regulatory constraints and 
heterogeneity of communication protocols between satellites. 
Careful evaluation of these challenges is needed to determine 
whether the costs and risks of retrofitting existing satellites 
outweigh the expected benefits.

Indirect modifications, such as the use of negotiator nodes, 
offer a more feasible approach to enabling interoperability 
[14]. Negotiators act as intermediaries that facilitate 
resource sharing and communication between satellites, 
such as through the use of Software Defined Radio (SDR) 
technologies. The work presented in [14] evaluates the 
concept of hosted payloads or independent negotiator 
satellites equipped with reconfigurable antennas and SDR. 
These digital technologies allow dynamic adaptation to 
different communication protocols and frequencies, thus 
addressing the heterogeneity of systems in a federation. 
However, even with this approach, the trade-off between the 
added complexity introduced by negotiators and the benefits 
of increased collaboration must be carefully analyzed.

The case of federated satellite systems shows that, given 
the right operational and economic conditions, interface 
integration can unlock significant synergies, enabling 
systems to achieve collective goals that exceed their 
individual capabilities [7].

3.3. Challenges and opportunities in system 
federations

Federated engineering systems face challenges arising from 
their decentralized nature and the inherent independence 
of constituent systems. These challenges include trust and 
security. These are particularly critical as they affect the 
willingness of stakeholders to participate in and maintain 
federation. Trust issues in FoS stem from problems with 
data authentication, integrity, and confidentiality. Without 
robust mechanisms to address these issues, the risk of 
data tampering, unauthorized access, and misinformation 
increases, potentially undermining the collaboration 
necessary for a successful federation.

Tradespace exploration is an established approach used 
for performance analysis of system federations. This 
methodological approach evaluates the space of possible 
solutions in order to identify system architectures with optimal 
tradeoffs between cost, performance, and other decision 
variables of interest [11, 12]. The exploration of tradespace 
allows systems that are part of (or candidates to be part of) 
a federation to explore the value added by their participation 
in the pooled resource collective. For example, in FSS, 
tradespace analysis is used to assess the cost-benefit sharing 
of bandwidth and data processing capabilities. This purely 
analytical approach allows for a quantitative assessment of 
the conditions under which federations are most beneficial 
and identifies scenarios in which they may not provide the 
expected benefits.

Not in all cases can system federations be considered 
beneficial. Indeed, they also present unique challenges at 
the system architecture level. One of the main challenges is 
interoperability among the independent systems that make 
up the federation [13]. Interoperability requires algorithms, 
hardware, and software, the complexity of which may outweigh 
the possible benefits of collaboration. Examples of elements 
needed for interoperability include communication protocols, 
as well as standardization of data formats and interfaces. 
Standardization itself is an expensive and complex process 
of coordination among heterogeneous entities. In addition, 
the decentralized nature of FoS complicates the creation 
of universal standards, as individual systems may prioritize 
local optimization over global compatibility.

Another architectural challenge is to assess the scalability 
potential of federated systems. The number of possible 
interactions and dependencies among federated systems 
increases exponentially as the number of systems 
participating in the federation increases. For this reason, 
offering performance or reliability guarantees becomes 
particularly challenging, particularly in the face of the 
operational uncertainties that such systems face. A critical 
consideration in this regard is the balance between the costs 
of creating and maintaining interfaces and the expected 
benefits of cooperation. The management of interfaces that 
enable the interaction of federated systems is a key issue 
that has been addressed in the context of federated satellite 
systems [9]. The two main strategies considered are direct 
changes, such as replacing or adding interfaces, and indirect 
changes, involving middleware or negotiator nodes [14]

Direct interface modifications often require physical access 
to satellites, which is highly impractical for spacecraft not 
specifically designed for in-orbit maintenance [15]. The 
latter issue has raised particular interest in recent years, 
especially in the context of modular approaches to space 
system design [16]. The challenge of in-orbit maintenance of 
satellites is not new and has been addressed several times 
during the evolution of the space industry. One example 
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One proposed solution to these challenges is the adoption of 
blockchain systems [19]. Blockchain ledgers together with 
data encryption are a potential solution to manage exchange 
of data and metadata, through transparent mechanisms that 
are able to ensure data privacy when necessary. Another 
useful feature of blockchain in this context is its tamper-proof 
nature that allows for providing proofs on data sources and 
transactions. As a result, stakeholders have trust guarantees 
and in the context of FSS, blockchain can be used to securely 
record resource sharing transactions, such as bandwidth or 
data processing exchanges, ensuring that all parties have a 
verifiable record of agreements and deliveries.

A complementary approach to blockcahin is represented 
by of Public Key Infrastructure (PKI) protocols. PKI enables 
secure communication by leveraging cryptographic keys for 
authentication and encryption. In the context of federations, 
this approach allows for establishing a secure trust basis by 
allowing stakeholders to verify the identity of communicating 
parties and ensure the integrity of shared data. For example, 
in federated satellite systems, PKI can facilitate secure inter-
satellite communication by ensuring that only authenticated 
parties participate in resource sharing operations and that 
exchanged data remains confidential and untampered with 
[20].

In addition to trust and security, federated systems face 
the challenge of dynamic network topologies and uncertain 
demand and supply for resources since nodes can give 
and revoke their sharing availability on an individual basis. 
Membership in a federation can be uncertain, and therefore 
volatile. This volatility poses challenges for coordinating, 
balancing, and optimizing operations. One potential solution 
to this issue is represented by Markov decision processes 
(MDPs). MDPs are a tool for modeling system operations 
under conditions of uncertainty [21] and can be used 
for predicting and optimizing federation behavior under 
uncertainty. Operators can analyze the possible states of 
the system using MDPs, evaluate the transition probabilities 
between these states, and determine the optimal strategies 
for resource allocation and cooperation. For example, 
in FSS, MDPs can be used to model scenarios in which 
satellites dynamically allocate bandwidth based on changing 
operational demands and state membership. 

3.4. FoS case study: Federated satellite systems.

Unlike other distributed satellite systems (DSS), which 
may involve constellations, clusters or swarms designed 
for integrated operations under centralized control, FSS 
involve voluntary cooperation between independently owned 
spacecraft that collaborate on an opportunistic basis [22]. This 
distinction differentiates FSS from other DSS architectures by 
introducing opportunism to resource sharing. Satellites act as 
both customers and resource providers, depending on their 
operational status and capabilities, enabling more dynamic 
and cost-effective missions.

The International Space Station (ISS) has been considered 
as a provider of satellite resources such as computing power 
[22] – a concept that was later explored for a cloud computing 
infrastructure aboard the ISS [23]. In the ISS scenario, the 
Station contributes resources such as downlink bandwidth, 
data storage, and computing power to a network of client 
spacecraft. The study shows that incorporating the ISS into 
a federated system can help offset the high operational and 
lifecycle costs of manned space programs, which often 
exceed hundreds of billions. The federation value assessment 
synergy combines technical and economic analyses to 
identify potential customers, rank them by affordability, and 
assess the financial feasibility of FSS operations. The results 
show that FSS not only improves the sustainability of space 
missions but also creates scalable commercial markets for 
in-orbit resource sharing. 

Differing from other distributed satellite architectures, 
federated satellites also offer advantages in addressing 
inefficiencies related to underutilized satellite resources. For 
instance, each satellite experiences idle periods during its 
operations where available bandwidth or processing power 
goes unused. FSS enables the sharing of these resources 
that would be wasted otherwise. This capability has particular 
impact in orbital environments featuring natural variability of 
resource supply – such intermittent ground station coverage 
in Low Earth Orbit (LEO), which often results in latency and 
resource bottlenecks. By taking advantage of the cooperative 
structure of the FSS, satellites can cross-link data through 
peers with more immediate access to ground stations, 
thereby reducing latency and improving overall mission 
responsiveness [22].

The distinction between federated satellite systems and 
other distributed is in their focus on mutual benefits and 
decentralized control. While constellations optimize global 
coverage and revisit times through centralized coordination, 
federations prioritize flexibility and economic efficiency 



189

by dynamically matching supply and demand of in-orbit 
resources. Swarms, which often rely on self-organization and 
autonomous assignment of tasks, differ from FSS in that they 
lack explicit economic frameworks for resource sharing [22].

4. A CONCEPTUAL INTRODUCTION TO 
HETERO-FUNCTIONAL GRAPH THEORY1 

4.1. Introduction

Hetero-functional Graph Theory (HFGT) leverages MBSE and 
network science to capture heterogeneous phenomena in 
heterogeneous systems within a common modeling paradigm 
[24]. HFGT can be used to model an arbitrary number of 
networked systems of arbitrary topology connected arbitrarily 
[24]. More specifically, HFGT utilizes multiple graph-based 
data structures to support a matrix-based quantitative 
analysis, inheriting the heterogeneity of conceptual and 
ontological constructs found in MBSE including system form, 
system function, and system concept [24]. Furthermore, it 
can be used to reconcile and subsequently generalize both 
multi-layer networks [25, 54], axiomatic design models [52, 
56], system dynamics models [40], bond graph models, and 
linear graph models [39]. This ability to reconcile system 
models from disparate disciplinary sources, as well as the 
ability to model SoS of arbitrary topology, allows HFGT 
to conduct novel structural analyses [57, 58], dynamic 
simulations [59], and optimal decision problems [60]. 

The modeling process abstracts a “real world” system and 
represents the abstraction with a model.  The model refers to 
the real-world system, but this reference is always indirect, 
as an abstraction is always made in the modeling process. 
Although the abstraction of the real-world system may be 
either conceptual or linguistic, it is important to distinguish 
between a conceptual abstraction, residing in the mind, and 
a linguistic abstraction, residing within a predefined language 
usually associated ontologically with a real-world knowledge 
domain. Hetero-functional graph model(s) are the abstracted 
model of the real-world system, while hetero-functional graph 
theory provides the means of representing ontologically 
heterogeneous real-world domain conceptualizations in a 
common mathematical and computational language.

1. This section abridges several previously published works into a qualitative introduction to 
hetero-functional graph theory [24, 25]. 

HFGT has been applied to SoS in numerous application 
domains individually, including multi-modal electrified 
transportation systems [50, 65, 66], microgrid-enabled 
production systems [49], personalized healthcare delivery 
systems [48, 59, 67], hydrogen-natural gas systems [60], 
the energy-water-nexus [68], and the American multi-modal 
energy system [58]. 

4.2. Instantiated, reference, and meta-
architectures for Systems of Systems

To gain a better understanding of the convergence challenge 
associated with complex SoS, including societal challenges 
of the Anthropocene, consider what happens when the real-
world system is a system of ontologically heterogeneous 
systems: the real domain is a real-domain-of-real-domains that 
unites the individual domains into one. For example, the study 
of the food-energy-water nexus in general (rather than for a 
specific region) may constitute such a real-domain-of-real-
domains. It needs to be abstracted by humans, in the mind, in 
a domain-conceptualization-of-domain-conceptualizations. 
Similarly, that must be referred to using a language-of-
languages. Several convergence challenges immediately 
arise. First, humans are typically trained in a single domain 
conceptualization, rather than multiple knowledge domains. 
Indeed, it is far from clear that there even exists a single 
human (let alone many) who has sufficient knowledge of the 
domain-conceptualization-of-domain-conceptualizations. 
In the absence of such an individual, a group of individuals 
–each with their own individual domain conceptualizations– 
must somehow collaborate to discuss the real-domain-of-real-
domains (e.g., the food-energy-water nexus independent of 
a specific region). They immediately find that each domain-
conceptualization comes with its associated language and 
a language-of-languages emerges. Because each of these 
languages was developed entirely independently to address 
the needs of its associated real domain, the language-of-
languages is highly divergent and a common, convergent 
understanding between languages is difficult to achieve. To 
overcome this impasse, it is possible that the language-of-
languages develops a translation capability between each 
of the languages pertaining to each real-domain. While this 
strategy is relatively straightforward for only two languages 
with a single translator, it does not scale when there are N 
real-domains that require N(N-1) translators between N 
languages. The only alternative is to invest in the development 
of a language-of-languages that reconciles the individual 
languages into a single common language.  
HFGT adopts the latter approach, where a single common 
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language serves as a language-of-languages. The development 
of a single common language for a domain-conceptualization-
of-domain-conceptualizations requires three types of system 
architectures. As shown in Figure 1, these are the instantiated, 
reference, and meta-architectures.

The reference architecture generalizes instantiated 
system architectures. Instead of using individual 
instances as elements of the physical and functional 
architecture, the reference architecture is expressed in 
terms of domain-specific classes of these instances. 
In this way, the reference architecture captures the 
essence of existing instantiated architectures. It also 
provides a vision of future needs that can provide 
guidance for developing new instantiated system 
architectures. Such a reference architecture facilitates 
a shared understanding across multiple disciplines or 
organizations about the current architecture and its 
future evolution. A reference architecture is based on 
concepts proven in practice. Most often, preceding 
architectures are mined for these proven concepts. 
The reference architecture, therefore, generalizes 
instantiated system architectures to define an 
architecture that is generally applicable in a discipline. 
However, the reference architecture does not generalize 
beyond the domain conceptualization.

The meta-architecture further generalizes reference 
architectures. Instead of domain specific elements, 
it is expressed in terms of domain-neutral classes. 
A reference architecture is composed of “primitive 
elements” that generalize the domain-specific 
functional and physical elements into their domain-
neutral equivalents. While no single engineering 
system meta-architecture has been developed 
for all purposes, several modeling methodologies 
have been developed that span several discipline-
specific domains. In the design of dynamic systems, 
bond graphs [27-29] and linear graphs [30-34] use 
generalized capacitors, resistors, inductors, gyrators 
and transformers as primitive elements. In the system 
dynamics of business, stocks and flows are often used 
as primitives [35, 36]. Finally, formal graph theory [37, 
38] introduces nodes and edges as primitive elements. 
Each of these domains has their respective sets of 
applications. However, their sufficiency must ultimately 
be tested by an ontological analysis of soundness, 
completeness, lucidity, and laconicity [24]. Hetero-
functional graph theory, as the next section elaborates, 
utilizes its own meta-architecture that, in recent years, 
has been shown to generalize linear graphs, bond 
graphs, system dynamics, and formal graph theory 
[25, 39, 40]. Given the importance of ontological clarity, 
HFGT has taken special care in the translation of this 
meta-architecture from its description in the systems 
modeling language (SysML) [41-43] to its mathematical 
representation.

Here, we conceive a system architecture as consisting of three 
parts: the real-world or physical architecture, the functional 
architecture, and the mapping of the latter onto the former in a system 
concept (or allocated architecture). The physical architecture is a 
description of the decomposed elements of the system without any 
specification of the performance characteristics of the physical 
resources that comprise each element. The functional architecture 
is a description of the system processes in a solution-neutral 
way, structured in serial, or parallel, and potentially in hierarchical 
arrangements. The system concept as a mapping of the functional 
architecture onto the physical architecture completes the system 
architecture. For a hetero-functional graph model to be correctly 
specified, it is assumed that the entirety of any given process must 
be completed by a given resource.

An instantiated systems architecture is a case-specific architecture 
that represents a real-world scenario. At this level, the physical 
architecture consists of a set of instantiated resources, and the 
functional architecture consists of a set of instantiated system 
processes. The mapping in the system concept defines which 
resources perform what processes. 

Figure 1. SysML Block Definition Diagram. Systems architecture can be represented 
at three levels of abstraction with instantiated, reference, and meta-architectures.



191

4.3. Essential elements of hetero-functional graph theory

This section introduces the essential elements of hetero-functional graph 
theory in terms of its underlying meta-architecture. Unlike other meta-
architectures, hetero-functional graph theory stems from the universal 
structure of human language with subjects and predicates and the latter 
made up of verbs and objects [24, 25]. A real-world engineering system 
includes a set of resources as subjects, a set of system processes as 
predicates, and a set of operands as their constituent objects [44-46], where:

	• A system operand is an asset or object that is operated on or consumed 
during the execution of a process.

	• A system process is an activity that transforms or transports a predefined 
set of input operands into a predefined set of output operands. 

	• A system resource is an asset or object that facilitates the execution of a 
process. Three types are defined: transformation resources, independent 
buffers, and transportation resources. 

As shown in Fig. 2, these operands, 
processes, and resources are organized 
in a meta-architecture [41-43]. Importantly, 
operands in the engineering system have 
several types including matter, energy, living 
organisms, information, and money, which 
makes HFT intrinsically cyber-physical [24]. 
Interestingly, it is understood that operands, 
in general, have some sort of state in 
time. The evolution of this operand state is 
described by an operand net as a type of 
Petri net [46]. The relationships between the 
different types of system processes and the 
resources that can execute them is further 
depicted in the hetero-functional graph 
theory functional meta-architecture (see Fig. 
3).

Figure 2. A SysML block diagram of the HFGT formal meta-architecture.
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Figure 3. A SysML Activity diagram of the HFGT functional meta-architecture.

Resources are capable of executing one or more system processes 
to produce a set of capabilities [24]. Intuitively, a capability is 
articulated as a subject + verb + operand sentence of the form 
<Resource> <executes> <process>. It is important to recognize 
that, while capabilities are their own distinct entities, they are in reality 
formed by the allocation of a process to a resource. In Fig. 2, these 
capabilities appear as owned behaviors of their respective blocks. 
In Fig. 3, these capabilities appear as actions in their respective 
swim lanes. At an engineering system level, these allocations are 
described in the system concept, which may be captured as a 
binary matrix whose elements are equal to one when an action is 
available as a system process being executed by a resource. In 
other words, the system concept forms a bipartite graph between 
the set of system processes and the set of system resources [51].

Once the engineering system’s capabilities have 
been defined, there is a need to understand how they 
interact with each other. These appear most clearly as 
the directed arrows between the actions allocated to 
swim lanes in Fig. 3. Mathematically, HFGT describes 
these functional interactions with incidence tensors. 

4.4. Illustrative example

This highly abridged conceptual introduction to 
hetero-functional graph theory can also be explained 
graphically through the illustrative example shown in 
Fig. 4. 

Figure 4. A visual comparison of a formal graph model and a hetero-functional graph model of the same hypothetical system [24].
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Fig. 4 illustrates the difference between a formal graph 
and a hetero-functional graph (HFG). The formal graph in 
Fig. 4a shows a system composed of four nodes: a water 
treatment facility, a solar PV panel, a house with rooftop 
solar, and a work location. These are connected by four 
edges: a water pipeline, two power lines and two roads. 
In contrast, Fig. 4b shows the associated hetero-functional 
graph. Instead of four nodes that represent point-like 
facilities, the hetero-functional graph now has 12 nodes 
that represent the connected system capabilities. The 
water treatment facility, solar PV panel, and work location 
appear unchanged between the two graphs because they 
each have only one capability. In contrast, the house with 
rooftop solar provides four capabilities in the HFG. The 
edges in the formal graph now appear as transportation 
capabilities in the HFG. Finally, the directed edges in the 
HFG indicate the logical sequences of these capabilities 
such that if one follows them a “story” of capabilities 
emerges. For example, the water treatment facility treats 
water (𝝭¹) and then the water pipeline transports the water 
from the water treatment facility to the house (𝝭8).

5. FEDERATED MODELING AND 
SIMULATION

5.1. Introduction

Most SoS are too complex for mathematical analysis. 
Generally, the behavior of the resulting networks of systems 
depends on their linkages and their environment, where 
scientific reductionism is incapable of fully defining behavior.

Simulation has become one of the most used analysis tools 
for large scale systems because it can take randomness 
into account and address aggregate as well as very detailed 
models. Furthermore, as computing speed has increased 
and communication has improved, there has been even 
more motivation for using computer simulation for larger 
and larger problems, such as a supply chain. Applying 
simulation to SoS leads naturally to distributed simulation 
(referred to as federations), where existing legacy simulation 
models (referred to as federates) are integrated over a 
network of multiple computers. The existence of legacy 
system models is one driving force for federated modeling 
and simulation. Another is to allow each system (e.g., a 
supply chain member) to hide any proprietary information in 
implementation of the individual simulation but still provide 
enough information to analyze SoS (e.g., supply chain) as 
a whole.

5.2. Federation of simulation and time synchronization

The design and development of a distributed network of 
simulations (i.e., federation) is complex and requires expertise in 
several disciplines including domain experts, system design and 
specifications, simulation modeling, and distributed computing 
and networking. Once system models (e.g., discrete event, 
system dynamics, agent-based, or physics-based model) 
exist, the time synchronization of multiple system models (i.e., 
federates) and information exchange among them are important 
problems.

To illustrate how a federation is constructed and operated given 
existing federates, a supply chain is used as an example in this 
section. Figure 5 depicts a federation of supply chain, integrating 
geographically dispersed federates modeled by commercial 
simulation software systems (i.e., Arena for the supplier, ProModel 
for the assembly plant, AutoMod for the transporter). 

Figure 5: Supply chain federation using IEEE Std 1516-2010 framework [69].

Given existing federates, we first need a server (e.g., RTI in 
Figure 5) which will communicate with the federates. Second, to 
enable such communications, each federate needs an interface 
(e.g., Adapter in Figure 5), which will send/receive messages 
to/from the server (see Figure 6). The major responsibilities of 
the server are time synchronization and information exchanges 
among the federates.
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As shown in Figure 6, each federate has two types of events: 
(1) internal events (continuous models need to be discretized 
to create internal events), and (2) interaction events. Internal 
events are the events that do not influence other federates 
in the federation [70]. An interaction event is defined as an 
event which influences the behavior of another federate(s). 
Information concerning interaction events along with the 
corresponding parameters is communicated to the receiving 
federates, and the receiving federates adjust their behaviors 
accordingly in order to enable the system to run properly. If 
a federate receives an interaction event whose time stamp 
is earlier than the federate’s current simulation clock, then a 
“causality constraint” violation has occurred; if not reconciled, 
this violation may invalidate the simulation results. That’s why 
time synchronization is important.

Two major classes of approaches have been used for 
synchronizing federates – conservative and optimistic. In 
the conservative time synchronization approach, federates 
determine the time to their immediate next event, and 
requests permission from the server to advance to that 
time.  After obtaining requests from all the federates, the 
server determines the lowest time step requested and grants 
permission to the federates to move ahead. The federate 
executes the next event and requests permission to advance 
to the immediate following event, and the cycle continues. In 
the conservative approach, no distinction is drawn between 
the internal events and the interaction events in terms of time 
management. At each interaction event, a message will be 
sent from the federate to the server, which then forwards the 
message to the corresponding federate.

In the optimistic approach, federates step in parallel at fixed 
or variable increments. If an interaction between federates 
occurs, they are rolled back to the time where the interaction 
occurred. However, it is extremely difficult to implement a roll 
back mechanism in simulation.

5.3. Frameworks enabling federation

A number of frameworks are available to enable distributed 
simulation in the literature [71-76]. 

As an example, IEEE Std 1516-2010 describes the framework 
and rules of the High-Level Architecture (HLA), which is an 
integrated approach to provide a common architecture for 
federated simulations. Following a publish and subscribe 
architecture, HLA can be applicable to various types of 
operating systems, software, applications, and languages. 
For example, it allows integration of wide ranges of software: 
AnyLogic, Simio, Arena, ProModel, Repast, DynusT (traffic 
simulator), hardware (robots, machines, drones), Unity (game 
engine), and more. 

To maintain or govern models, an open-source Portico 
(http://porticoproject.org/) or a commercial RTI (e.g., MAK 
Technologies) can be used, and efforts are needed to 
develop technical governance. In addition, a governance 
structure and agreement need to be established among 
sponsors and users.

Figure 6: Event-based conservative time synchronization approach [70]. 
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6. AGENT BASED MODELING FOR 
SYSTEMS OF SYSTEMS

6.1. Agent-based modeling paradigm

Agent based modeling is a computational technique used to study 
and understand the behavior of complex systems. The approach 
is characterized as bottom-up by modeling the individual entities 
that make up the system and their interactions. These individual 
entities referred to as agents can represent individuals, groups, 
organizations, or any type of autonomous entity. Such models 
are suited to support the analysis and engineering of SoS and 
understand their properties as well. ABM gives analyst the 
flexibility to model key properties of SoS including autonomy of 
its constituent systems, belonging of its constituent systems to 
the SoS mission, connectivity among constituent systems, and 
diverse properties of its constituent systems [77]. The modeling 
methodology also serves as a digital laboratory for exploring 
emergent properties and non-intuitive behavior of SoS. This 
section introduces agent-based modeling basics and discusses 
the value of ABM for SoS analysis and engineering through some 
illustrative applications in literature.

Evolution of ABM from theoretical concepts to practical 
applications spans several decades in various disciplines. 
The fundamental concept of autonomous agents and their 
interactions are first proposed by John von Neuman [83], 
which laid the foundations for John Conway’s seminal work on 
cellular automata, Game of Life, where simple rules applied to 
cells on a grid lead to emergence of complex behaviors [84]. 
This work influenced development of early ABMs of social 
simulations such as Thomas Shelling’s segregation model 
[85], Joshua Epstein and Robert Axtell’s Sugarscape model 
[78], which was an enhanced ABM of Conway’s Game of Life 
and Schelling’s segregation model. Other influential models 
such as Robert Axelrod’s work on evolution of cooperation [86] 
demonstrated the potential strengths of exploring dynamics of 
agent interactions, emergence, and complexity in social systems 
and economic systems. The methodology expanded into a wide 
range of disciplines over the years such as analysis of disease 
spread, ecosystem dynamics, simulated market dynamics. 
Computational advances accelerated the use of ABM in recent 
years. It is now used in a wide range of application domains 
including various SoS applications such as infrastructure 
modeling, defense systems analysis, or urban planning. This 
section first provides a brief snapshot of the modeling paradigm 
and how it is constructed. It then discusses the value of ABM for 
SoS analysis and engineering with some ABM examples of SoS 
engineering problems. 

6.2. Modeling agents

While there are different views on the definition of what 
constitutes an agent, in practice agents have the following 
features in the context of ABM [80]: 

	• Autonomy and self-direction: The actions of an 
agent are self-directed and independent, both in its 
environment and in its interactions with other agents.

	• Identifiable characteristics: Each agent in the model 
has identifiable set of characteristics, behavior, and 
managerial capabilities.

	• Interaction with other agents: Agents have a set 
of rules that determine how they interact with other 
agents. 

Other additional properties that may be considered when 
modeling agents include:

	• Situated in an environment: Agents may act and 
interact within an environment where their behavior 
depends on the interactions with other agents and with 
the environment.

	• Goal driven behavior: Agents may have goals, 
which are decision criteria agents use to assess the 
effectiveness of their behavior.

	• Ability to learn and adapt: Agent may have the ability 
to learn and adapt its behavior based on previous 
experiences. 

	• Resources: Agents may have resources such as 
energy, information, or wealth, which dynamically 
change based on the interactions. 

Modeling agents in ABM involves, at a minimum, 
identifying agent characteristics and identifying agent 
behaviors. Agent characteristics define specific attributes 
that distinguish an agent from other types of agents. For 
example, in a traffic vehicle size/weight is a characteristic 
that determines if the vehicle is a motorcycle, car, or 
truck. Other attributes of a vehicle could be speed or fuel 
consumption. Selection of agent characteristics/features 
depends on the domain of interest and level of detail 
necessary to capture the real-world problem. Each agent 
should also have behavior, which is a set of rules agent 
acts on when interacting with the environment and with the 
other agents. An agent’s behavior can be simple if-then 
rules, or it can be described by complex behavioral models 
such as cognitive decision models or artificial intelligence 
models. The behavioral models may also incorporate 
adaptability, where the agent dynamically changes its 
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behavior in response to its experiences. While some of the 
agent behavior models are based on empirical data or domain 
knowledge, advanced agent behavior models are often based 
on theoretical concepts from various disciplines such as game 
theory, cognitive science, reinforcement learning, and artificial 
intelligence. Selection of the type of agent behavior model 
depends on the domain and the ABM’s purpose. For example, 
if the model’s purpose is to evaluate the impact of a specific 
signaling rule on traffic congestion, modeling agent adaptation 
may not be necessary. 

The agent model determines the level of abstraction of the real-
world problem as well. While other modeling methodologies 
are suitable for a specific level of abstraction, ABM provides 
the flexibility to abstract the real-world system at different 
levels of detail. Figure 7 compares ABM to other modeling 
methodologies. The agent model can represent a macro level 
entity such as an organization vs. a lower-level abstraction such 
as an engineering design team or at a macro level one can 
analyze multi-model transportation dynamics by abstracting rail 
carriers, air cargo freight, and truck carrier behavior vs. lower-
level dynamics by modeling individual system dynamics. 6.4. Modeling agent interactions

The interactions between agents can include 
communication, competition, cooperation, and resource 
sharing. Regardless of the environment model used to 
connect the agents, the main point of modeling agent 
interactions is to identify the rules of local interactions 
among agents and local resource transfer between agents. 
This means that agents interact with a limited number of 
other agents in the total agent population. The nature of 
these interactions often leads to emergent behaviors. 

To give an example of how ABM is constructed, consider 
Unmanned Air Vehicles (UAV) that are utilized in various 
SoS missions such as monitoring large areas to provide 
situational data for surveillance and reconnaissance or 
locating individuals in distress for search and rescue 
missions or delivering goods for delivery services [79]. In 
a search and rescue mission, UAVs form an SoS where 
each UAV operates autonomously using its sensors and 
communicates with other UAVs to avoid overlapping 
search areas. If a UAV detects an individual in distress, 
it can signal nearby UAVs to send the information to a 
central command center. An ABM of UAV can be modeled 
to analyze the effective coverage of the search area, 
efficient use of the resources, and evaluate the response 
time of the SoS. The model simulates the behavior and 
interactions of autonomous UAVs. A description of how 
ABM may be applied for this SoS mission is provided 
below:

Figure 7. Levels of abstraction of ABM compared 
to other modeling methods [80]. 

6.3. Modeling the environment 

The environment where agents interact may be modeled in 
various ways. Figure 8 illustrates the type of environments that 
can be modeled in ABM. This could be a model of a physical 
2-D space, a grid structure, a network, or a complex spatial 
representation such as a geographic map. It is also possible that 
agents interact in an aspatial environment model. Regardless of 
the type of model, environment provides the context for agent 
interaction. 

Figure 8. Modeling the environment [80].
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	• Define types of agents and their characteristics: 
In this context, UAVs are the autonomous agents. 
Several UAV attributes may be considered such 
as position, velocity, sensor types, or battery 
level. Mission objectives may distinguish each 
type of UAV as well. For example, some of the 
UAVs may be assigned for surveillance, and 
others for reconnaissance mission. 

	• Model agent behavior: The behaviors for UAV are 
defined. UAVs sense their environment using their 
sensors, based on their current state and rules 
decide which actions to take such as changing 
direction or changing speed. Finally, they execute 
their decision and update their position and state. 
To support sensing and decision making, for 
example, collision avoidance algorithms and path 
planning algorithms may be incorporated into the 
UAV behavior models. Adaptability capabilities 
can be incorporated into the behavior model as 
well. For example, UAV may adapt its movement 
by re-planning its path basedon changes in the 
environment and mission objectives. 

	• Model the environment: The environment model 
captures the airspace in which UAVs operate. 
A geographic map of the area with information 
on terrain, restricted area zones, or target areas 
for the UAVs can be modeled to represent the 
operational environment.  

	• Model agent interactions: Communication 
protocols to share information among UAVs 
model the interaction among UAVs. The shared 
information includes obstacles and UAV status. 
This information helps UAVs to coordinate 
movements and avoid collisions. The interaction 
model may also incorporate task assignment to 
UAVs based on their current state. 

	• Define simulation process:  Initialize the state 
of the UAVs, which includes initial positions, 
velocities, and mission objectives as well as 
setting up the environment model parameters. 
Then the simulation is executed in discrete 
time steps. At each time step, each UAV agent 
senses, decides, and executes a move to update 
its position and state. 

	• Analyze system behavior: By simulation, one 
may gain insights into the search and rescue 
dynamics and possible emergent behaviors 
that may arise from the interaction of UAVs over 
the simulation time. These observations provide 
insights into the dynamics of the system.

To summarize, ABM involves several key steps to 

create a dynamic simulation that models the complexity of real-world 
systems:

	• Defining types of agents and their characteristics.

	• Modeling agent behavior by defining rules that govern agent 
behavior and interactions. This could also include adaptation 
behavior where agents adapt their behavior based on experience 
and feedback from the environment. Learning algorithms or 
simple rules to simulate evolving behaviors may be incorporated 
into agent behavior models. 

	• Model the environment by selecting a topological model. 

	• Model agent interactions by defining rules of agent interaction.

	• Define simulation time by identifying how time progresses in the 
simulation. This could be discrete time steps or continuous time. 

	• Analyze system behavior: Observe and analyze emergent 
behavior that arise from the interaction of agents over the 
simulation time. These observations provide insights into the 
dynamics of the system.

Figure 9. Elements of Agent-based Modeling.

6.5. Types of SoS problems suitable for ABM 

ABM is suitable for analyzing various types of SoS problems 
that involve complex interactions and system behaviors. Table 4 
provides a sample of SoS domains and problems explored using 
ABM. Detailed systematic review of SoS problems can be found 
in [82], where ABM of SoS problems is categorized as SoS-
related complex domains, SoS-related social aspects, SoS-related 
performance issues, SoS-related optimization approaches, SoS 
simulations for policy issues, SoS engineering-related issues, and 
SoS theoretical aspects. 
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Type of SoS problem Description

SoS-related Complex Domains: 
Air transportation network

ABM is utilized as a decision support tool. An air transportation 
network is modeled to investigate how the network performs 
over time when behavioral patterns of various agents such 

as airports, and governmental agencies change. 

SoS-related Complex Domains: Urban 
transportation policy analysis

SoS model explores the impact of various urban transportation policies in 
a city by modeling the behavior of users in urban transportation systems. 

SoS-related Social Aspects: 
UAV-human relationship

SoS model explores the level of autonomy for UAVs utilized 
for surveillance by analyzing the number of operators, level 

of autonomy for UAVs, and performance of the SoS. 

SoS-related Social Aspects: 
Smart grid demand response

SoS model is designed where power plants, substations, and consumer 
agents work together to balance supply and demand. The model 

provides insights into the dynamics of smart grid demand response.  

SoS- related Optimization 
Approaches: Wildfires

A collaborative SoS model is developed to predict the behavior 
and effectiveness of various fire-detecting configurations. 

SoS related Optimization Approaches: 
Naval warfare portfolio optimization

Portfolios of SoS architecture configurations are modeled and evaluated 
against capabilities, costs, and operational risks under a naval warfare 
scenario. The model analysis support SoS architecture development.  

SoS related Performance 
issues: Network resiliency

A networked naval warfare scenario is modeled to evaluate the 
resiliency of potential architectures under threats and disruptions. 

SoS Simulations for Policy 
issues: Energy generation

SoS model explores impact of policies for improving energy 
generation. The model provides insights for system designers 

to understand alternative SoS design options as well. 

SoS Engineering-related issues: 
SoS engineering communication

A fictious ABM of SoS is developed to analyze the impact of internal 
knowledge and communication on SoS performance. Results 
reveal that additional internal knowledge and communication 
between constituent systems improve the SoS performance. 

SoS Engineering-related issues: 
SoS development based on Wave 

acquisition process model [70] 

An ABM for acknowledged SoS development is modeled based on wave 
acquisition process model where SoS agent negotiates with individual 

systems to acquire desired capabilities for the SoS architecture. 

Table 4: ABM of SoS problems.
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6.6. Value of ABM for SoS engineering  

ABM is a valuable tool to support the engineering of SoS as 
it provides a comprehensive framework to analyze, design, 
and manage SoS. In a way, ABM serves as a test laboratory 
to understand how individual system behaviors lead to 
emergent behavior in a SoS. This is important for managing 
the complex interactions that are not intuitive from studying 
the behavior of its individual systems. The simulations may 
reveal non-intuitive behavior due to complex interactions 
between its constituent systems which is essential for 
designing SoS that can adapt and respond to changing 
conditions. Engineers can also use ABM to simulate 
various architecture configurations of an SoS to evaluate 
the impact of architecture alternatives on the overall SoS 
performance [81]. ABM can be also used as a decision 
support tool to analyze various scenarios including rare or 
extreme scenarios. This type of what-if scenario analysis 
helps to assess the response of SoS mission effectiveness 
under different conditions, providing valuable insights for 
systems engineers. Since ABM provides the flexibility to 
model different agent types and behaviors, it is useful in 
modeling SoS engineering where individual systems have 
differing interests and motivations. Thus, ABM provides the 
flexibility and adaptability to model all types of SoS including 
directed, acknowledged, collaborative, and virtual. Besides 
scalable models can be designed by adding new agents to 
model large scale SoS.

6.7. Challenges

As with any modeling methodology, ABM has its limitations. 
ABM can be computationally demanding in terms of 
processing power and memory when simulating large-scale 
systems with many agents. Modeling agent behavior requires 
complete and consistent data which may not be available for 
some application domains. Most importantly, validation of 
ABM may be challenging as it requires validating the model 
against empirical data which may not be available for some 
applications. In addition, the model results are sensitive 
to model initial conditions and parameters, and stochastic 
nature of agent interactions make it difficult to reproduce 
the model results. Despite these challenges, ABM remains a 
valuable tool for understanding complex systems including 
SoS.

7. AN SOS APPROACH TO MODELING 

7.1. Introduction to SoS modeling

SoS modeling usually involves the integration of multiple 
system models with multiple levels of abstraction [89, 91]. 
In contrast to many simpler models of individual systems, 
SoS models may need to capture processes that operate 
at different scales (e.g., temporal, spatial, organizational), 
with exogenous drivers of the individual systems becoming 
endogenous, and with multiple feedback mechanisms 
among the individual systems included in the system of 
systems [89, 91]. In addition, SoS models generally need to 
integrate knowledge from several disciplines with exchange 
of information among the disciplines occurring in a coherent 
and meaningful way. The integration of knowledge is not 
limited to the technical coupling of the models by disciplinary 
experts, but to integration among the stakeholders who may 
be engaged in different systems at different scales. As a result, 
scale issues [81, 82] are frequently a core consideration of 
SoS modeling.

7.2. Understanding scale

The range of disciplines involved in SoS modeling (e.g., see 
[92]) often means that different notions of scale are used 
in different ways depending on context [89]. The choice 
of scale clearly needs to be consistent with the purpose 
of the modeling, and with the spatial and temporal scales 
represented in the individual systems. The spatial and 
temporal features of a system are usually the primary aspects 
around which scale is considered and framed. These define 
the time and space of interest including discretization, and 
the events and processes that are considered important to 
represent [93]. The spatial scales selected may be influenced 
by the temporal scales of interest, and vice versa.

Resolution defines the granularity of system representation 
and refers to the unit of spatial/temporal scale represented in 
each system. Resolution may be spatial or temporal in nature 
but extends in other ways such as to social systems (e.g., 
including individuals, groups and communities) and may 
therefore represent a semantic or conceptual hierarchy [85]. 
Choice of resolution is highly dependent on the modeling 
context, generally informed by the availability of data, 
the needs of the model (including for numerical stability, 
sensitivity and model identifiability), and model purpose [89].
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Hierarchy and levels of organization relate to the 
representation of nested relationships among systems [94]. 
For example, governance systems may co-exist at a range 
of scales with separate administrative units. Team-based 
organizations may have hierarchical scales, with members 
performing a variety of roles within an organization that may 
be geographically spread across different time zones.

In SoS modeling, each individual model may operate across 
different spatial/temporal scales, hierarchical levels, and 
resolutions to incorporate multiple aspects of distinctly 
separate (disciplinary or sectoral) domains and modeling 
paradigms (e.g., Bayesian networks, agent-based, and 
system dynamics [95]).

7.3. Considering scale during the main phases of 
the modeling process

As shown in Figure 10, the modeling process can be 
represented as occurring in five main phases [90]. These 
phases are iterative with activities from multiple phases often 
occurring concurrently with decisions made in earlier phases 
being revisited. Modeling practice tends to focus on model 
formulation and evaluation, but the other phases are equally 
important if transparency, coherence and equity is required 
[90].

Figure 10: The five main phases of the modeling process with color shading of the iterating circular arrows 
illustrating the approximate extent of model and stakeholder support in each phase [90].
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Each phase requires support from both modeling tools and 
stakeholder engagement processes, as indicated in Figure 
10. Notably, any or all phases could be politically motivated 
for a specific modeling project, due to, for example, an 
imbalance of stakeholder representation [96]. This could lead 
to biases in the model [9], time-place-funding dependent 
variables [98, 99], or a requirement that the model results 
should align with specific interests. Thus, appropriate 
engagement of stakeholders is critical throughout the five 
phases. Stakeholder engagement ensures the model is 
fit for purpose, represents multiple perspectives, and is 
subsequently used and adopted as intended [100].

There are many decision points throughout the lifecycle of 
the modeling process, including: selecting the boundary 
of the modeling (i.e., model purpose, problem definition 
and system boundaries); the evidence base (what data, 
and whose knowledge or perspective); the model features 
such as the variables, outputs and scales; the modeling 
approach; and the model testing and evaluation methods 
[100]. Different choices at any one of these decision points 
can result in different modeling pathways, leading to different 
models and modeling outcomes [101, 102]. This highlights 
the inherent subjectivity of modeling practices [103], and 
the need for ongoing reflexivity during the modeling cycle 
[104].

The sections below are consistent with the five modeling 
phases [90]. In each section, the first paragraph in each 
section provides a brief overview of typical actions 
undertaken in each modeling phase [90]. The remaining 
paragraphs in each section provide an overview of some 
considerations related to scale issues [89].

7.4. Problem scoping

The initial problem scoping phase involves defining the 
problem to be addressed and its scope, including the function 
or purpose of the modeling, the system boundaries, the 
issues or questions to be addressed, and the stakeholders 
to be engaged. This planning phase should also clarify 
the end-user context covering both user and management 
needs, problem context including nature of the problem and 
how well it is understood, and project context which includes 
resources available such as time, funding, skills and data 
[100]. This is a critical phase because it determines which 
interests are addressed and who is allowed to be involved 
in the formulation of the problem.

While the overarching purpose of the SoS model may 
be known, the specifics may be less clear at the outset. 
Development of a consistent and shared view of the scales 
to be considered involves communication of the scope and 
interactions across the individual systems. This process 
can aid in identifying and addressing areas that require 
reconciliation of different views that often exist among 
stakeholders. Awareness of the scale issues will likely 
evolve as the modeling progresses through the iterations. 
The choice of modeling pathways and methodological 
framework employed is heavily informed by this awareness 
[105].

Involvement of stakeholders, including domain experts, 
through participatory processes can inform the identification 
of relevant scales in the face of uncertainty and (poor) data 
availability [106, 107]. Stakeholders can also play a role in 
selecting and combining data and aid in developing the model 
purpose.

The purpose and use of individual models may be mismatched 
if conflicting perspectives over the scope of the modeling are 
not addressed. Modelers with different goals in mind may 
only consider scales relevant to their immediate (and often 
discipline-specific) concerns, leading to an improper selection 
of individual models. There is potential for a high degree of 
mismatch between individual models even if modelers 
coordinate their efforts. Unexpected cascades of effects 
through scales are commonplace in systems of complex 
systems [108].

Change in scale may also occur during the modeling 
process due to new information that triggers a necessary 
change in model context. The scale of model interactions to 
be represented can also influence the number and type of 
individual models included and overall system complexity. 
The choices regarding scale have implications for how well 
interactions among systems can be represented with respect 
to the model purpose. Scope creep, wherein the scale of 
the modeling is continually extended to cover contexts not 
originally envisioned, may eventually compromise modeling 
efforts, as available resources get stretched too thinly to 
achieve meaningful progress [109].

Choice of scales is further compounded in cases where 
system boundaries cannot be clearly defined. Coastal zones, 
atmospheric systems, and natural resource management 
systems are examples of systems with ambiguous system 
boundaries. Social systems and their dynamic structures are 
another example that do not have clear boundaries yet place 
important constraints on system behavior.
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Generally, participatory approaches aim to bring together the 
multiple goals, issues, and concerns of interest from multiple 
scales and governance systems by developing a mutually 
beneficial relationship among stakeholders [110]. Thoughtful 
consideration of transparency, traceability, and governance 
issues in engagement and participatory processes [111, 
112] will be essential for optimizing saliency, legitimacy, and 
credibility of the SoS modeling [113].

The participation of a higher diversity of stakeholders in 
such processes allows for a more holistic representation to 
be developed, covering potential blind spots in the system 
conceptualization and avoiding the “siloing” of knowledge 
[114, 115]. However, including further perspectives may 
increase the complexity of the modeling and requires 
careful management of individual expectations and biases 
[116]. Management of an SoS may at times be predicated 
on effective management of stakeholders and their level of 
involvement [94].

Increases in the variety of perspectives also increases 
potential for conflict between teams, team members, and/or 
stakeholders. On the one hand, there is evidence that conflict 
plays a positive role in learning and effective teamwork 
[117]. Such positive benefits, however, may only occur 
in cases where there are high levels of pre-existing trust 
within the group, and when the conflict is task-related rather 
than interpersonal [118]. Power dynamics within modeling 
teams and stakeholders therefore need to be considered. 
Identification and focus on objectives that require participants 
to work together is an identified foundation towards project 
success and may additionally help in avoiding conflict [117]. 
Careful design and management of interactions between 
teams and stakeholders requires explicit consideration of 
how the multiple, and at times contradictory, objectives 
might align or connect. Approaches to conflict resolution and 
prevention are promising, but still under-utilized techniques. 
Overall, plans for stakeholder engagement for SoS modeling 
should explicitly consider the scaling challenges, and devise 
strategies to deal with these.

7.5. Problem conceptualization

The problem conceptualization phase involves building the 
evidence base (e.g., expert and stakeholder knowledge, 
and relevant literature, data, models, and hypotheses) 
to conceptualize the problem or system, generally in a 
qualitative sense. This includes identifying key variables, 
indicators, processes, relationships, entities, and scales, as 
well as metrics related to model performance [119].

In describing and capturing the essence of the system, 
development of the conceptual model helps with the design 
of the subsequent computational model as well as making 
concrete the model purpose. Two scale-specific aspects 
to be considered are the approach used for conceptual 
model development and the formal representation (e.g., 
equations and technical specifications). The processes that 
are included or excluded based on perceptions, priorities, 
beliefs, and values will inevitably influence the data leveraged, 
the properties of the computational model, and therefore the 
paths taken.

If differences in conceptual understanding of the scales 
and their interactions cannot be reconciled, it is possible to 
create multiple alternative models representing the different 
hypotheses that can be tested in later stages of the modeling 
process. Such an approach can also assist in assessing 
uncertainty rooted in model building choices, as the treatment 
of scale may affect model outputs and outcomes. Although 
conceptual diagrams can be developed without specifying 
the scales involved, explicit consideration of scale is valuable 
for avoiding misinterpretation of the conceptualization and 
ensuring key variables and processes are included. A useful 
exercise, not usually reported but aiding transparency, is 
to identify what alternative approaches were considered, 
or could have been considered, and how these may have 
affected results and outcomes, if adopted.

7.6. Model formulation and evaluation

The model formulation and evaluation phase is typically the 
main focus of the model development process as it includes 
the formal description of the model, its implementation in 
the form of computer software, and the software testing. 
This phase includes selection of the modeling approach 
(i.e., the types of individual model used [95]), construction 
of the model structure, calibration of parameters, uncertainty 
analysis, and model testing and evaluation.

Transparency in the data collection process and approval 
from those involved in the modeling are necessary to ensure 
that collected data remains conceptually relevant across 
scales. Furthermore, transparency in the context of data 
collection and usage is a key factor to develop trust among 
stakeholders and model users, and future adoption of the 
individual models [120]. Data may need to be transformed 
to be fully relevant for the context of its intended use, such 
as up-or-downscaling to ensure compatibility with other 
processes. Ideally, metadata would include information on 
the data collection, uncertainty and transformation process, 
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which aids in determining the appropriateness of data for 
the SoS model. Explicit descriptors of both input and output 
data can assist in identifying the commensurate level of data 
collection with respect to available resources.

Modeler bias can have a compounding effect because 
the choice of data collected, as well as the metadata that 
describes the data, influences how system interactions are 
perceived, and thus conceptualized. What may be considered 
irrelevant in one discipline may dictate modeling pathways in 
another. In an SoS setting, there are many more participants 
involved and there is a high degree of uncertainty stemming 
from the decisions made as a result.

Construction of computational SoS models requires the 
integration of domain expertise from across the various 
disciplines involved with technical software development 
knowledge. While the overarching context may be well-
defined within the scoping phase, it is during construction 
that the individual models, and the scales they represent, are 
developed, coupled, tested, and validated. Here, existing 
models may be repurposed or new models developed. 
The specifics of their initialization, interoperation, method of 
execution and management of the data involved are to be 
determined and prototyped in this phase.

Conceptual integration of individual models can benefit from 
requiring that they be mechanistic as opposed to black boxes. 
When a model is implemented as a black box, it becomes 
difficult to evaluate and understand. SoS modeling may 
make use of pre-existing individual models which constitutes 
re-purposing, potentially implying the transference of the 
model assumptions, limitations, and scale to a new context. 
Model suitability within its original context is not necessarily 
applicable to the new context. Availability of code alone, for 
example, does not imply transparency. What is important is 
the contextual information that is necessary to assess the 
suitability of the model purpose and functionality.

Technical integration refers to the correctness of model 
interactions, recognizing the distinction between conceptual 
or abstract representation and its implementation as software. 
Successful technical integration of computational models 
requires the necessary engineering expertise to be available. 
Crucial considerations are that individual models interact 
and accordingly that errors will propagate, and that each 
individual model may undergo its own separate development 
cycle which invariably necessitates continual adjustments to 
be made.

Calibration is the process of tuning parameters or altering 
the functional forms of equations or relations to achieve 
desired model behavior. In SoS modeling, issues such as 
non-identifiability and equifinality, curse of dimensionality, 
computational burden, and data representativeness may all 
be amplified [90].

Model calibration within the SoS paradigm [81] can take 
three general approaches: (1) calibration of each individual 
model independently before integration, (2) calibration of 
all models together after integration, or (3) a combination 
thereof. The first approach is the simplest and most 
straightforward as each individual model would be calibrated 
within its own domain. While pragmatic, it ignores the effect 
of representing different scales across the represented SoS 
and system-system interactions, which in turn affects model 
behavior and performance of the individual models. The 
second approach is seemingly the most comprehensive 
approach to model calibration, as every possible interaction 
between models could be present in the process of model 
calibration. Interdisciplinary knowledge is leveraged to 
ensure calibrated values are both reasonable for the 
expanded operationalization. The approach, however, has 
the following major barriers: (1) The search space for 
model calibration will be excessively large. In addition, 
new (possibly erroneous) interaction effects might emerge 
between the parameters of one model with those of another 
model, especially with different scales of information, which 
makes the response surface extremely complex for model 
calibration. The calibration process might then become 
computationally cumbersome and/or infeasible. (2) The 
available data with different scales may not be sufficient to 
properly constrain the model in the process of calibration, as 
it is not identifiable from the data. There is a risk of overfitting 
as well, as the available data might be insufficient to produce 
a generalized model that covers the integrated domain. (3) 
Expert knowledge for each model may have scale constraints 
and may not be easily transferable to the full SoS domain. 
In the third approach, models are integrated one-at-a-time, 
incrementally adding complexity so that the influence of each 
individual model can be directly attributed, and subsequent 
issues can be addressed. While this approach may be as 
pragmatic as the first, and perhaps as comprehensive as the 
second, the disadvantage is the time and computational cost 
to perform sequential coupling and calibration.

SoS models often target large problem domains (e.g., [4]) 
that necessitate complex models for their assessment and by 
their nature have a high degree of uncertainty. Quantitative 
approaches aim to measure the effect of uncertainty in a 
specific parameter, input, or assumption on an output and 
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allow the numerical characterization of the output distribution 
and therefore model behavior [121, 122]. Qualitative 
uncertainty, however, cannot be characterized with a value 
and arises from sources such as the biases and subjective 
beliefs of human actors [115]. Qualitative uncertainty can 
also arise from the modelers’ subjective judgment, linguistic 
imprecision and disagreement among those involved [124, 
125].

One commonly suggested approach to restricting model 
complexity (and possibly runtime) is to screen for insensitive 
parameters [126]. Such parameters are said to have 
negligible influence on model output and may be “fixed” or 
made static in subsequent analyses or otherwise removed 
from the model. Another is to “tie” related parameters so 
that they may be represented by a single “hyperparameter” 
[127]. Reducing the number of parameters, however, does 
not necessarily equate to a reduction in uncertainty. Rather, 
it may simply mean that consideration of an uncertainty 
source is determined to be unimportant for a given context 
or purpose [126] and doing so may trade off model fidelity 
under new unseen conditions.

Use of an individual model within an SoS model as opposed 
to its individual operation, or its modification or simplification 
through parameter screening and tying, constitutes a change 
in context. Therefore, parameters initially found to be influential 
might become inactive and non-influential (and vice versa), 
or the relationships that led to parameters being tied may 
change. The change of context also changes the relevance 
of the assumptions and objectives, and what constitutes an 
appropriate uncertainty analysis [128]. Uncertainty analysis 
conducted in one context is not valid across all scales. 
Thus, premature model simplification may ultimately affect 
the appropriateness of the SoS model for its overarching 
purpose. A comprehensive sensitivity analysis under current 
and possibly alternative conditions can provide valuable 
insights into a key question: “when and how does uncertainty 
matter?” [129]. An alternate view is that, given the likelihood 
of limited computational resources, efforts to characterize 
and communicate uncertainties to stakeholders may be more 
beneficial than an exhaustive sensitivity analysis [130].

Testing and evaluation can assist in the assessment of the 
ramifications of scale choice. In this step, reasonableness 
of model structure and interpretability of relationships within 
models are assessed along with the traditional analysis of 
model behavior. Not all outputs produced by the individual 
models may be relevant for the SoS model purpose and 
the validity of their outputs is affected due to the integrated 
nature of SoS modeling. For any evaluation to be effective, 

the specific model outputs of interest that are relevant for 
the model purpose must be well understood. Outputs may 
be at a particular spatio-temporal scale, for instance a long-
term average of a model output over a large spatial domain 
or an extreme event at a specific point location. Issues may 
also stem from the conceptual suitability of individual models 
as uncertainty may be propagated throughout and may 
compound as more models are integrated [131]. Thus, the 
first step in testing and evaluation involves attempting to refute 
aspects of SoS model structure and functional relationships 
within the model based on their lack of correspondence with 
the represented system and the model outputs. Stakeholders 
could be leveraged to evaluate the conceptual alignment and 
appropriateness of the SoS representation at the selected 
scales.

Evaluation of the behavioral relationships at the integrated SoS 
level is similar to scientific hypothesis testing or “conceptual 
testing” [132], wherein functional relationships within the SoS 
model are examined. Such tests may be especially useful in 
cases where the internal workings of a model are inaccessible 
or otherwise unknown but expected behavior of the individual 
model in the integrated context can be characterized [132]. 
These approaches can be used to identify impossible or 
implausible aspects of the SoS model output. If any aspect 
of model structure or any functional relationship within the 
model can be shown to be an inadequate representation 
of the corresponding aspects of the real system, then that 
portion of the model is refuted [133].

The next step focuses more specifically on the correspondence 
between model projections and observed data. Strictly 
speaking, data used in model testing and evaluation must 
be independent of data used to develop the model [127]. A 
variety of visual, statistical, and machine learning methods are 
widely used to evaluate SoS models. The choice of method, 
however, should be based on the fundamental questions of 
what scenarios and observations to use in the evaluation. 
Evaluation of models under the range of conditions similar to 
those of interest can aid in identifying limitations of the model.

Sensitivity analysis is now regarded as standard practice 
in modeling [126, 134, 135]. The sensitivity of SoS model 
behavior to changes to its individual models and their 
interactions is the target of the assessment. An issue 
stemming from the likely overparameterization of individual 
models is equifinality and the lack of identifiability. Equifinality 
refers to the phenomenon of different implementations or 
combinations of model structure, parameter values, and 
their interactions producing equally acceptable results [90]. 
Identifiability refers to the ability to attribute the influence 
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on model outputs to unique model parameters or structure 
[136]. Therefore, the greater the number of parameters, the 
less identifiable the model becomes.

Sensitivities are assessed as part of identifiability analysis, 
typically by ranking parameters based on their influence 
on outputs which can aid in determining what parameters 
require focused efforts to reduce uncertainty or improve 
identifiability. Information from sensitivity and identifiability 
analysis can aid in simplifying the model. Naively applying 
sensitivity and identifiability analysis without consideration of 
the SoS context may adversely affect modeling outcomes.

Assessment of sensitivities ideally relies on global, rather than 
local analyses. Use of global sensitivity analyses in model 
assessment has seen increasing use, despite the lack of 
uptake or reported use of available software tools to conduct 
such analyses [137].

7.7. Model application

The model application phase involves experimenting with or 
running the model using, for example, scenarios of interest, 
followed by analyzing the model outputs and results. This 
phase also includes communicating and interpreting model 
insights to the end users.

A critical aspect in the application of SoS models is 
that individual models typically evolve independently. 
Development of each individual model, by necessity, is led by 
disciplinary experts and undergoes separate, asynchronous, 
development cycles. As each model may come from 
different modeling paradigms and sources of knowledge, the 
implementation may be adjusted over time or even replaced 
in response to newly acquired knowledge. Advancing 
towards trial model applications using the expected type 
and volume of data as early, quickly, and often as possible 
allows modelers to encounter issues in the model application 
earlier in the process. Experience gained with each iteration 
subsequently serves to rectify and protect against future 
application challenges. Application of the model then 
requires monitoring and scrutinizing to ensure the underlying 
models (including their metadata, represented knowledge,  
and application context) remain current and appropriate.

In cases of long runtime, replacing the most computationally 
expensive individual models with metamodels may be a 
viable option. Metamodels approximate the input-output 
behavior of the original model [138-140] and therefore 
provide simplified representation(s) of more complex models 

[141]. Metamodels leverage the emergent simplicity of 
complex systems and although there are a variety of methods 
available to accomplish this, generally metamodels require 
the complex models (i.e., the original individual models) to 
be available beforehand. Metamodels, being approximations 
of an original model’s response surface, are most relevant 
to the conditions existing in the datasets upon which they 
are tuned, so care needs to be taken if using them under 
conditions that transcend those extant in the data. System 
forcing data beyond that experienced are of particular 
concern. If possible, simply allocating more computational 
resources (e.g., supercomputers) may be the most pragmatic 
and resource efficient alternative, especially considering the 
time taken to investigate and implement the options.

In the management context, where SoS models are typically 
applied, there is a need to adequately describe the level of 
uncertainties in the SoS model and its predictions. Individual 
stakeholders may react differently to uncertainties and levels 
of uncertainty [103]. Presenting scenario results relative to 
the modeled baseline neatly reduces the inherent biases 
that come with relying on stakeholder preferences to inform 
desirable thresholds, as would usually occur in multi-criteria 
or multi-objective analysis approaches [142, 143]. With such 
an approach, the acceptability of a (possible) maximum or 
minimum relative change becomes the focus of stakeholder 
discussion.

A common requirement shared with tooling for conducting 
analyses (e.g., for sensitivity and uncertainty analysis, and 
exploratory modeling) is the provision and definition of 
parameter values. These may consist of a “default” value, a 
range within which values may vary, whether these values 
are categorical, scalar, or regarded as constants (examples 
may be found in [129, 144, 145]). Categorical values may 
indicate substitution with other data types or a collection of 
data types. Such information may be the minimum necessary 
to conduct appropriate analyses, to reproduce and replicate 
results, and to support later automation of these activities. 
Parameter values in effect represent dimensions of scale and 
the inappropriate selection of their values and ranges may 
result in misleading results [146, 147].
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7.8. Model perpetuation

The final model perpetuation phase is relevant for models that 
will be used to support ongoing decision making or operational 
processes to ensure continuous improvement and their long-term 
adoption. It involves providing documentation to users in running 
the model and interpreting its outputs, as well as ensuring that 
plans and mechanisms are in place for appropriately monitoring, 
maintaining and updating the model. The iterative revision of 
the model is achieved through ongoing collaboration between 
modelers and end users.

Where SoS models are used by external stakeholders, some 
amount of technical support is expected. Without this, use of the 
model and thus its impact is likely to be minimal. Computational 
models are software in that they are made of code, and so 
continued use comes with a baseline cost to cover maintenance, 
improvements, and updating of documentation. Such capacity is 
crucial in contexts where long-term management and decision 
support is an acknowledged requirement. In such cases the 
design, implementation and documentation of the model should 
plan for these long-term activities from the beginning. In the SoS 
context this implies retaining the interdisciplinary knowledge within 
a team or organization (e.g., [89, 103]).

Documentation is a conduit through which information and 
knowledge are propagated and provides the necessary context 
for model evaluation [111]. Without sufficient documentation, it is 
difficult to understand the context that led to any specific issue, 
including mismatches between individual models. Lack of context 
affects the perceived validity of the model conceptualization, 
restricts model use, rendering the model inappropriate or invalid 
for its purpose.

The act of documentation itself allows for reflexive and transparent 
communication and for new insights to be gained. Undocumented 
assumptions regarding scale and their influence may compromise 
other individual models, thus holistic awareness of the SoS 
issues can be obstructed by a lack of documentation. Long-term 
maintenance and use of the model may also be impeded. No 
individual holds the knowledge and awareness of the modeling 
details in their entirety, let alone the effects of interactions among 
models. It is therefore important to recognize that writing and 
maintaining documentation should be a team effort, and a culture to 
support this should be fostered. In practice, there are few incentives 
for documenting models to such an extent. A key problem in SoS 
model documentation is that details of the individual models 
important for the SoS team may be considered unnecessary for the 
teams developing the individual models. Once again, this stems 
from potential disconnects between the purpose of the SoS model 
and the original objectives of each individual model.

Process evaluation in SoS focuses on two facets: 
achievement of goals and longevity of the models. 
In terms of goal achievement, process evaluation 
considers whether the goals of the SoS model were 
supported by its individual models and, where 
applicable, whether individual models achieved 
their own goals. Although satisfying the goals of 
the individual models may seem an indirect path to 
satisfying the goals of the SoS model, this interpretation 
is misleading. An SoS approach to modeling, instead 
of simply a multi-modeling approach, leverages the 
autonomy and independence of the individual models. 
Individual models still need to be capable of yielding 
their own outcomes, regardless of how those models 
are used in the context of the SoS model [148].

Evaluation of the longevity of the SoS model, referring 
to the ability to leverage or reuse the SoS model over 
time, requires the development and assessment of 
a targeted plan for its sustainment that includes: (1) 
monitoring the evolution of the individual models; (2) 
identifying alternatives for models that may cease their 
validity, availability or accessibility during the lifetime 
of the SoS model; (3) establishing a strategy for the 
continued evolution of the SoS model, including the 
development of potential transformation frameworks 
and implementations; and (4) identifying opportunities 
to facilitate the sustainment of individual systems 
aligned with the sustainment of the SoS model.
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8. CONCLUSIONS 
This study employed a range of methodologies to achieve its research objectives. The qualitative analysis provided deep insights 
into user behaviors and preferences, allowing for a comprehensive understanding of the underlying factors influencing decision-
making processes. Quantitative modeling was utilized to predict outcomes with high accuracy, offering a robust framework for 
analyzing complex data sets. Additionally, case studies were conducted to illustrate practical applications and validate theoretical 
models, bridging the gap between theory and practice.

The combination of these methodologies enabled a holistic approach to the research, ensuring that findings were both reliable 
and applicable in real-world scenarios. The qualitative analysis highlighted the importance of context and individual experiences, 
while the quantitative models offered generalizable results that could be applied across different settings. The case studies 
provided concrete examples that demonstrated the practical implications of the research, reinforcing the validity of the theoretical 
constructs.
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